Research Article
BibTex RIS Cite

Su Kaynaklı Isı Pompasında Al2O3 Nano Partikülünün Enerji, Ekserji ve Yaşam Döngüsü İklim Performansına Etkisi

Year 2025, Volume: 45 Issue: 2, 119 - 135, 30.10.2025
https://doi.org/10.47480/isibted.1508928

Abstract

Bu çalışmada, su kaynağı devresi, R-134a gazı kullanılan soğutucu akışkan devresi ve radyatör su devresi olmak üzere 3 devreden oluşan mahal ısıtma amaçlı su kaynaklı bir ısı pompası sistemi tasarlanmış, üretilmiş ve test edilmiştir. Kompresöründe geleneksek POE yağı kullanan sistem ile POE yağına ağırlıkça %1 Al2O3 nano partikülü ilave edilerek oluşturulan POE+ Al2O3 nano akışkanı kullanan sisteminin enerji ve ekserji performansları değerlendirilmiştir. Isı pompası devresi ısıtma enerji performansı (ECOPHP) ve ekserji performansı (ExCOPHP) ve tüm sistem devresi ısıtma enerji performansı (ECOPsis) ve ekserji performansı (EXCOPsys) ve yaşam döngüsü iklim performansı (LCCP) kaynak sıcaklığına (10 oC, 11 oC ve 12 oC) bağlı olarak deneysel olarak karşılaştırılmıştır. Al2O3 nano partikülü, kompresör güç tüketimini %1,62-3 oranında artırırken ECOPHP değerini %7,1-8,4 ve ECOPsys değerini %12,5-%22,8 oranında azaltmıştır. Bunun yanında, Al2O3 nano partikülü, ExCOPHP değerini enerji performans katsayısının aksine %7-40 oranında arttırırken, EXCOPsys ise %12,5-25 oranında azaltmıştır. Aynı zamanda, Al2O3 nano partikülü LCCP değerini %1,5-3 oranında artırmıştır.

References

  • Abbas, M., Walvekar, R. G., Hajibeigy, M. T., Javadi, F. S. (2013). Efficient air-condition unit by using nano-refrigerant. 1st Engineering undergraduate research catalyst conference, Malaysia, 87-88. Ahmed, M. S., Hady, M. R. A., Abdallah, G. (2018). Experimental investigation on the performance of chilled-water air conditioning unit using alumina nanofluids. Thermal Science and Engineering Progress, 5, 589-596. https://doi.org/10.1016/j.tsep.2017.07.002
  • Ahmed, F., Khan, W. A., Nayfeh, J. (2021). Experimental investigation on the performance of heat pump operating with copper and alumina nanofluids. Computers, Materials & Continua, 66(3), 2843-2856. https://doi.org/10.32604/cmc.2021.012041
  • Akkaya, M., Menlik T., Sözen A., Gürü, M. (2021). The efects of triton X 100 and tween 80 surfactants on the thermal performance of a nano Lubricant: An experimental study. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 955–967. https://doi.org/10.1007/s40684-020-00280-w
  • Aprea, C., Greco, A., Maiorino, A. (2018). HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment. Applied Thermal Engineering, 141, 226-233. https://doi.org/10.1016/j.applthermaleng.2018.02.072
  • Araz, M., Güngör, A., Hepbaşlı, A., (2013). Düşük küresel ısınma potansiyeline sahip soğutucu akışkanların soğutma uygulamalarındaki kullanımının değerlendirilmesi. 11. Ulusal Tesisat Mühendisliği Kongresi, İzmir, Türkiye, 575-604
  • Asan, H., Namlı, L. (1997). Deneysel ısı transferi ve basınç kaybı çalışmalarında belirsizlik analizi. 11. Ulusal Isı Bilimi ve Tekniği Kongresi, Edirne, Türkiye, 369-378.
  • Atilgan, B., Azapagic, A. (2016). Assessing the environmental sustainability of electricity generation in Turkey on a life cycle basis. Energies, 9(1), 31. https://doi.org/10.3390/en9010031
  • Babu A. M, Nallusamy, S., Rajan, K. (2016). Experimental analysis on vapour compression refrigeration system using nanolubricant with HFC-134a refrigerant. Nano Hybrids, 9, 33-43. https://doi.org/10.4028/www.scientific.net/NH.9.33
  • Bejan, A. (1997). Advanced engineering thermodynamics. John Wiley & Sons.
  • Bi, S., Shi, L., Zhang, L. (2007). Performance study of a domestic refrigerator using R134a/mineral oil/nano-TiO2 as working fluid. Proceedings of the 22nd IIR International Congress of Refrigeration, Beijing, China, 346.
  • Bi, S., Shi, L., Zhang, L. (2008). Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering, 28, 1834-1843. https://doi.org/10.1016/j.applthermaleng.2007.11.018
  • Bi, S., Guo, K., Liu, Z., Wu, J. (2011). Performance of a domestic refrigerator using TiO2-R600a nanorefrigerant as working fluid. Energy Conversion and Management, 52(1), 733-737. https://doi.org/10.1016/j.enconman.2010.07.052
  • Bobbo, S., Fedele, L., Fabrizio, M., Barison, S., Battiston, S., Pagura, C. (2010). Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility. International Journal of Refrigeration, 33(6), 1180-1186. https://doi.org/10.1016/j.ijrefrig.2010.04.009
  • Choi, S., Oh, J., Hwang, Y., Lee, H. (2017). Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Applied Thermal Engineering, 120, 88–98. https://doi.org/10.1016/j.applthermaleng.2017.03.105
  • Çengel, Y. A., Boles, M. A. (2010). Thermodynamics : An engineering approach. McGraw-Hill.
  • Dincer, I, Rosen, M. A. (1988). Exergy: Energy, environment and sustainable development. Elsevier Ltd.
  • Fedele, L., Colla, L., Scattolini, M., Bellomare, F., Bobbo, S. (2014). Nanofluids application as nanolubricants in heat pumps systems. 15th International Refrigeration and Air Conditioning Conference, Purdue, 14-17. Haque, M. E., Bakar, R. A., Kadirgama, K., Noor, M. M., Shakaib, M. (2016). Performance of a domestic refrigerator using nanoparticles-based polyolester oil lubricant. Journal of Mechanical Engineering and Sciences, 10, 1778-1791. http://dx.doi.org/10.15282/jmes.10.1.2016.3.0171
  • Heede, R. (2013, June 4). Oil emissions factor calculations. https://climateaccountability.org/wp-content/uploads/2023/10/Oil-EmissionFactorCalc-6p.pdf
  • Holman, J.P. (2001). Experimental methods for engineers. McGrawHill.
  • IIR (2016). Guideline for life cycle climate performance. 828.
  • Jwo, C., Jeng, L., Teng, T., Chang H. (2009). Effect of nano lubricant on the performance of Hydrocarbon refrigerant system. Journal of Vacuum Science & Technology B, 27, 1473-1477. https://doi.org/10.1116/1.3089373
  • Kapıcıoğlu, A., Esen, H. (2020). Experimental investigation on using Al2O3/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers. Applied Thermal Engineering, 165, 114559. https://doi.org/10.1016/j.applthermaleng.2019.114559
  • Karaarslan, M. (2019). Su kaynaklı ısı pompalarında nanopartikül kullanımının ısıl performansa etkisi. Yüksek Lisans Tezi, Uşak Üniversitesi Fen Bilimleri Enstitüsü, Uşak, Türkiye.
  • Kavak Akpınar, E. (2005). Deneysel çalışmalardaki hata analizine bir örnek: kurutma deneylerindeki hata analizi. Mühendis ve Makina, 46 (540), 41-48.
  • Koçak, S. (2012). Hacim ısıtma amaçlı güneş enerjisi destekli su kaynaklı ısı pompası çevriminin teorik analizi. Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Türkiye.
  • Köse, İ. (2014). Su kaynaklı ısı pompasında ısı değiştirici tasarımı, imalatı ve performansının deneysel olarak incelenmesi. Yüksek Lisans Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük, Türkiye.
  • Kumar, S. D., Elansezhian, R. (2012). Experimental study on Al2O3 – R134a nano refrigerant in refrigeration systems. International Journal of Modern Engineering Research, 2 (5), 3927-3929.
  • Kunic,R. (2017) Carbon footprint of thermal insulation materials in building envelopes. Energy Efficiency 10,1511–1528. https://doi.org/10.1007/s12053-017 9536-1
  • Li, H., Yang, W., Yu, Z., Zhao, L. (2015). The performance of a heat pump using nanofluid (R22+TiO2) as the working fluid–an experimental study. Energy Procedia, 75, 1838-1843. https://doi.org/10.1016/j.egypro.2015.07.158
  • Nair, V., Parekh, A. D., Tailor, P. R. (2020). Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture. International Journal of Refrigeration, 112, 21-36. https://doi.org/10.1016/j.ijrefrig.2019.12.009
  • Nanografi. (2018, Şubat 15). Al2O3 teknik özellikleri. https://shop.nanografi.com/microparticles/aluminum-oxide-al2o3-micron-powder-alpha-purity-99-9-size-20-m/?searchid=877340&search_query=Al2O3
  • Peng, H., Ding, G., Hu, H., Jiang, W., Zhuang, D., Wang, K. (2010). Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nano particles. International Journal of Refrigeration, 33, 347-358. https://doi.org/10.1016/j.ijrefrig.2009.11.007
  • Pundkar, A.H. , Chaudhari, S.S. (2023). Performance parameters enhancement with application of nanotechnology to MTR refrigeration system. Materials Today: Proceedings, 72(3), 890-895. https://doi.org/10.1016/j.matpr.2022.09.087
  • Reji Kumar, R., Sridhar K., Narasimha M. (2013). Heat transfer enhancement in domestic refrigerator using R600a/mineral oil/nano-Al2O3 as working fluid. International Journal of Computational Engineering Research, 3(4), 42-50.
  • Sabareesh, K. R., Gobinath, N., Sajith, V., Das, S., Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant additive for vapor compression refrigeration systems: An experimental investigation. International Journal of Refrigeration, 35, 1989-1996. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Saleh, A. (2023). Experimental performance evaluation of water source heat pumps in different circumstances and comparison to air source heat pumps. Journal of Thermal Engineering, 9(4), 954−967.
  • Senthilkumar, A., Sahaluddeen, P. M., Noushad, M. N., Musthafa, E. M. (2021). Experimental investigation of ZnO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings, 45, 6087-6093. https://doi.org/10.1016/j.matpr.2020.10.180
  • Senthilkumar, A., Prabhu, L., Sathish, T., Saravanan, R., Jeyaseelan, G. A. C., Ağbulut, Ü., Saleel, C. A. (2023). Enhancement of R600a vapour compression refrigeration system with MWCNT/TiO2 hybrid nano lubricants for net zero emissions building. Sustainable Energy Technologies and Assessments, 56, 103055. https://doi.org/10.1016/j.seta.2023.103055
  • Shahpar, M., Hajinezhad, A., Fattahi, R., Moosavian S. F. (2025). Efficient refrigerant strategies for large-scale geothermal heat pumps: Triple analysis of energy, exergy, and cost. Results in Engineering, 104052. https://doi.org/10.1016/j.rineng.2025.104052
  • Shell. (2018, Şubat 15). Teknik bilgi formu. https://www.yagsanshell.com/kullanici/icerik/urun_resimleri/tds-tr-shell-corena-s4-r-68-c5606.pdf
  • Shewale, V. C., Kapse, A. A., Mogal, S. P. (2023). Experimental investigation of ice plant using different concentrations of nano lubricant with primary refrigerant R-134a. Journal of Applied Science and Engineering, 27, 2201–2209. https://doi.org/10.6180/jase.202403_27(3).0006
  • Subramani, N., Prakash, M. J. (2011). Experimental studies on a vapour compression system using nanorefrigerants. International Journal of Engineering, Science and Technology, 3(9), 95-102. http://dx.doi.org/10.4314/ijest.v3i9.8
  • Xing, M., Wang, R., Yu, J. (2014). Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. International Journal of Refrigeration, 40, 398-403. https://doi.org/10.1016/j.ijrefrig.2013.12.004
  • Yıldırım, R., Güngör, A., Kumaş, K., Akyüz, A. (2021). Evaluation of low GWP refrigerants R452B and R454B as alternative to R410a in the heat pump systems. Journal of International Environmental Application and Science,16(2), 47-52.
  • Yıldız, A. (2009). Hava akışkanlı güneş kolektörlerinin enerji ve ekserji analizi ile modellenmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Yıldız, A., Yıldırım, R. (2020). R134a'ya alternatif bir soğutucu akışkan (R513A) kullanan buhar sıkıştırmalı soğutma sistemlerinin enerji ve çevresel analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8,1817-1828. https://doi.org/10.29130/dubited.690197
  • Yıldız, G., Ağbulut, Ü., Gürel, A. E., Ergün, A., Asif, A., Saleel, C. A. (2022). Energetic, exergetic, and thermoeconomic analyses of different nanoparticles-added lubricants in a heat pump water heater. Case Studies in Thermal Engineering, 33,101975. https://doi.org/10.1016/j.csite.2022.101975
  • Yıldız, G. (2024). Investigating the impacts of using TiO2-ZnO/POE hybrid nanolubricant in a heat pump system: An experimental study. Applied Thermal Engineering, 241, 122377. https://doi.org/10.1016/j.applthermaleng.2024.122377
  • Zawawi, N. N. M., Azmi, W. H., Ghazali, M. F., Ali, H. M. (2022). Performance of air-conditioning system with different nanoparticle composition ratio of hybrid nanolubricant. Micromachines, 13(11), 1871. https://doi.org/10.3390/mi13111871

The Effect of Al2O3 Nano Particle on Energy, Exergy and Life Cycle Climate Performances in the Water Source Heat Pump

Year 2025, Volume: 45 Issue: 2, 119 - 135, 30.10.2025
https://doi.org/10.47480/isibted.1508928

Abstract

In this study, a water source heat pump system for space heating, which consists of 3 circuits, a water supply circuit, a refrigerant circuit using R-134a gas, and a radiator water circuit, was designed, manufactured and tested. The energy and exergy performances of the system using conventional POE oil in its compressor and the system using POE+Al2O3 nanofluid formed by adding 1wt.% Al2O3 nanoparticles to POE oil in its compressor were evaluated. Heat pump circuit heating energy performance (ECOPHP) and exergy performance (ExCOPHP) and whole system circuit heating energy performance (ECOPsis) and exergy performance (EXCOPsys) and Life Cycle Climate Performance (LCCP) were experimentally compared depending on source temperature (10 oC, 11 oC ve 12 oC). While Al2O3 nanoparticle increased the compressor power consumption by 1.62-3%, it reduced the ECOPHP value by 7.1-8.4% and the ECOPsys value by 12.5%-22.8%. In addition, Al2O3 nanoparticle increased the ExCOPHP value by 7-40%, contrary to the energy performance coefficient, while EXCOPsys decreased it by 12.5-25%. Also, Al2O3 nanoparticle increased the LCCP value by 1.5-3%.

References

  • Abbas, M., Walvekar, R. G., Hajibeigy, M. T., Javadi, F. S. (2013). Efficient air-condition unit by using nano-refrigerant. 1st Engineering undergraduate research catalyst conference, Malaysia, 87-88. Ahmed, M. S., Hady, M. R. A., Abdallah, G. (2018). Experimental investigation on the performance of chilled-water air conditioning unit using alumina nanofluids. Thermal Science and Engineering Progress, 5, 589-596. https://doi.org/10.1016/j.tsep.2017.07.002
  • Ahmed, F., Khan, W. A., Nayfeh, J. (2021). Experimental investigation on the performance of heat pump operating with copper and alumina nanofluids. Computers, Materials & Continua, 66(3), 2843-2856. https://doi.org/10.32604/cmc.2021.012041
  • Akkaya, M., Menlik T., Sözen A., Gürü, M. (2021). The efects of triton X 100 and tween 80 surfactants on the thermal performance of a nano Lubricant: An experimental study. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 955–967. https://doi.org/10.1007/s40684-020-00280-w
  • Aprea, C., Greco, A., Maiorino, A. (2018). HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment. Applied Thermal Engineering, 141, 226-233. https://doi.org/10.1016/j.applthermaleng.2018.02.072
  • Araz, M., Güngör, A., Hepbaşlı, A., (2013). Düşük küresel ısınma potansiyeline sahip soğutucu akışkanların soğutma uygulamalarındaki kullanımının değerlendirilmesi. 11. Ulusal Tesisat Mühendisliği Kongresi, İzmir, Türkiye, 575-604
  • Asan, H., Namlı, L. (1997). Deneysel ısı transferi ve basınç kaybı çalışmalarında belirsizlik analizi. 11. Ulusal Isı Bilimi ve Tekniği Kongresi, Edirne, Türkiye, 369-378.
  • Atilgan, B., Azapagic, A. (2016). Assessing the environmental sustainability of electricity generation in Turkey on a life cycle basis. Energies, 9(1), 31. https://doi.org/10.3390/en9010031
  • Babu A. M, Nallusamy, S., Rajan, K. (2016). Experimental analysis on vapour compression refrigeration system using nanolubricant with HFC-134a refrigerant. Nano Hybrids, 9, 33-43. https://doi.org/10.4028/www.scientific.net/NH.9.33
  • Bejan, A. (1997). Advanced engineering thermodynamics. John Wiley & Sons.
  • Bi, S., Shi, L., Zhang, L. (2007). Performance study of a domestic refrigerator using R134a/mineral oil/nano-TiO2 as working fluid. Proceedings of the 22nd IIR International Congress of Refrigeration, Beijing, China, 346.
  • Bi, S., Shi, L., Zhang, L. (2008). Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering, 28, 1834-1843. https://doi.org/10.1016/j.applthermaleng.2007.11.018
  • Bi, S., Guo, K., Liu, Z., Wu, J. (2011). Performance of a domestic refrigerator using TiO2-R600a nanorefrigerant as working fluid. Energy Conversion and Management, 52(1), 733-737. https://doi.org/10.1016/j.enconman.2010.07.052
  • Bobbo, S., Fedele, L., Fabrizio, M., Barison, S., Battiston, S., Pagura, C. (2010). Influence of nanoparticles dispersion in POE oils on lubricity and R134a solubility. International Journal of Refrigeration, 33(6), 1180-1186. https://doi.org/10.1016/j.ijrefrig.2010.04.009
  • Choi, S., Oh, J., Hwang, Y., Lee, H. (2017). Life cycle climate performance evaluation (LCCP) on cooling and heating systems in South Korea. Applied Thermal Engineering, 120, 88–98. https://doi.org/10.1016/j.applthermaleng.2017.03.105
  • Çengel, Y. A., Boles, M. A. (2010). Thermodynamics : An engineering approach. McGraw-Hill.
  • Dincer, I, Rosen, M. A. (1988). Exergy: Energy, environment and sustainable development. Elsevier Ltd.
  • Fedele, L., Colla, L., Scattolini, M., Bellomare, F., Bobbo, S. (2014). Nanofluids application as nanolubricants in heat pumps systems. 15th International Refrigeration and Air Conditioning Conference, Purdue, 14-17. Haque, M. E., Bakar, R. A., Kadirgama, K., Noor, M. M., Shakaib, M. (2016). Performance of a domestic refrigerator using nanoparticles-based polyolester oil lubricant. Journal of Mechanical Engineering and Sciences, 10, 1778-1791. http://dx.doi.org/10.15282/jmes.10.1.2016.3.0171
  • Heede, R. (2013, June 4). Oil emissions factor calculations. https://climateaccountability.org/wp-content/uploads/2023/10/Oil-EmissionFactorCalc-6p.pdf
  • Holman, J.P. (2001). Experimental methods for engineers. McGrawHill.
  • IIR (2016). Guideline for life cycle climate performance. 828.
  • Jwo, C., Jeng, L., Teng, T., Chang H. (2009). Effect of nano lubricant on the performance of Hydrocarbon refrigerant system. Journal of Vacuum Science & Technology B, 27, 1473-1477. https://doi.org/10.1116/1.3089373
  • Kapıcıoğlu, A., Esen, H. (2020). Experimental investigation on using Al2O3/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers. Applied Thermal Engineering, 165, 114559. https://doi.org/10.1016/j.applthermaleng.2019.114559
  • Karaarslan, M. (2019). Su kaynaklı ısı pompalarında nanopartikül kullanımının ısıl performansa etkisi. Yüksek Lisans Tezi, Uşak Üniversitesi Fen Bilimleri Enstitüsü, Uşak, Türkiye.
  • Kavak Akpınar, E. (2005). Deneysel çalışmalardaki hata analizine bir örnek: kurutma deneylerindeki hata analizi. Mühendis ve Makina, 46 (540), 41-48.
  • Koçak, S. (2012). Hacim ısıtma amaçlı güneş enerjisi destekli su kaynaklı ısı pompası çevriminin teorik analizi. Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Türkiye.
  • Köse, İ. (2014). Su kaynaklı ısı pompasında ısı değiştirici tasarımı, imalatı ve performansının deneysel olarak incelenmesi. Yüksek Lisans Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük, Türkiye.
  • Kumar, S. D., Elansezhian, R. (2012). Experimental study on Al2O3 – R134a nano refrigerant in refrigeration systems. International Journal of Modern Engineering Research, 2 (5), 3927-3929.
  • Kunic,R. (2017) Carbon footprint of thermal insulation materials in building envelopes. Energy Efficiency 10,1511–1528. https://doi.org/10.1007/s12053-017 9536-1
  • Li, H., Yang, W., Yu, Z., Zhao, L. (2015). The performance of a heat pump using nanofluid (R22+TiO2) as the working fluid–an experimental study. Energy Procedia, 75, 1838-1843. https://doi.org/10.1016/j.egypro.2015.07.158
  • Nair, V., Parekh, A. D., Tailor, P. R. (2020). Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture. International Journal of Refrigeration, 112, 21-36. https://doi.org/10.1016/j.ijrefrig.2019.12.009
  • Nanografi. (2018, Şubat 15). Al2O3 teknik özellikleri. https://shop.nanografi.com/microparticles/aluminum-oxide-al2o3-micron-powder-alpha-purity-99-9-size-20-m/?searchid=877340&search_query=Al2O3
  • Peng, H., Ding, G., Hu, H., Jiang, W., Zhuang, D., Wang, K. (2010). Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nano particles. International Journal of Refrigeration, 33, 347-358. https://doi.org/10.1016/j.ijrefrig.2009.11.007
  • Pundkar, A.H. , Chaudhari, S.S. (2023). Performance parameters enhancement with application of nanotechnology to MTR refrigeration system. Materials Today: Proceedings, 72(3), 890-895. https://doi.org/10.1016/j.matpr.2022.09.087
  • Reji Kumar, R., Sridhar K., Narasimha M. (2013). Heat transfer enhancement in domestic refrigerator using R600a/mineral oil/nano-Al2O3 as working fluid. International Journal of Computational Engineering Research, 3(4), 42-50.
  • Sabareesh, K. R., Gobinath, N., Sajith, V., Das, S., Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant additive for vapor compression refrigeration systems: An experimental investigation. International Journal of Refrigeration, 35, 1989-1996. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Saleh, A. (2023). Experimental performance evaluation of water source heat pumps in different circumstances and comparison to air source heat pumps. Journal of Thermal Engineering, 9(4), 954−967.
  • Senthilkumar, A., Sahaluddeen, P. M., Noushad, M. N., Musthafa, E. M. (2021). Experimental investigation of ZnO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Materials Today: Proceedings, 45, 6087-6093. https://doi.org/10.1016/j.matpr.2020.10.180
  • Senthilkumar, A., Prabhu, L., Sathish, T., Saravanan, R., Jeyaseelan, G. A. C., Ağbulut, Ü., Saleel, C. A. (2023). Enhancement of R600a vapour compression refrigeration system with MWCNT/TiO2 hybrid nano lubricants for net zero emissions building. Sustainable Energy Technologies and Assessments, 56, 103055. https://doi.org/10.1016/j.seta.2023.103055
  • Shahpar, M., Hajinezhad, A., Fattahi, R., Moosavian S. F. (2025). Efficient refrigerant strategies for large-scale geothermal heat pumps: Triple analysis of energy, exergy, and cost. Results in Engineering, 104052. https://doi.org/10.1016/j.rineng.2025.104052
  • Shell. (2018, Şubat 15). Teknik bilgi formu. https://www.yagsanshell.com/kullanici/icerik/urun_resimleri/tds-tr-shell-corena-s4-r-68-c5606.pdf
  • Shewale, V. C., Kapse, A. A., Mogal, S. P. (2023). Experimental investigation of ice plant using different concentrations of nano lubricant with primary refrigerant R-134a. Journal of Applied Science and Engineering, 27, 2201–2209. https://doi.org/10.6180/jase.202403_27(3).0006
  • Subramani, N., Prakash, M. J. (2011). Experimental studies on a vapour compression system using nanorefrigerants. International Journal of Engineering, Science and Technology, 3(9), 95-102. http://dx.doi.org/10.4314/ijest.v3i9.8
  • Xing, M., Wang, R., Yu, J. (2014). Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. International Journal of Refrigeration, 40, 398-403. https://doi.org/10.1016/j.ijrefrig.2013.12.004
  • Yıldırım, R., Güngör, A., Kumaş, K., Akyüz, A. (2021). Evaluation of low GWP refrigerants R452B and R454B as alternative to R410a in the heat pump systems. Journal of International Environmental Application and Science,16(2), 47-52.
  • Yıldız, A. (2009). Hava akışkanlı güneş kolektörlerinin enerji ve ekserji analizi ile modellenmesi. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Yıldız, A., Yıldırım, R. (2020). R134a'ya alternatif bir soğutucu akışkan (R513A) kullanan buhar sıkıştırmalı soğutma sistemlerinin enerji ve çevresel analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8,1817-1828. https://doi.org/10.29130/dubited.690197
  • Yıldız, G., Ağbulut, Ü., Gürel, A. E., Ergün, A., Asif, A., Saleel, C. A. (2022). Energetic, exergetic, and thermoeconomic analyses of different nanoparticles-added lubricants in a heat pump water heater. Case Studies in Thermal Engineering, 33,101975. https://doi.org/10.1016/j.csite.2022.101975
  • Yıldız, G. (2024). Investigating the impacts of using TiO2-ZnO/POE hybrid nanolubricant in a heat pump system: An experimental study. Applied Thermal Engineering, 241, 122377. https://doi.org/10.1016/j.applthermaleng.2024.122377
  • Zawawi, N. N. M., Azmi, W. H., Ghazali, M. F., Ali, H. M. (2022). Performance of air-conditioning system with different nanoparticle composition ratio of hybrid nanolubricant. Micromachines, 13(11), 1871. https://doi.org/10.3390/mi13111871
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer
Journal Section Research Article
Authors

Abdullah Yıldız 0000-0003-4831-0975

Mehmet Karaarslan 0009-0001-6395-4974

Publication Date October 30, 2025
Submission Date July 2, 2024
Acceptance Date September 25, 2025
Published in Issue Year 2025 Volume: 45 Issue: 2

Cite

APA Yıldız, A., & Karaarslan, M. (2025). Su Kaynaklı Isı Pompasında Al2O3 Nano Partikülünün Enerji, Ekserji ve Yaşam Döngüsü İklim Performansına Etkisi. Isı Bilimi Ve Tekniği Dergisi, 45(2), 119-135. https://doi.org/10.47480/isibted.1508928