Research Article
BibTex RIS Cite

NUMERICAL INVESTIGATION OF WATER ADDITION INTO INTAKE AIR IN MODERN AUTOMOBILES DIESEL ENGINES

Year 2024, Volume: 44 Issue: 2, 308 - 321, 01.11.2024
https://doi.org/10.47480/isibted.1563972

Abstract

In the present study, the effects of water addition into intake air (WAIA) on combustion, engine performance, and NO emission in diesel engines were investigated numerically. Here, Ferguson's thermodynamic-based zero-dimensional single-zone cycle model was used and improved with some new approaches for neat diesel fuel (NDF) and WAIA. After controlling the model's accuracy for NDF and WAIA, the effects of WAIA were first investigated in the Renault K9K diesel engine. For (5 and 7.5)% water ratios (WRs), effective power decreased by 4.26% and 7.37%, brake specific fuel consumption (BSFC) increased by 6.95% and 10.56%, and NO emission reduced by 12.43% and 16.39%, respectively. In the second application, the effects of (3, 6, and 9)% WRs on combustion, engine performance, and NO emission in the Renault M9R type diesel engine were investigated at 4000 rpm by using this developed model. For (3, 6, and 9)% WRs, BSFC increased by 0.97%, 3.39%, and 8.25%, and NO emission decreased by 10.31%, 17.66%, and 34.20%, respectively. For (3 and 6)% WRs effective power increased, and NO emission decreased significantly without considerable deterioration in the BSFC at 4000 rpm. Cylinder pressure values and heat release rate increased for (3 and 6)% WRs and decreased for 9% WR.

References

  • Automobile Catalog, 2021. (Accessed 8. November. 2021). https://www.automobilecatalog.com/car/2022/2986985 /renault_talisman_blue_dci_160_edc.html#gsc.tab=0.
  • Bedford, F.W.F., C. Rutland, P. Dittrich, A. Raab. 2000. Effects of direct water injection on DI diesel engine combustion. SAE Tech. Pap. 01:12. https://doi.org/https://doi.org/10.4271/2000-01-2938.
  • Bondar, V., S. Aliukov, A. Malozemov, A. Das. 2020. Mathematical model of thermodynamic processes in the intake manifold of a diesel engine with fuel and water injection. Energies 13(17):4315. https://doi.org/10.3390/en13174315.
  • Borman, G.L., and K.W. Ragland. 1998. Combustion Engineering, McGraw-Hill. https://books.google.com.tr/books?id=ZxdFPgAACAAJ.
  • Butcher, J.C., 1995. On fifth order Runge-Kutta methods, BIT Numerical Mathematics 35:202–209. https://doi.org/10.1007/BF01737162.
  • Durgun, O. 1988. Using Ethanol in Spark Ignition Engine, UCTEA Chamb. Mech. Eng. J. 29: 24–26.
  • Durgun, O. 1990. Experimental Methods in the Internal Combustion Engines.
  • Durgun, O. 1991. A practical method for calculation engine cycles, Union Chambers Turkish Eng. Arc., Chamb. Mech. Eng. 383:18–29.
  • Durgun, O. 2022. Internal Combustion Engines Basic Principles, Turkish Chamber of Naval Architect and Marine Engineers. Ece, Y.M., and V. Ayhan. 2019. Investigation of the Effect of Direct Water Injection on Performance and Emissions of a Single Cylinder Diesel Engine. J. Adv. Technol. Sci. 8: 11–21. (In Turkish).https://dergipark.org.tr/tr/download/article-file/719644
  • Ferguson, C. R., 1986. Internal Combustion Engines Applied Thermodynamics.
  • Gowrishankar, A.K.S., P. Bhasker J, and P. Rastogi. 2020. Investigations on NOx and smoke emissions reduction potential through water-in-diesel emulsion and water fumigation in a small-bore diesel engine, SAE Tech. Pap. 32:12. https://doi.org/https://doi.org/10.4271/2020-32-2312.
  • Heywood, J. B., 1988. Internal Combustion Engine Fundamentals.
  • Jhalani, A., D. Sharma, S.L. Soni, P.K. Sharmai. 2023. Effects of process parameters on performance and emissions of a water-emulsified diesel-fueled compression ignition engine. Energy Sources, Part A Recover. Util. Environ. Eff. 45:4242–4254. https://doi.org/10.1080/15567036.2019.1669739.
  • Jurić, F., M. Krajcar, N. Duić, M. Vujanović. 2023. Investigating the pollutant formation and combustion characteristics of biofuels in compression ignition engines: A numerical study. Therm. Sci. Eng. Prog. 43:101939. https://doi.org/10.1016/J.TSEP.2023.101939.
  • Kannan, K., M. Udayakumar. 2009. Modeling of nitric oxide formation in single cylinder direct injection diesel engine using diesel-water emulsion. Am. J. Appl. Sci. 6:1313–1320. https://doi.org/10.3844/ajassp.2009.1313.1320.
  • Khatri, D., and R. Goyal. 2020. Performance, emission and combustion characteristics of water diesel emulsified fuel for diesel engine: A review. Mater. Today Proc. 28: 2275–2278. https://doi.org/10.1016/J.MATPR.2020.04.560.
  • Kökkülünk, G. 2012. Analysis of the Effects of Exhaust Gas Recirculation (EGR) on Diesel Engine with Steam Injection System to Performance and Emission Parameters, YTU, (In Turkish Thesis).
  • Kökkülünk, G., G. Gonca, V. Ayhan, I. Cesur, A. Parlak. 2013. Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Appl. Therm. Eng. 54:161–170. https://doi.org/10.1016/J.APPLTHERMALENG.2013.01.034
  • Kumar, V.V.N, and A. Sharma. 2013. Performance analyses of diesel engine at different injection angles using water diesel emulsion, SAE Tech. Pap. 01:10. https://doi.org/https://doi.org/10.4271/2013-01-2170.
  • Lamas, M.I., C.G. Rodríguez, J.D. Rodríguez, J. Telmo. 2013. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach, Int. J. Nav. Archit. Ocean Eng. 5:493–501. https://doi.org/10.2478/IJNAOE-2013-0148.
  • Ma, X., F. Zhang, K. Han, Z. Zhu, Y. Liu. 2014. Effects of intake manifold water injection on combustion and emissions of diesel engine. Energy Procedia 61:777–781. https://doi.org/10.1016/J.EGYPRO.2014.11.963.
  • Maawa, W.N., R. Mamat, G. Najafi, L.P.H. De Goey. 2020. Performance, combustion, and emission characteristics of a CI engine fueled with emulsified diesel-biodiesel blends at different water contents. Fuel 267:117265. https://doi.org/10.1016/J.FUEL.2020.117265.
  • Nemati, P., S. Jafarmadar, and H. Taghavifar. 2016. Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model, Energy 115:528–538. https://doi.org/10.1016/J.ENERGY.2016.09.042.
  • Parlak, A., G. Gonca, Y. Üst, B. Sahin, A. Safa. 2019. A comprehensive comparison of steam injected diesel engine and miller cycled diesel engine by using two zone combustion model. Journal of the Energy Institute 88(1):43-52. https://doi.org/10.1016/j.joei.2014.04.007.
  • Pasternak, M., F. Mauss, and H. Bensler. 2009. Diesel engine cycle simulation with a reduced set of modeling parameters based on detailed kinetics. SAE Tech. Pap. 01:13. https://doi.org/https://doi.org/10.4271/2009-01-0676.
  • Qiong, Li. 1992. Development of a quası-dimensional diesel engine simulation for energy and availability analysis. University of Illinois at Urbana-Champaign. Doktoral thesis.
  • Rajak, U., P. Nashine, T.S. Singh, T.N. Verma. 2018. Numerical investigation of performance, combustion and emission characteristics of various biofuels. Energy Convers. Manag. 156: 235–252. https://doi.org/10.1016/J.enconman.2017.11.017.
  • Rakopoulos, C.D., K.A. Antonopoulos, D.C. Rakopoulos, D.T. Hountalas. 2008. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol–diesel fuel blends. Energy Conversion and Management. 49:625–643. https://doi.org/10.1016/J.enconman.2007.07.035.
  • Sahin, Z., M. Tuti, and O. Durgun. 2014. Experimental investigation of the effects of water adding to the intake air on the engine performance and exhaust emissions in a DI automotive diesel engine. Fuel 115:884–895. https://doi.org/10.1016/J.FUEL.2012.10.080.
  • Sahin, Z., and O. Durgun. 2008. Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters. Appl. Therm. Eng. 28:2245-2256. https://doi.org/10.1016/J.APPLTHERMALENG.2008.01.002
  • Sahin, Z., O. Durgun, and M. Tuti. 2018. An experimental study on the effects of inlet water injection of diesel engine heat release rate, fuel consumption, opacity, and NOx emissions, Exergetic, Energ. Environ. Dimens. 981–996. https://doi.org/10.1016/B978-0-12-813734-5.00055-X.
  • Sahin, Z., O. Durgun, and O.N. Aksu. 2015. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation-evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energy Convers. Manag. 103 778–789. https://doi.org/10.1016/J.enconman.2015.06.089.
  • Sandeep, S., D.S. Kumar, S. Krishnan, S.K. Pandey. 2019. Assessment of atomized water injection in the intake manifold of a heavy duty diesel engine for NOx reduction potential. IOP Conf. Ser. Mater. Sci. Eng.577:12186.https://doi.org/10.1088/1757-899X/577/1/012186.
  • Savioli, T. 2015. CFD analysis of 2-stroke engines. Energy Procedia.81:723–731. https://doi.org/10.1016/J.EGYPRO.2015.12.078.
  • Senčić, T., V. Mrzljak, P. Blecich, I. Bonefačić. 2019. 2D CFD simulation of water injection strategies in a large marine engine. J. Mar. Sci. Eng. 7:296. https://doi.org/10.3390/jmse7090296.
  • Shrivastava, R., R. Hessel, and R.D. Reitz. 2002. CFD optimization of DI diesel engine performance and emissions using variable intake valve actuation with boost pressure, EGR and multiple injections. SAE Tech. Pap. 111:1612-1629. https://doi.org/10.4271/2002-01-0959.
  • Sindhu, R., G.A.P. Rao, and K.M. Murthy. 2014. Thermodynamic modelling of diesel engine processes for predicting engine performance. Int. J. Appl. Eng. Technology.4:101-114. https://api.semanticscholar.org/CorpusID:56402776.
  • Subramanian, K.A. 2011. A comparison of water–diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions. Energy Conversion Management. 52:849–857. https://doi.org/10.1016/J.enconman.2010.08.010.
  • Tamma, B., J.C. Alvarez, and A.J. Simon. 2003. Water Addition in Diesel Engine Intake for NOx Reduction: Comparison of Modeling and Experiments. Internal Combustion Engine Division Fall Technical Conference (ICEF), 0749:245–249. https://doi.org/10.1115/ICEF2003-0749.
  • Tauzia, X., A. Maiboom, and S.R. Shah. 2010. Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine. Energy 35:3628–3639. https://doi.org/10.1016/J.energy.2010.05.007.
  • Tutak, W., and A. Jamrozik. 2016. Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Appl. Math. Model 40:6293–6309. https://doi.org/10.1016/J.APM.2016.02.021.
  • Tuti, M. 2012. Experimental Investigation of the Effects of Water Adding to the Intake Air on the Engine Performance and Exhaust Emissions in a Diesel Engine, Karadeniz Technical University, Master thesis. (In Turkish).
  • Tuti, M. 2022. Experimental and Numerical Investigation of the Effects of Adding Water to the Intake Air on Engine Performance, Combustion and Exhaust Emissions in Diesel Engines. Karadeniz Technical University. Doktoral thesis (In Turkish).
  • Vellaiyan, S., A. Subbiah, and P. Chockalingam. 2019. Multi-response optimization to obtain better performance and emission level in a diesel engine fueled with water-biodiesel emulsion fuel and nanoadditive. Environment Science Pollution Reserch 26:4833–4841. https://doi.org/10.1007/s11356-018-3979-6.
  • Vigneswaran, R., K. Annamalai, B. Dhinesh, R. Krishnamoorthy. 2018. Experimental investigation of unmodified diesel engine performance, combustion and emission with multipurpose additive along with water-in-diesel emulsion fuel. Energy Convers. Manag. 172: 370–380. https://doi.org/10.1016/J.enconman.2018.07.039.
  • Wang, Z., S. Wu, Y. Huang, S. Huang, S. Shi, X. Cheng, R. Huang. 2018. Experimental investigation on spray, evaporation and combustion characteristics of ethanol-diesel, water-emulsified diesel and neat diesel fuels, Fuel 231:438–448. https://doi.org/10.1016/J.FUEL.2018.05.129.
  • Woschni, G. 1967. A Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Tech. Pap. 670931:19. https://doi.org/https://doi.org/10.4271/670931.
  • Zhang, J., Y.Meng, D.Liu, L.Liu, X.Ma, C. Jiang, X. Li, L. Huang. 2023. Modelling and multi-objective combustion optimization of marine engine with speed maintaining control target. Therm. Sci. Eng. Prog. 41:101852. https://doi.org/10.1016/J.TSEP.2023.101852.
  • Zhu, S., B. Hu, S. Akehurst, C. Copeland, A. Lewis, H. Yuan, I. Kennedy, J. Bernards, C. Branney. 2019. A review of water injection applied on the internal combustion engine, Energy Convers. Manag. 184:139–158. https://doi.org/10.1016/J.enconman.2019.01.042.

MODERN OTOMOBİL DİZEL MOTORLARINDA EMME HAVASINA SU EKLENMESİNİN SAYISAL İNCELENMESİ

Year 2024, Volume: 44 Issue: 2, 308 - 321, 01.11.2024
https://doi.org/10.47480/isibted.1563972

Abstract

Sunulan çalışmada, dizel motorlarda emme havasına su eklenmesinin (EHSE) yanma, motor performansı ve NO emisyonu üzerindeki etkileri sayısal olarak incelenmiştir. Burada Ferguson'un termodinamik esaslı sıfır boyutlu tek bölgeli çevrim modeli kullanılmıştır ve söz konusu model saf dizel yakıtı (SDY) için bazı yeni yaklaşımlarla geliştirilmiştir ve daha sonra geliştirilen çevrim modeli EHSE durumu için uyarlanmıştır. Modelin SDY ve EHSE için doğruluğu kontrol edildikten sonra, EHSE'nin etkileri ilk olarak Renault K9K dizel motorunda incelenmiştir. Seçilen % (5 ve 7.5) su oranları için; efektif güç % 4.26 ve % 7.37 düzeylerinde azalmış, özgül yakıt tüketimi (ÖYT) % 6.95 ve % 10.56 oranlarında artmış ve NO emisyonu ise % 12.43 ve % 16.39 düzeylerinde azalmıştır. İkinci sayısal uygulamada ise; % (3, 6 ve 9) gibi üç farklı su oranının kullanımının yanma, motor performansı ve NO emisyonu üzerindeki etkileri Renault M9R tipi dizel motorunda 4000 d/d devir sayısında incelenmiştir. % (3, 6 ve 9) su oranları için; ÖYT, sırasıyla % 0.97, % 3.39 ve % 8.25 oranlarında artmış ve NO emisyonu ise sırasıyla % 10.31, % 17.66 ve % 34.20 oranlarında azalmıştır. % (3 ve 6) su oranlarında, efektif güç artmış ve NO emisyonu, ÖYT'de önemli bir kötüleşme olmadan önemli ölçüde azalmıştır. Silindir basınçları ve açığa çıkan ısı oranları % (3 ve 6) su oranlarında artmış, % 9 su oranında ise azalmıştır.

References

  • Automobile Catalog, 2021. (Accessed 8. November. 2021). https://www.automobilecatalog.com/car/2022/2986985 /renault_talisman_blue_dci_160_edc.html#gsc.tab=0.
  • Bedford, F.W.F., C. Rutland, P. Dittrich, A. Raab. 2000. Effects of direct water injection on DI diesel engine combustion. SAE Tech. Pap. 01:12. https://doi.org/https://doi.org/10.4271/2000-01-2938.
  • Bondar, V., S. Aliukov, A. Malozemov, A. Das. 2020. Mathematical model of thermodynamic processes in the intake manifold of a diesel engine with fuel and water injection. Energies 13(17):4315. https://doi.org/10.3390/en13174315.
  • Borman, G.L., and K.W. Ragland. 1998. Combustion Engineering, McGraw-Hill. https://books.google.com.tr/books?id=ZxdFPgAACAAJ.
  • Butcher, J.C., 1995. On fifth order Runge-Kutta methods, BIT Numerical Mathematics 35:202–209. https://doi.org/10.1007/BF01737162.
  • Durgun, O. 1988. Using Ethanol in Spark Ignition Engine, UCTEA Chamb. Mech. Eng. J. 29: 24–26.
  • Durgun, O. 1990. Experimental Methods in the Internal Combustion Engines.
  • Durgun, O. 1991. A practical method for calculation engine cycles, Union Chambers Turkish Eng. Arc., Chamb. Mech. Eng. 383:18–29.
  • Durgun, O. 2022. Internal Combustion Engines Basic Principles, Turkish Chamber of Naval Architect and Marine Engineers. Ece, Y.M., and V. Ayhan. 2019. Investigation of the Effect of Direct Water Injection on Performance and Emissions of a Single Cylinder Diesel Engine. J. Adv. Technol. Sci. 8: 11–21. (In Turkish).https://dergipark.org.tr/tr/download/article-file/719644
  • Ferguson, C. R., 1986. Internal Combustion Engines Applied Thermodynamics.
  • Gowrishankar, A.K.S., P. Bhasker J, and P. Rastogi. 2020. Investigations on NOx and smoke emissions reduction potential through water-in-diesel emulsion and water fumigation in a small-bore diesel engine, SAE Tech. Pap. 32:12. https://doi.org/https://doi.org/10.4271/2020-32-2312.
  • Heywood, J. B., 1988. Internal Combustion Engine Fundamentals.
  • Jhalani, A., D. Sharma, S.L. Soni, P.K. Sharmai. 2023. Effects of process parameters on performance and emissions of a water-emulsified diesel-fueled compression ignition engine. Energy Sources, Part A Recover. Util. Environ. Eff. 45:4242–4254. https://doi.org/10.1080/15567036.2019.1669739.
  • Jurić, F., M. Krajcar, N. Duić, M. Vujanović. 2023. Investigating the pollutant formation and combustion characteristics of biofuels in compression ignition engines: A numerical study. Therm. Sci. Eng. Prog. 43:101939. https://doi.org/10.1016/J.TSEP.2023.101939.
  • Kannan, K., M. Udayakumar. 2009. Modeling of nitric oxide formation in single cylinder direct injection diesel engine using diesel-water emulsion. Am. J. Appl. Sci. 6:1313–1320. https://doi.org/10.3844/ajassp.2009.1313.1320.
  • Khatri, D., and R. Goyal. 2020. Performance, emission and combustion characteristics of water diesel emulsified fuel for diesel engine: A review. Mater. Today Proc. 28: 2275–2278. https://doi.org/10.1016/J.MATPR.2020.04.560.
  • Kökkülünk, G. 2012. Analysis of the Effects of Exhaust Gas Recirculation (EGR) on Diesel Engine with Steam Injection System to Performance and Emission Parameters, YTU, (In Turkish Thesis).
  • Kökkülünk, G., G. Gonca, V. Ayhan, I. Cesur, A. Parlak. 2013. Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Appl. Therm. Eng. 54:161–170. https://doi.org/10.1016/J.APPLTHERMALENG.2013.01.034
  • Kumar, V.V.N, and A. Sharma. 2013. Performance analyses of diesel engine at different injection angles using water diesel emulsion, SAE Tech. Pap. 01:10. https://doi.org/https://doi.org/10.4271/2013-01-2170.
  • Lamas, M.I., C.G. Rodríguez, J.D. Rodríguez, J. Telmo. 2013. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach, Int. J. Nav. Archit. Ocean Eng. 5:493–501. https://doi.org/10.2478/IJNAOE-2013-0148.
  • Ma, X., F. Zhang, K. Han, Z. Zhu, Y. Liu. 2014. Effects of intake manifold water injection on combustion and emissions of diesel engine. Energy Procedia 61:777–781. https://doi.org/10.1016/J.EGYPRO.2014.11.963.
  • Maawa, W.N., R. Mamat, G. Najafi, L.P.H. De Goey. 2020. Performance, combustion, and emission characteristics of a CI engine fueled with emulsified diesel-biodiesel blends at different water contents. Fuel 267:117265. https://doi.org/10.1016/J.FUEL.2020.117265.
  • Nemati, P., S. Jafarmadar, and H. Taghavifar. 2016. Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model, Energy 115:528–538. https://doi.org/10.1016/J.ENERGY.2016.09.042.
  • Parlak, A., G. Gonca, Y. Üst, B. Sahin, A. Safa. 2019. A comprehensive comparison of steam injected diesel engine and miller cycled diesel engine by using two zone combustion model. Journal of the Energy Institute 88(1):43-52. https://doi.org/10.1016/j.joei.2014.04.007.
  • Pasternak, M., F. Mauss, and H. Bensler. 2009. Diesel engine cycle simulation with a reduced set of modeling parameters based on detailed kinetics. SAE Tech. Pap. 01:13. https://doi.org/https://doi.org/10.4271/2009-01-0676.
  • Qiong, Li. 1992. Development of a quası-dimensional diesel engine simulation for energy and availability analysis. University of Illinois at Urbana-Champaign. Doktoral thesis.
  • Rajak, U., P. Nashine, T.S. Singh, T.N. Verma. 2018. Numerical investigation of performance, combustion and emission characteristics of various biofuels. Energy Convers. Manag. 156: 235–252. https://doi.org/10.1016/J.enconman.2017.11.017.
  • Rakopoulos, C.D., K.A. Antonopoulos, D.C. Rakopoulos, D.T. Hountalas. 2008. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol–diesel fuel blends. Energy Conversion and Management. 49:625–643. https://doi.org/10.1016/J.enconman.2007.07.035.
  • Sahin, Z., M. Tuti, and O. Durgun. 2014. Experimental investigation of the effects of water adding to the intake air on the engine performance and exhaust emissions in a DI automotive diesel engine. Fuel 115:884–895. https://doi.org/10.1016/J.FUEL.2012.10.080.
  • Sahin, Z., and O. Durgun. 2008. Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters. Appl. Therm. Eng. 28:2245-2256. https://doi.org/10.1016/J.APPLTHERMALENG.2008.01.002
  • Sahin, Z., O. Durgun, and M. Tuti. 2018. An experimental study on the effects of inlet water injection of diesel engine heat release rate, fuel consumption, opacity, and NOx emissions, Exergetic, Energ. Environ. Dimens. 981–996. https://doi.org/10.1016/B978-0-12-813734-5.00055-X.
  • Sahin, Z., O. Durgun, and O.N. Aksu. 2015. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation-evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energy Convers. Manag. 103 778–789. https://doi.org/10.1016/J.enconman.2015.06.089.
  • Sandeep, S., D.S. Kumar, S. Krishnan, S.K. Pandey. 2019. Assessment of atomized water injection in the intake manifold of a heavy duty diesel engine for NOx reduction potential. IOP Conf. Ser. Mater. Sci. Eng.577:12186.https://doi.org/10.1088/1757-899X/577/1/012186.
  • Savioli, T. 2015. CFD analysis of 2-stroke engines. Energy Procedia.81:723–731. https://doi.org/10.1016/J.EGYPRO.2015.12.078.
  • Senčić, T., V. Mrzljak, P. Blecich, I. Bonefačić. 2019. 2D CFD simulation of water injection strategies in a large marine engine. J. Mar. Sci. Eng. 7:296. https://doi.org/10.3390/jmse7090296.
  • Shrivastava, R., R. Hessel, and R.D. Reitz. 2002. CFD optimization of DI diesel engine performance and emissions using variable intake valve actuation with boost pressure, EGR and multiple injections. SAE Tech. Pap. 111:1612-1629. https://doi.org/10.4271/2002-01-0959.
  • Sindhu, R., G.A.P. Rao, and K.M. Murthy. 2014. Thermodynamic modelling of diesel engine processes for predicting engine performance. Int. J. Appl. Eng. Technology.4:101-114. https://api.semanticscholar.org/CorpusID:56402776.
  • Subramanian, K.A. 2011. A comparison of water–diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions. Energy Conversion Management. 52:849–857. https://doi.org/10.1016/J.enconman.2010.08.010.
  • Tamma, B., J.C. Alvarez, and A.J. Simon. 2003. Water Addition in Diesel Engine Intake for NOx Reduction: Comparison of Modeling and Experiments. Internal Combustion Engine Division Fall Technical Conference (ICEF), 0749:245–249. https://doi.org/10.1115/ICEF2003-0749.
  • Tauzia, X., A. Maiboom, and S.R. Shah. 2010. Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine. Energy 35:3628–3639. https://doi.org/10.1016/J.energy.2010.05.007.
  • Tutak, W., and A. Jamrozik. 2016. Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Appl. Math. Model 40:6293–6309. https://doi.org/10.1016/J.APM.2016.02.021.
  • Tuti, M. 2012. Experimental Investigation of the Effects of Water Adding to the Intake Air on the Engine Performance and Exhaust Emissions in a Diesel Engine, Karadeniz Technical University, Master thesis. (In Turkish).
  • Tuti, M. 2022. Experimental and Numerical Investigation of the Effects of Adding Water to the Intake Air on Engine Performance, Combustion and Exhaust Emissions in Diesel Engines. Karadeniz Technical University. Doktoral thesis (In Turkish).
  • Vellaiyan, S., A. Subbiah, and P. Chockalingam. 2019. Multi-response optimization to obtain better performance and emission level in a diesel engine fueled with water-biodiesel emulsion fuel and nanoadditive. Environment Science Pollution Reserch 26:4833–4841. https://doi.org/10.1007/s11356-018-3979-6.
  • Vigneswaran, R., K. Annamalai, B. Dhinesh, R. Krishnamoorthy. 2018. Experimental investigation of unmodified diesel engine performance, combustion and emission with multipurpose additive along with water-in-diesel emulsion fuel. Energy Convers. Manag. 172: 370–380. https://doi.org/10.1016/J.enconman.2018.07.039.
  • Wang, Z., S. Wu, Y. Huang, S. Huang, S. Shi, X. Cheng, R. Huang. 2018. Experimental investigation on spray, evaporation and combustion characteristics of ethanol-diesel, water-emulsified diesel and neat diesel fuels, Fuel 231:438–448. https://doi.org/10.1016/J.FUEL.2018.05.129.
  • Woschni, G. 1967. A Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Tech. Pap. 670931:19. https://doi.org/https://doi.org/10.4271/670931.
  • Zhang, J., Y.Meng, D.Liu, L.Liu, X.Ma, C. Jiang, X. Li, L. Huang. 2023. Modelling and multi-objective combustion optimization of marine engine with speed maintaining control target. Therm. Sci. Eng. Prog. 41:101852. https://doi.org/10.1016/J.TSEP.2023.101852.
  • Zhu, S., B. Hu, S. Akehurst, C. Copeland, A. Lewis, H. Yuan, I. Kennedy, J. Bernards, C. Branney. 2019. A review of water injection applied on the internal combustion engine, Energy Convers. Manag. 184:139–158. https://doi.org/10.1016/J.enconman.2019.01.042.
There are 49 citations in total.

Details

Primary Language English
Subjects Internal Combustion Engines
Journal Section Research Article
Authors

Mustafa Tuti 0000-0002-2309-3735

Zehra Şahin 0000-0002-7140-2061

Orhan Durgun 0000-0001-6381-0690

Publication Date November 1, 2024
Published in Issue Year 2024 Volume: 44 Issue: 2

Cite

APA Tuti, M., Şahin, Z., & Durgun, O. (2024). NUMERICAL INVESTIGATION OF WATER ADDITION INTO INTAKE AIR IN MODERN AUTOMOBILES DIESEL ENGINES. Isı Bilimi Ve Tekniği Dergisi, 44(2), 308-321. https://doi.org/10.47480/isibted.1563972