Research Article
BibTex RIS Cite

NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ

Year 2024, Volume: 44 Issue: 2, 259 - 279, 01.11.2024
https://doi.org/10.47480/isibted.1563032

Abstract

Endüstriyel mühendislik uygulamalarında kullanılan ısıl sistemlerde enerji verimliliği, işletme maliyetlerini etkileyen önemli konu başlıklarındandır. Isıl sistemlerin enerji verimliliğini; seçilen aracı akışkanların termo-fiziksel özelikleri ile sistemin geometrik, ısıl ve hidrodinamik tasarım değişkenleri etkilemektedir. Nanoakışkanlar, ısıl sistemlerde taşınımla ısı geçişinin iyileştirilmesi amacıyla konvansiyonel saf taşıyıcı sıvıların (KSTS) yerine önerilmektedir. Ancak, nanoakışkanların genel enerji verimliliğine etkileri, KSTSlarla karşılaştırmalı olarak yeterince tartışılmamıştır. Bu çalışmada, mini kanallı borularla üretilen prototip gövde borulu bir ısı değiştiricide, boru tarafında soğuyan Al2O3-su nanoakışkanlarının enerji verimliliğine etkileri deneysel incelenmiştir. Üç farklı hacimsel oranda (%0.2, %0.4 ve %0.8) hazırlanan nanoakışkanların, KSTS suya göre enerji verimliliğine etkileri iki farklı ölçütle (Performans Değerlendirme Ölçütü-PDÖ ve Verimlilik Değerlendirme Ölçütü-VDÖ) değerlendirilmiştir. Ayrıca sunulan çalışmaya benzer şekilde; literatürde yayımlanan, levhalı ısı değiştiricilerde (LID) ve gövde borulu ısı değiştiricilerde (GBID) nanoakışkanların kullanıldığı deneysel çalışmaların verileriyle, PDÖ ve VDÖ hesaplanarak, KSTSların ve nanoakışkanların enerji verimliliğine etkileri karşılaştırılmıştır. Literatürdeki deneysel verilerle hesaplanan enerji verimliliği sonuçları, sunulan çalışmanın deneysel enerji verimliliği sonuçlarıyla karşılaştırılarak tartışılmıştır. Sunulan çalışmadaki %0.2, %0.4 ve %0.8 hacimsel oranlı Al2O3-su nanoakışkanlarının PDÖlerinin ortalaması KSTS suya göre sırasıyla -%38, -%27.1 ve -%38.1 daha düşük iken, VDÖlerinin ortalaması da sırasıyla 0.62, 0.73 ve 0.61’dir. PDÖ ve VDÖ sonuçları, KSTSların enerji verimliliği bakımından, nanoakışkanlara göre daha üstün olduğunu göstermiştir. Sonuç olarak; nanoakışkanların enerji maliyetleri bakımından, endüstriyel tesislerin ısıl sistemlerinde KSTSların yerine kullanılmasının uygun olmadığı elde edilmiştir. Ancak nanoakışanlar, düşük enerji verimliliği ve diğer dezavantajlarının önemsiz olduğu, yüksek ısı akısı (taşınım katsayısı) istenen, özel amaçlı ısıl sistemlerde, gerekli tüm önlemler alınarak ve çözümler uygulanarak kullanılabilir.

References

  • Albadr J., Tayal S. and Alasadi M., 2013, Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Studies in Thermal Engineering, 1(1), 38–44.
  • Anoop K. B., Kabelac S., Sundararajan T. and Das, S. K., 2009, Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration, Journal of Applied Physics, 106(3), 034909.
  • Barzegarian R., Aloueyan A. and Yousefi, T., 2017, Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation, International Communications in Heat and Mass Transfer, 86, 52–59.
  • Bianco V., Manca O. and Nardini, S., 2011, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube, International Journal of Thermal Sciences, 50(3), 341–349.
  • Chand R., 2017, Nanofluid Technologies and Thermal Convection Techniques, IGI Global, USA.
  • Choi S. U. S., 2009, Nanofluids: From Vision to Reality Through Research, Journal of Heat Transfer, 131(3): 03310.
  • Das S. K., Choi S. U. S. and Patel, H. E., 2006, Heat Transfer in Nanofluids-A Review, Heat Transfer Engineering, 27(10), 3–19.
  • Das S. K., Choi S. U. S., Yu W. and Pradeep T., 2007, Nanofluids, John Wiley & Sons, Inc., Hoboken.
  • Del Col D., Cavallini A., Da Riva E., Mancin S. and Censi G., 2010, Shell-and-tube minichannel condenser for low refrigerant charge, Heat Transfer Engineering, 31(6), 509–517.
  • Farajollahi B., Etemad S. G. and Hojjat M., 2010, Heat transfer of nanofluids in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 53(1–3), 12–17.
  • Ferrouillat S., Bontemps A., Ribeiro J.-P., Gruss J.-A. and Soriano O., 2011, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, International Journal of Heat and Fluid Flow, 32(2), 424–439.
  • Ghadimi A., Saidur R. and Metselaar H. S. C., 2011, A review of nanofluid stability properties and characterization in stationary conditions, International Journal of Heat and Mass Transfer, 54(17–18), 4051–4068.
  • Gonçalves I., Souza R., Coutinho G., Miranda J., Moita A., Pereira J. E., Moreira A. and Lima R., 2021, Thermal conductivity of nanofluids: A Review on prediction models, controversies and challenges, Applied Sciences, 11(6), 2525.
  • Gupta S. K., Verma H. and Yadav N., 2022, A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy, Materials Today: Proceedings, 54, 579–589.
  • Gürbüz E. Y., Sözen A., Variyenli H. İ., Khanlari A. and Tuncer A. D., 2020, A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 524.
  • Hejcik J. and Jicha M., 2014, Single phase heat transfer in minichannels, EPJ Web of Conferences, 67, 02034.
  • Ho C. J., Liu W. K., Chang Y. S. and Lin C. C., 2010, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, 49(8), 1345–1353.
  • Hunter R. J., 2002, Foundations of Colloid Science, Oxford University Press, New York.
  • İnternet, 2023, Accuratus Corporation, Alumox, https://www.accuratus.com/pdf/995aluminaprops.pdf.
  • Kabeel A. E. and Abdelgaied M., 2016, Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid, Heat and Mass Transfer, 52(8), 1417–1424.
  • Kakaç S., Liu H. and Pramuanjaroenkij A., 2012, Heat Exchangers: Selection, Rating, and Thermal Design (Third Ed.), CRC Press, New York.
  • Kandlikar S. G., 2007, A roadmap for implementing minichannels in refrigeration and air-conditioning systems-Current status and future directions, Heat Transfer Engineering, 28(12), 973–985.
  • Kandlikar S. G. and Grande W. J., 2003, Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24(1):3–17.
  • Karimi S., Heyhat M. M., Isfahani A. H. M. and Hosseinian A., 2020, Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger, Heat and Mass Transfer, 56(8), 2325–2331.
  • Kern D. Q., 1950, Process Heat Transfer, McGraw-Hill, New York.
  • Kline S. J. and Mcclintock F. A., 1953, Describing uncertainties in single sample experiments, Mechanical Engineering, 75(1):3–8.
  • Kücük H., Ünverdi M. and Senan Yılmaz M., 2019, Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 143, 118493.
  • Kumar N., Sonawane S. S. and Sonawane S. H., 2018, Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid, International Communications in Heat and Mass Transfer, 90, 1–10.
  • Ma L., Yang J., Liu W. and Zhang X., 2014, Physical quantity synergy analysis and efficiency evaluation criterion of heat transfer enhancement, International Journal of Thermal Sciences, 80, 23–32.
  • Mansoury D., Doshmanziari F. I., Kiani A., Chamkha A. J. and Sharifpur M., 2020, Heat Transfer and Flow Characteristics of Al2O3/Water Nanofluid in Various Heat Exchangers: Experiments on Counter Flow, Heat Transfer Engineering, 41(3), 220–234.
  • Minkowycz W. J., Sparrow E. and Abraham J. P., 2013, Nanoparticle Heat Transfer and Fluid Flow, CRC Press, New York.
  • Pak B. C. and Cho Y. I., 1998, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer, 11(2), 151–170.
  • Pandey S. D. and Nema V. K., 2012, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Experimental Thermal and Fluid Science, 38, 248–256. Prasher R., Phelan P. E. and Bhattacharya P., 2006, Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid), Nano Letters, 6(7), 1529–1534.
  • Rostami M. H., Najafi G., Ghobadin B. and Motevali A., 2020, Thermal performance investigation of SWCNT and graphene quantum dots nanofluids in a shell and tube heat exchanger by using fin blade tubes, Heat Transfer, 49(8), 4783–4800.
  • Russel W. B., Saville D. A. and Schowalter W. R., 1989, Colloidal Dispersions, Cambridge University Press, New York.
  • Saidur R., Leong K. Y. and Mohammed H. A., 2011, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15(3), 1646–1668.
  • Saleh B. and Sundar L. S., 2021, Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids, International Journal of Thermal Sciences, 165, 106935.
  • Sekhar Y. R. and Sharma K. V., 2015, Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations, Journal of Experimental Nanoscience, 10(2), 86–102.
  • Sergis A. and Hardalupas Y., 2011, Anomalous heat transfer modes of nanofluids: a review based on statistical analysis, Nanoscale Research Letters, 6(1), 391.
  • Shahrul I. M., Mahbubul I. M., Saidur R. and Sabri M. F. M., 2016, Experimental investigation on Al2O3-W, SiO2-W and ZnO-W nanofluids and their application in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 97, 547–558. Sharma A. K., Tiwari A. K. and Dixit A. R., 2016, Rheological behavior of nanofluids: A review, Renewable and Sustainable Energy Reviews, 53, 779–791.
  • Somiya S., 1989, Advanced Technical Ceramics, Academic Press, California.
  • Tiwari A. K., Ghosh P. and Sarkar J., 2013, Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger, Applied Thermal Engineering, 57(1–2), 24–32.
  • Trang N. V., Trung D. T. and Dzung D. V., 2017, Experimental Study of Alternative Minichannel Heat Exchanger for Scooter Radiator, International Journal of Emerging Research in Management and Technology, 6(4), 46–50.
  • Unverdi M. and Islamoglu Y., 2017, Characteristics of heat transfer and pressure drop in a chevron-type plate heat exchanger with Al2O3/water nanofluids, Thermal Science, 21(6 Part A), 2379–2391.
  • Ünverdi M., Kücük H. and Yılmaz M. S., 2019, Experimental investigation of heat transfer and pressure drop in a mini-channel shell and tube heat exchanger, Heat and Mass Transfer, 55:1271–1286.
  • Van de Bor D. M., 2014, Mini-channel heat exchangers for industrial distillation processes, Ph.D. Thesis, Delft University of Technology, Delft.
  • Wadekar V. V., 2005, Heat Exchangers in Process Industry and Mini- and Microscale Heat Transfer, Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, USA, 318–322.
  • Wang X.-Q. and Mujumdar A. S., 2007, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46(1), 1–19.
  • Webb R. L. and Kim N. H., 2005, Principles of Enhanced Heat Transfer (2nd Ed.), Taylor and Francis, New York.
  • Yılmaz M. S., Ünverdi M., Kücük H., Akcakale N. and Halıcı F., 2022, Enhancement of heat transfer in shell and tube heat exchanger using mini-channels and nanofluids: An experimental study, International Journal of Thermal Sciences, 179, 107664.
  • Zhang J., Zhu X., Mondejar M. E. and Haglind F., 2019, A review of heat transfer enhancement techniques in plate heat exchangers, Renewable and Sustainable Energy Reviews, 101, 305–328.
  • Zhou S.-Q. and Ni R., 2008, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Applied Physics Letters, 92(9), 093123.
Year 2024, Volume: 44 Issue: 2, 259 - 279, 01.11.2024
https://doi.org/10.47480/isibted.1563032

Abstract

References

  • Albadr J., Tayal S. and Alasadi M., 2013, Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations, Case Studies in Thermal Engineering, 1(1), 38–44.
  • Anoop K. B., Kabelac S., Sundararajan T. and Das, S. K., 2009, Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration, Journal of Applied Physics, 106(3), 034909.
  • Barzegarian R., Aloueyan A. and Yousefi, T., 2017, Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation, International Communications in Heat and Mass Transfer, 86, 52–59.
  • Bianco V., Manca O. and Nardini, S., 2011, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube, International Journal of Thermal Sciences, 50(3), 341–349.
  • Chand R., 2017, Nanofluid Technologies and Thermal Convection Techniques, IGI Global, USA.
  • Choi S. U. S., 2009, Nanofluids: From Vision to Reality Through Research, Journal of Heat Transfer, 131(3): 03310.
  • Das S. K., Choi S. U. S. and Patel, H. E., 2006, Heat Transfer in Nanofluids-A Review, Heat Transfer Engineering, 27(10), 3–19.
  • Das S. K., Choi S. U. S., Yu W. and Pradeep T., 2007, Nanofluids, John Wiley & Sons, Inc., Hoboken.
  • Del Col D., Cavallini A., Da Riva E., Mancin S. and Censi G., 2010, Shell-and-tube minichannel condenser for low refrigerant charge, Heat Transfer Engineering, 31(6), 509–517.
  • Farajollahi B., Etemad S. G. and Hojjat M., 2010, Heat transfer of nanofluids in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 53(1–3), 12–17.
  • Ferrouillat S., Bontemps A., Ribeiro J.-P., Gruss J.-A. and Soriano O., 2011, Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, International Journal of Heat and Fluid Flow, 32(2), 424–439.
  • Ghadimi A., Saidur R. and Metselaar H. S. C., 2011, A review of nanofluid stability properties and characterization in stationary conditions, International Journal of Heat and Mass Transfer, 54(17–18), 4051–4068.
  • Gonçalves I., Souza R., Coutinho G., Miranda J., Moita A., Pereira J. E., Moreira A. and Lima R., 2021, Thermal conductivity of nanofluids: A Review on prediction models, controversies and challenges, Applied Sciences, 11(6), 2525.
  • Gupta S. K., Verma H. and Yadav N., 2022, A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy, Materials Today: Proceedings, 54, 579–589.
  • Gürbüz E. Y., Sözen A., Variyenli H. İ., Khanlari A. and Tuncer A. D., 2020, A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 524.
  • Hejcik J. and Jicha M., 2014, Single phase heat transfer in minichannels, EPJ Web of Conferences, 67, 02034.
  • Ho C. J., Liu W. K., Chang Y. S. and Lin C. C., 2010, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, 49(8), 1345–1353.
  • Hunter R. J., 2002, Foundations of Colloid Science, Oxford University Press, New York.
  • İnternet, 2023, Accuratus Corporation, Alumox, https://www.accuratus.com/pdf/995aluminaprops.pdf.
  • Kabeel A. E. and Abdelgaied M., 2016, Overall heat transfer coefficient and pressure drop in a typical tubular exchanger employing alumina nano-fluid as the tube side hot fluid, Heat and Mass Transfer, 52(8), 1417–1424.
  • Kakaç S., Liu H. and Pramuanjaroenkij A., 2012, Heat Exchangers: Selection, Rating, and Thermal Design (Third Ed.), CRC Press, New York.
  • Kandlikar S. G., 2007, A roadmap for implementing minichannels in refrigeration and air-conditioning systems-Current status and future directions, Heat Transfer Engineering, 28(12), 973–985.
  • Kandlikar S. G. and Grande W. J., 2003, Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24(1):3–17.
  • Karimi S., Heyhat M. M., Isfahani A. H. M. and Hosseinian A., 2020, Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger, Heat and Mass Transfer, 56(8), 2325–2331.
  • Kern D. Q., 1950, Process Heat Transfer, McGraw-Hill, New York.
  • Kline S. J. and Mcclintock F. A., 1953, Describing uncertainties in single sample experiments, Mechanical Engineering, 75(1):3–8.
  • Kücük H., Ünverdi M. and Senan Yılmaz M., 2019, Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 143, 118493.
  • Kumar N., Sonawane S. S. and Sonawane S. H., 2018, Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid, International Communications in Heat and Mass Transfer, 90, 1–10.
  • Ma L., Yang J., Liu W. and Zhang X., 2014, Physical quantity synergy analysis and efficiency evaluation criterion of heat transfer enhancement, International Journal of Thermal Sciences, 80, 23–32.
  • Mansoury D., Doshmanziari F. I., Kiani A., Chamkha A. J. and Sharifpur M., 2020, Heat Transfer and Flow Characteristics of Al2O3/Water Nanofluid in Various Heat Exchangers: Experiments on Counter Flow, Heat Transfer Engineering, 41(3), 220–234.
  • Minkowycz W. J., Sparrow E. and Abraham J. P., 2013, Nanoparticle Heat Transfer and Fluid Flow, CRC Press, New York.
  • Pak B. C. and Cho Y. I., 1998, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer, 11(2), 151–170.
  • Pandey S. D. and Nema V. K., 2012, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Experimental Thermal and Fluid Science, 38, 248–256. Prasher R., Phelan P. E. and Bhattacharya P., 2006, Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid), Nano Letters, 6(7), 1529–1534.
  • Rostami M. H., Najafi G., Ghobadin B. and Motevali A., 2020, Thermal performance investigation of SWCNT and graphene quantum dots nanofluids in a shell and tube heat exchanger by using fin blade tubes, Heat Transfer, 49(8), 4783–4800.
  • Russel W. B., Saville D. A. and Schowalter W. R., 1989, Colloidal Dispersions, Cambridge University Press, New York.
  • Saidur R., Leong K. Y. and Mohammed H. A., 2011, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews, 15(3), 1646–1668.
  • Saleh B. and Sundar L. S., 2021, Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids, International Journal of Thermal Sciences, 165, 106935.
  • Sekhar Y. R. and Sharma K. V., 2015, Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations, Journal of Experimental Nanoscience, 10(2), 86–102.
  • Sergis A. and Hardalupas Y., 2011, Anomalous heat transfer modes of nanofluids: a review based on statistical analysis, Nanoscale Research Letters, 6(1), 391.
  • Shahrul I. M., Mahbubul I. M., Saidur R. and Sabri M. F. M., 2016, Experimental investigation on Al2O3-W, SiO2-W and ZnO-W nanofluids and their application in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 97, 547–558. Sharma A. K., Tiwari A. K. and Dixit A. R., 2016, Rheological behavior of nanofluids: A review, Renewable and Sustainable Energy Reviews, 53, 779–791.
  • Somiya S., 1989, Advanced Technical Ceramics, Academic Press, California.
  • Tiwari A. K., Ghosh P. and Sarkar J., 2013, Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger, Applied Thermal Engineering, 57(1–2), 24–32.
  • Trang N. V., Trung D. T. and Dzung D. V., 2017, Experimental Study of Alternative Minichannel Heat Exchanger for Scooter Radiator, International Journal of Emerging Research in Management and Technology, 6(4), 46–50.
  • Unverdi M. and Islamoglu Y., 2017, Characteristics of heat transfer and pressure drop in a chevron-type plate heat exchanger with Al2O3/water nanofluids, Thermal Science, 21(6 Part A), 2379–2391.
  • Ünverdi M., Kücük H. and Yılmaz M. S., 2019, Experimental investigation of heat transfer and pressure drop in a mini-channel shell and tube heat exchanger, Heat and Mass Transfer, 55:1271–1286.
  • Van de Bor D. M., 2014, Mini-channel heat exchangers for industrial distillation processes, Ph.D. Thesis, Delft University of Technology, Delft.
  • Wadekar V. V., 2005, Heat Exchangers in Process Industry and Mini- and Microscale Heat Transfer, Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, USA, 318–322.
  • Wang X.-Q. and Mujumdar A. S., 2007, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46(1), 1–19.
  • Webb R. L. and Kim N. H., 2005, Principles of Enhanced Heat Transfer (2nd Ed.), Taylor and Francis, New York.
  • Yılmaz M. S., Ünverdi M., Kücük H., Akcakale N. and Halıcı F., 2022, Enhancement of heat transfer in shell and tube heat exchanger using mini-channels and nanofluids: An experimental study, International Journal of Thermal Sciences, 179, 107664.
  • Zhang J., Zhu X., Mondejar M. E. and Haglind F., 2019, A review of heat transfer enhancement techniques in plate heat exchangers, Renewable and Sustainable Energy Reviews, 101, 305–328.
  • Zhou S.-Q. and Ni R., 2008, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Applied Physics Letters, 92(9), 093123.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Microfluidics and Nanofluidics
Journal Section Research Article
Authors

Murat Ünverdi 0000-0002-7045-509X

Hasan Küçük 0000-0002-8825-7315

Mehmet Senan Yılmaz 0000-0001-5644-6675

Publication Date November 1, 2024
Published in Issue Year 2024 Volume: 44 Issue: 2

Cite

APA Ünverdi, M., Küçük, H., & Yılmaz, M. S. (2024). NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ. Isı Bilimi Ve Tekniği Dergisi, 44(2), 259-279. https://doi.org/10.47480/isibted.1563032
AMA Ünverdi M, Küçük H, Yılmaz MS. NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ. Isı Bilimi ve Tekniği Dergisi. November 2024;44(2):259-279. doi:10.47480/isibted.1563032
Chicago Ünverdi, Murat, Hasan Küçük, and Mehmet Senan Yılmaz. “NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ”. Isı Bilimi Ve Tekniği Dergisi 44, no. 2 (November 2024): 259-79. https://doi.org/10.47480/isibted.1563032.
EndNote Ünverdi M, Küçük H, Yılmaz MS (November 1, 2024) NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ. Isı Bilimi ve Tekniği Dergisi 44 2 259–279.
IEEE M. Ünverdi, H. Küçük, and M. S. Yılmaz, “NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ”, Isı Bilimi ve Tekniği Dergisi, vol. 44, no. 2, pp. 259–279, 2024, doi: 10.47480/isibted.1563032.
ISNAD Ünverdi, Murat et al. “NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ”. Isı Bilimi ve Tekniği Dergisi 44/2 (November 2024), 259-279. https://doi.org/10.47480/isibted.1563032.
JAMA Ünverdi M, Küçük H, Yılmaz MS. NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ. Isı Bilimi ve Tekniği Dergisi. 2024;44:259–279.
MLA Ünverdi, Murat et al. “NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ”. Isı Bilimi Ve Tekniği Dergisi, vol. 44, no. 2, 2024, pp. 259-7, doi:10.47480/isibted.1563032.
Vancouver Ünverdi M, Küçük H, Yılmaz MS. NANOAKIŞKANLARIN ENERJİ VERİMLİLİĞİNE ETKİLERİ: MİNİ KANALLI GÖVDE BORULU ISI DEĞİŞTİRİCİDE SOĞUYAN NANOAKIŞKANLARIN DENEYSEL PERFORMANS İNCELEMESİ. Isı Bilimi ve Tekniği Dergisi. 2024;44(2):259-7.