Review
BibTex RIS Cite

Elektrikli araç sınıflandırması ve lityum iyon pil teknolojilerine ilişkin kapsamlı bilgiler: Uygulamalar, imha ve termal yönetim

Year 2025, Volume: 45 Issue: 2, 230 - 271, 30.10.2025
https://doi.org/10.47480/isibted.1640239

Abstract

Elektrikli araçlar (EV'ler), ulaşım sektöründe sera gazı emisyonlarının azaltılmasında kritik bir çözüm olarak ortaya çıkmıştır. Ancak EV'lerin etkinliği ve sürdürülebilirliği, lityum iyon pillerin (LIB'ler) performansı ve çevresel etkisi ile yakından bağlantılıdır. Bu çalışma, pil termal yönetim sistemlerine (BTMS), geri dönüşüm süreçlerine ve büyük ölçekli pil kullanımının çevresel sonuçlarına odaklanarak LIB teknolojilerinin derinlemesine bir incelemesini sağlar. Lityum-iyon, nikel-metal hidrit, kurşun-asit ve metal-hava pilleri de dahil olmak üzere farklı pil türlerini karşılaştırarak avantajlarını, sınırlamalarını ve sürdürülebilirlik ölçümlerini kapsamlı bir tabloda sunuyoruz. Ayrıca, bu çalışma çeşitli soğutma yöntemlerini (hava, sıvı, faz değiştiren malzeme (PCM) ve termoelektrik sistemler) araştırıyor ve bunların pil ömrü, verimlilik ve güvenlik üzerindeki etkilerini vurguluyor. Analiz, pirometalurjik, hidrometalurjik ve doğrudan geri dönüşüm süreçleri gibi geri dönüşüm teknolojilerini araştırarak LIB üretimi ve imhasının çevresel etkilerini de kapsıyor. Akıllı soğutma sistemlerini entegre ederek ve atık yönetimindeki zorlukları ele alarak bu araştırma, literatürdeki önemli bir boşluğu dolduruyor ve EV uygulamalarında LIB verimliliğini, uzun ömürlülüğü ve sürdürülebilirliği artırmak için yenilikçi çözümler sunuyor.

References

  • Abdalla, A. M., Abdullah, M. F., Dawood, M. K., Wei, B., Subramanian, Y., Azad, A. T., Nourin, S., Afroze, S., Taweekun, J., & Azad, A. K. (2023). Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. Journal of Energy Storage, 67, 107551. https://doi.org/10.1016/j.est.2023.107551
  • Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021). Environmental aspects of fuel cells: A review. Science of The Total Environment, 752, 141803. https://doi.org/10.1016/j.scitotenv.2020.141803
  • Abdelkareem, M. A., Maghrabie, H. M., Abo-Khalil, A. G., Adhari, O. H. K., Sayed, E. T., Radwan, A., Elsaid, K., Wilberforce, T., & Olabi, A. G. (2022). Battery thermal management systems based on nanofluids for electric vehicles. Journal of Energy Storage, 50, 104385. https://doi.org/10.1016/j.est.2022.104385
  • Abdul-Jabbar, T. A., A Obed, A., & Abid, A. J. (2021). Design of an uninterrupted power supply with Li-ion battery pack: a proposal for a cost-efficient design with high protection features. Journal of Techniques, 3(2), 1-10. https://doi.org/10.51173/jt.v3i2.296
  • Afroze, S., Reza, M. S., Kuterbekov, K., Kabyshev, A., Kubenova, M. M., Bekmyrza, K. Z., & Azad, A. K. (2023). Emerging and recycling of Li-ion batteries to aid in energy storage, a review. Recycling, 8(3), 48. https://doi.org/10.3390/recycling8030048
  • Aggarwal, S., & Singh, A. K. (2025). Electric vehicles the future of transportation sector: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 11126-11146. https://doi.org/10.1080/15567036.2021.1976322
  • Ahuis, M., Aluzoun, A., Keppeler, M., Melzig, S., & Kwade, A. (2024). Direct recycling of lithium-ion battery production scrap–Solvent-based recovery and reuse of anode and cathode coating materials. Journal of Power Sources, 593, 233995. https://doi.org/10.1016/j.jpowsour.2023.233995
  • Akbarzadeh, M., Kalogiannis, T., Jaguemont, J., Jin, L., Behi, H., Karimi, D., Beheshti, H., Mierlo, J. V., & Berecibar, M. (2021). A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module. Applied Thermal Engineering, 198, 117503. https://doi.org/10.1016/j.applthermaleng.2021.117503
  • Al Tahhan, A. B., AlKhedher, M., Ramadan, M., ElCheikh, A., Choi, D. S., & Ghazal, M. (2024). Experimental and numerical analysis of a liquid-air hybrid system for advanced battery thermal management. Applied Thermal Engineering, 253, 123754. https://doi.org/10.1016/j.applthermaleng.2024.123754
  • Ali, H. M. (2023). Thermal management systems for batteries in electric vehicles: A recent review. Energy Reports, 9, 5545–5564. https://doi.org/10.1016/j.egyr.2023.04.359
  • Amer, M. M., Shouman, M. A., Salem, M. S., Kannan, A. M., & Hamed, A. M. (2024). Advances in thermal management systems for Li-Ion batteries: A review. Thermal Science and Engineering Progress, 53, 102714. https://doi.org/10.1016/j.tsep.2024.102714
  • Amjad, S., Neelakrishnan, S., & Rudramoorthy, R. (2010). Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 14(3), 1104-1110. https://doi.org/10.1016/j.rser.2009.11.001
  • An, Z., Zhong, H., Liu, H., & Gao, Z. (2025). Performance evaluation on liquid-PCM hybrid battery thermal management with spatial network flow channels. Journal of Energy Storage, 118, 116251. https://doi.org/10.1016/j.est.2025.116251
  • Andújar, J. M., Segura, F., Rey, J., & Vivas, F. J. (2022). Batteries and hydrogen storage: Technical analysis and commercial revision to select the best option. Energies, 15(17), 6196. https://doi.org/10.3390/en15176196
  • Andwari, A. M., Pesiridis, A., Rajoo, S., Martinez-Botas, R., & Esfahanian, V. (2017). A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 78, 414-430. https://doi.org/10.1016/j.rser.2017.03.138
  • Arun, V., Kannan, R., Ramesh, S., Vijayakumar, M., Raghavendran, P. S., Siva Ramkumar, M., Anbarasu, P., & Sundramurthy, V. P. (2022). Review on Li‐Ion Battery vs Nickel Metal Hydride Battery in EV. Advances in Materials Science and Engineering, 2022(1), 7910072. https://doi.org/10.1155/2022/7910072
  • Bagheri, S., Huang, Y., Walker, P. D., Zhou, J. L., & Surawski, N. C. (2021). Strategies for improving the emission performance of hybrid electric vehicles. Science of the Total Environment, 771, 144901. https://doi.org/10.1016/j.scitotenv.2020.144901
  • Bahiraei, F., Fartaj, A., & Nazri, G. (2017). Electrochemical-thermal modeling to evaluate active thermal management of a lithium-ion battery module. Electrochimica Acta, 254, 59–71. https://doi.org/10.1016/j.electacta.2017.09.084
  • Balakrishnan, P., Ramesh, R., & Kumar, T. P. (2006). Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 155(2), 401–414. https://doi.org/10.1016/j.jpowsour.2005.12.002
  • Balali, Y., & Stegen, S. (2021). Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renewable and Sustainable Energy Reviews, 135, 110185. https://doi.org/10.1016/j.rser.2020.110185
  • Bandhauer, T. M., Garimella, S., & Fuller, T. F. (2011). A critical review of thermal issues in Lithium-Ion batteries. Journal of the Electrochemical Society, 158(3), R1. https://doi.org/10.1149/1.3515880
  • Bansal, A., Verghese, S., Massey, M. H., Massey, D. D., & Singh, R. (2023). A review of the effects of environmental heavy metal contamination from electronic waste on human health. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 10(4), 40-82.
  • Behi, H., Gandoman, F. H., Karimi, D., Hosen, M. S., Behi, M., Jaguemont, J., Mierlo, J. V., & Berecibar, M. (2022). Thermal Management of the Li‐Ion Batteries to Improve the Performance of the Electric Vehicles Applications. Modern Automotive Electrical Systems, 149-191. https://doi.org/10.1002/9781119801078.ch4
  • Behi, H., Karimi, D., Jaguemont, J., Gandoman, F. H., Kalogiannis, T., Berecibar, M., & Van Mierlo, J. (2021). Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy, 224, 120165. https://doi.org/10.1016/j.energy.2021.120165
  • Belt, J. R., Ho, C. D., Miller, T. J., Habib, M. A., & Duong, T. Q. (2005). The effect of temperature on capacity and power in cycled lithium ion batteries. Journal of Power Sources, 142(1–2), 354–360. https://doi.org/10.1016/j.jpowsour.2004.10.029
  • Bhatt, D. K., & Darieby, M. E. (2018, August). An assessment of batteries form battery electric vehicle perspectives. In 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), 255-259. https://doi.org/10.1109/SEGE.2018.8499462.
  • Bhattacharyya, S., Dinh, Q. T., & McGordon, A. (2025). Optimising thermoelectric coolers for battery thermal management in light electric vehicles. Applied Energy, 386, 125516. https://doi.org/10.1016/j.apenergy.2025.125516
  • Bhowmik, S., Bhattacharjee, U., Ghosh, S., & Martha, S. K. (2023). Evaluating the feasibility of the spinel-based Li4Ti5O12 and LiNi0. 5Mn1. 5O4 materials towards a battery supercapacitor hybrid device. Journal of Energy Storage, 73, 109099. https://doi.org/10.1016/j.est.2023.109099
  • Bian, X., Tao, H., Li, Y., Chu, Z., Bai, X., Xian, Y., Yang, L., & Zhang, Z. (2024). Heat pipe/phase change material passive thermal management of power battery packs under different driving modes. Applied Thermal Engineering, 248, 123172. https://doi.org/10.1016/j.applthermaleng.2024.123172
  • Bibin, C., Vijayaram, M., Suriya, V., Ganesh, R. S., & Soundarraj, S. (2020). A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Materials Today: Proceedings, 33, 116-128. https://doi.org/10.1016/j.matpr.2020.03.317
  • Biswal, B. K., Zhang, B., Tran, P. T. M., Zhang, J., & Balasubramanian, R. (2024). Recycling of spent lithium-ion batteries for a sustainable future: recent advancements. Chemical Society Reviews, 53(11), 5552-5592. https://doi.org/10.1039/D3CS00898C
  • Blomgren, G. E. (2017). The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), A5019-A5025. https://doi.org/10.1149/2.0251701jes
  • BloombergNEF. (2023). Electric Cars Have Dented Fuel Demand. By 2040, They’ll Slash It. Available online: https://about.bnef.com/blog/electric-cars-have-dented-fuel-demand-by-2040-theyll-slash-it/ (Accessed on 18 September 2024).
  • Blumbergs, E., Serga, V., Platacis, E., Maiorov, M., & Shishkin, A. (2021). Cadmium recovery from spent Ni-Cd batteries: a brief review. Metals, 11(11), 1714. https://doi.org/10.3390/met11111714
  • Boretti, A. (2021). Battery electric vehicles with small battery pack and high efficiency onboard electricity production by a combustion engine. FISITA2020 submitted paper under review.
  • Boretti, A. (2022). Plug‐in hybrid electric vehicles are better than battery electric vehicles to reduce CO2 emissions until 2030. International Journal of Energy Research, 46(14), 20136-20145. https://doi.org/10.1002/er.8313
  • Boretti, A. (2024). Better integrating battery and fuel cells in electric vehicles. Energy Storage, 6(4), e669. https://doi.org/10.1002/est2.669
  • Cai, W., Yao, Y. X., Zhu, G. L., Yan, C., Jiang, L. L., He, C., Huang, J. Q., & Zhang, Q. (2020). A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 49(12), 3806-3833. https://doi.org/10.1039/C9CS00728H
  • Carlucci, F., Cirà, A., & Lanza, G. (2018). Hybrid electric vehicles: Some theoretical considerations on consumption behaviour. Sustainability, 10(4), 1302. https://doi.org/10.3390/su10041302
  • Castro, T. S., de Souza, T. M., & Silveira, J. L. (2017). Feasibility of electric vehicle: electricity by grid × photovoltaic energy. Renewable and Sustainable Energy Reviews, 69, 1077-1084. https://doi.org/10.1016/j.rser.2016.09.099
  • Cengel, Y. A., & Boles, M. A. (1989). Thermodynamics : an Engineering Approach.
  • Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 704-718. https://doi.org/10.1109/JPROC.2007.892489
  • Chau, K. T., & Wong, Y. S. (2002). Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 43(15), 1953-1968. https://doi.org/10.1016/S0196-8904(01)00148-0
  • Chavan, S., Venkateswarlu, B., Salman, M., Liu, J., Pawar, P., Joo, S. W., Choi, G. S., & Kim, S. C. (2024). Thermal management strategies for lithium-ion batteries in electric vehicles: Fundamentals, recent advances, thermal models, and cooling techniques. International Journal of Heat and Mass Transfer, 232, 125918. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125918
  • Chen, H., Wei, G., Xu, L., & Du, X. (2025). Performance study on a novel hybrid thermal management system for cylindrical lithium-ion battery pack based on liquid cooling and PCM. Applied Thermal Engineering, 271, 126392. https://doi.org/10.1016/j.applthermaleng.2025.126392
  • Chen, K., Zhang, Z., Wu, B., Song, M., & Wu, X. (2024). An air-cooled system with a control strategy for efficient battery thermal management. Applied Thermal Engineering, 236, 121578. https://doi.org/10.1016/j.applthermaleng.2023.121578
  • Chen, Z., Liu, Y., Ye, M., Zhang, Y., & Li, G. (2021). A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 151, 111607. https://doi.org/10.1016/j.rser.2021.111607
  • Chen, Z., Liu, Y., Zhang, Y., Lei, Z., Chen, Z., & Li, G. (2022a). A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 243, 122727. bhttps://doi.org/10.1016/j.energy.2021.122727
  • Chen, Z., Yildizbasi, A., Wang, Y., & Sarkis, J. (2022b). Safety Concerns for the Management of End‐of‐Life Lithium‐Ion Batteries. Global Challenges, 6(12), 2200049. https://doi.org/10.1002/gch2.202200049
  • Chian, T. Y., Wei, W., Ze, E., Ren, L., Ping, Y., Bakar, N. A., Faizal, M., & Sivakumar, S. (2019). A review on recent progress of batteries for electric vehicles. International Journal of Applied Engineering Research, 14(24), 4441-4461.
  • Chigbu, B. I. (2024). Advancing sustainable development through circular economy and skill development in EV lithium-ion battery recycling: a comprehensive review. Frontiers in Sustainability, 5, 1409498. https://doi.org/10.3389/frsus.2024.1409498
  • Christensen, P. A., Anderson, P. A., Harper, G. D., Lambert, S. M., Mrozik, W., Rajaeifar, M. A., Wise, M. S., & Heidrich, O. (2021). Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renewable and Sustainable Energy Reviews, 148, 111240. https://doi.org/10.1016/j.rser.2021.111240
  • Chuang, Y. S., Cheng, H. P., & Cheng, C. C. (2024). Reuse of Retired Lithium-Ion Batteries (LIBs) for Electric Vehicles (EVs) from the Perspective of Extended Producer Responsibility (EPR) in Taiwan. World Electric Vehicle Journal, 15(3), 105. https://doi.org/10.3390/wevj15030105
  • Costa, C. M., Barbosa, J. C., Gonçalves, R., Ferdov, S., & Lanceros-Mendez, S. (2022). Lithium-Based Battery Systems: Technological and Environmental Challenges and Opportunities. Handbook of Energy Transitions, 215-235.
  • Cui, X., & Jiang, S. (2024). A novel temperature distribution modeling method for thermoelectric cooler with application to battery thermal management system. Energy, 306, 132426. https://doi.org/10.1016/j.energy.2024.132426
  • Dai, H., & Zhu, J. (2024). Advances in Lithium-Ion Batteries for Electric Vehicles: Degradation Mechanism, Health Estimation, and Lifetime Prediction. Elsevier.
  • Das, H. J., Shah, A., Singh, L. R., & Mahato, M. (2021). Waste derived low cost PbO-Carbon nanocomposite and its energy storage application. Materials Today: Proceedings, 47, 1072-1077. https://doi.org/10.1016/j.matpr.2021.06.434
  • de Moura Oliveira, A., Bertoti, E., Eckert, J. J., Yamashita, R. Y., dos Santos Costa, E., e Silva, L. C. D. A., & Dedini, F. G. (2016). Evaluation of energy recovery potential through regenerative braking for a hybrid electric vehicle in a real urban drive scenario (No. 2016-36-0348). SAE Technical Paper. https://doi.org/10.4271/2016-36-0348
  • Delucchi, M. A., & Lipman, T. E. (2001). An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transportation Research Part D: Transport and Environment, 6(6), 371-404. https://doi.org/10.1016/S1361-9209(00)00031-6
  • Demirocak, D. E., Srinivasan, S. S., & Stefanakos, E. K. (2017). A review on nanocomposite materials for rechargeable Li-ion batteries. Applied Sciences, 7(7), 731. https://doi.org/10.3390/app7070731
  • Denton, T. (2020). Electric and hybrid vehicles. Routledge: New York, NY, USA.
  • Dhamodharan, P., Salman, M., Prabakaran, R., & Kim, S. C. (2024). Comparative analysis of R290 and R1234yf cooling performance in offset strip-fin plate heat exchanger for electric-vehicle battery thermal management. International Communications in Heat and Mass Transfer, 157, 107708. https://doi.org/10.1016/j.icheatmasstransfer.2024.107708
  • Dobó, Z., Dinh, T., & Kulcsár, T. (2023). A review on recycling of spent lithium-ion batteries. Energy Reports, 9, 6362-6395. https://doi.org/10.1016/j.egyr.2023.05.264
  • Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/science.1212741
  • Edalati, P., Mohammadi, A., Li, Y., Li, H. W., Floriano, R., Fuji, M., & Edalati, K. (2022). High-entropy alloys as anode materials of nickel-metal hydride batteries. Scripta Materialia, 209, 114387. https://doi.org/10.1016/j.scriptamat.2021.114387
  • Ehsani, M., Gao, Y., & Miller, J. M. (2007). Hybrid electric vehicles: Architecture and motor drives. Proceedings of the IEEE, 95(4), 719-728. https://doi.org/10.1109/JPROC.2007.892492
  • Ehsani, M., Singh, K. V., Bansal, H. O., & Mehrjardi, R. T. (2021). State of the art and trends in electric and hybrid electric vehicles. Proceedings of the IEEE, 109(6), 967-984. https://doi.org/10.1109/JPROC.2021.3072788.
  • Fan, L., Tu, Z., & Chan, S. H. (2021). Recent development of hydrogen and fuel cell technologies: A review. Energy Reports, 7, 8421-8446. https://doi.org/10.1016/j.egyr.2021.08.003
  • Fan, T., Liang, W., Guo, W., Feng, T., & Li, W. (2023). Life cycle assessment of electric vehicles' lithium-ion batteries reused for energy storage. Journal of Energy Storage, 71, 108126. https://doi.org/10.1016/j.est.2023.108126
  • Fathabadi, H. (2014). High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy, 70, 529–538. https://doi.org/10.1016/j.energy.2014.04.046
  • Fazzo, L., Manno, V., Iavarone, I., Minelli, G., De Santis, M., Beccaloni, E., Scaini, F., Miotto, E., Airoma, D., & Comba, P. (2023). The health impact of hazardous waste landfills and illegal dumps contaminated sites: An epidemiological study at ecological level in Italian Region. Frontiers in Public Health, 11, 996960. https://doi.org/10.3389/fpubh.2023.996960
  • Feng, X. H., Lou, Y. L., Zhang, K., Li, Z. Z., & Zhang, M. L. (2024). Optimization of liquid-cooled lithium-ion battery thermal management system under extreme temperature. Journal of Energy Storage, 99, 113214. https://doi.org/10.1016/j.est.2024.113214
  • Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060
  • Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315, 128005. https://doi.org/10.1016/j.jclepro.2021.128005
  • Fu, Z., Zhu, L., Tao, F., Si, P., & Sun, L. (2020). Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan. International Journal of Hydrogen Energy, 45(15), 8875-8886. https://doi.org/10.1016/j.ijhydene.2020.01.017
  • Gabsi, I., Saad, I., Maalej, S., & Zaghdoudi, M. C. (2024). Thermal management of Li-ion batteries in electric vehicles by nanofluid-filled loop heat pipes. Science and Technology for Energy Transition, 79, 23. https://doi.org/10.2516/stet/2024019
  • Gao, C., Sun, K., Song, K., Zhang, K., & Hou, Q. (2024). Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe. Journal of Energy Storage, 82, 110512. https://doi.org/10.1016/j.est.2024.110512
  • Gao, L., Selman, J. R., & Nash, P. (2023). Materials and wetting issues in molten carbonate fuel cell technology: a review. Journal of Materials Science, 58(41), 15936-15972. https://doi.org/10.1007/s10853-023-08958-7
  • Gao, Y., Pan, Z., Sun, J., Liu, Z., & Wang, J. (2022). High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Letters, 14(1), 94. https://doi.org/10.1007/s40820-022-00844-2
  • García, A., & Monsalve-Serrano, J. (2019). Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering, 1, 100001. https://doi.org/10.1016/j.rineng.2019.01.001
  • Garg, A., Yun, L., Gao, L., & Putungan, D. B. (2020). Development of recycling strategy for large stacked systems: Experimental and machine learning approach to form reuse battery packs for secondary applications. Journal of Cleaner Production, 275, 124152. https://doi.org/10.1016/j.jclepro.2020.124152
  • Ghafari, A., Bayat, V., Akbari, S., & Yeklangi, A. G. (2023). Current and future prospects of Li-ion batteries: a review. NanoScience Technology, 8, 24-42.
  • Gharehghani, A., Gholami, J., Shamsizadeh, P., & Mehranfar, S. (2022). Effect analysis on performance improvement of battery thermal management in cold weather. Journal of Energy Storage, 45, 103728. https://doi.org/10.1016/j.est.2021.103728
  • Gharehghani, A., Rabiei, M., Mehranfar, S., Saeedipour, S., Andwari, A. M., García, A., & Reche, C. M. (2024). Progress in battery thermal management systems technologies for electric vehicles. Renewable and Sustainable Energy Reviews, 202, 114654. https://doi.org/10.1016/j.rser.2024.114654
  • Golmohammadzadeh, R., Faraji, F., Jong, B., Pozo-Gonzalo, C., & Banerjee, P. C. (2022). Current challenges and future opportunities toward recycling of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 159, 112202. https://doi.org/10.1016/j.rser.2022.112202
  • Gou, J., & Liu, W. (2019). Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle. Applied Thermal Engineering, 152, 362–369. https://doi.org/10.1016/j.applthermaleng.2019.02.034
  • Gu, W. B., & Wang, C. Y. (2000). Thermal-Electrochemical modeling of battery systems. Journal of the Electrochemical Society, 147(8), 2910. https://doi.org/10.1149/1.1393625
  • Guo, B., Zhao, L., Zhou, J., Sun, X., & Yang, Z. (2024). Experimental investigation on the R1234yf air conditioning system with a battery cooling loop under realistic conditions of electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(7), 1913-1930. https://doi.org/10.1177/09544070231156953
  • Gupta, A. K., Landge, B. A., & Seth, B. (2009). Development of a parallel hybrid electric vehicle (No. 2009-28-0045). SAE Technical Paper.
  • Hadi, M. W., Putra, N., Trisnadewi, T., Sukarno, R., Fathoni, A. M., & Bhaskara, N. A. (2025). Innovative thermal management system for electric vehicle batteries: phase change material, heat pipe and heat sink box integration. Heat Transfer Engineering, 46(6), 503-513. https://doi.org/10.1080/01457632.2024.2325275
  • Hallaj, S. A., Maleki, H., Hong, J., & Selman, J. (1999). Thermal modeling and design considerations of lithium-ion batteries. Journal of Power Sources, 83(1–2), 1–8. https://doi.org/10.1016/S0378-7753(99)00178-0
  • Hamdan, A., Daudu, C. D., Fabuyide, A., Etukudoh, E. A., & Sonko, S. (2024). Next-generation batteries and US energy storage: A comprehensive review: Scrutinizing advancements in battery technology, their role in renewable energy, and grid stability. World Journal of Advanced Research and Reviews, 21(1), 1984-1998. https://doi.org/10.30574/wjarr.2024.21.1.0256
  • Han, J. Y., & Jung, S. (2022). Thermal stability and the effect of water on hydrogen fluoride generation in lithium-ion battery electrolytes containing LiPF6. Batteries, 8(7), 61. https://doi.org/10.3390/batteries8070061
  • Hannan, M. A., Lipu, M. H., Hussain, A., & Mohamed, A. (2017). A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renewable and Sustainable Energy Reviews, 78, 834-854. https://doi.org/10.1016/j.rser.2017.05.001
  • Harlow, J. E., Ma, L., Li, J., Logan, E., Liu, Y., Zhang, N., Ma, L., Glazier, S. L., Cormier, M. M. E., Genovese, M., Buteau, S., Cameron, A., & Dahn, J. R. (2019). A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. Journal of The Electrochemical Society, 166(13), A3031-A3044. https://doi.org/10.1149/2.0981913jes
  • Hasselwander, S., Meyer, M., & Österle, I. (2023). Techno-economic analysis of different battery cell chemistries for the passenger vehicle market. Batteries, 9(7), 379. https://doi.org/10.3390/batteries9070379
  • Hawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17(1), 53-64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
  • He, R., Song, K., Wu, X., Zhang, Q., Zhang, K., Su, M., & Hou, Q. (2025). Effectiveness analysis of novel battery thermal management systems combining phase change material and air-cooled technologies. Applied Thermal Engineering, 264, 125499. https://doi.org/10.1016/j.applthermaleng.2025.125499
  • He, Y., Yuan, X., Zhang, G., Wang, H., Zhang, T., Xie, W., & Li, L. (2021). A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Science of The Total Environment, 766, 142382. https://doi.org/10.1016/j.scitotenv.2020.142382
  • He, Z., Li, R., Yang, L., Mikulčić, H., Wang, J., & Čuček, L. (2024). Performance analysis of a battery thermal management system based on phase change materials with micro heat pipe arrays. Energy conversion and management, 311, 118506. https://doi.org/10.1016/j.enconman.2024.118506
  • Hendrayanto, P. A., Fathoni, A. M., Aliefiansyah, M. S., & Putra, N. (2024). Experimental study on Start-Up and heat transfer characteristics in loop heat pipes with dual heat sources for battery thermal management system. Thermal Science and Engineering Progress, 55, 102980. https://doi.org/10.1016/j.tsep.2024.102980
  • Hesse, H. C., Schimpe, M., Kucevic, D., & Jossen, A. (2017). Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies, 10(12), 2107. https://doi.org/10.3390/en10122107
  • Hong, S. H., Jang, D. S., Park, S., Yun, S., & Kim, Y. (2020). Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles. Applied Thermal Engineering, 173, 115213. https://doi.org/10.1016/j.applthermaleng.2020.115213
  • Hossain, R., Sarkar, M., & Sahajwalla, V. (2023). Technological options and design evolution for recycling spent lithium‐ion batteries: impact, challenges, and opportunities. Wiley Interdisciplinary Reviews: Energy and Environment, 12(5), e481. https://doi.org/10.1002/wene.481
  • Hosseinzadeh E, Barai A, Marco J, Jennings P. (2017). A comparative study on different cooling strategies for lithium-ion battery cells. In: Proceedings of the European battery hybrid and fuel cell electric vehicle congress, 1-9. Geneva, Switzerland.
  • Hou, S., Yin, H., Xu, F., Benjamín, P., Gao, J., & Chen, H. (2023). Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles. Energy, 266, 126466. https://doi.org/10.1016/j.energy.2022.126466
  • Hu, X., Zou, Y., & Yang, Y. (2016). Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy, 111, 971-980. https://doi.org/10.1016/j.energy.2016.06.037
  • Hua, Y., Liu, X., Zhou, S., Huang, Y., Ling, H., & Yang, S. (2021). Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resources, Conservation and Recycling, 168, 105249. https://doi.org/10.1016/j.resconrec.2020.105249
  • Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C., & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478, 228753. https://doi.org/10.1016/j.jpowsour.2020.228753
  • Hwang, F. S., Confrey, T., Reidy, C., Picovici, D., Callaghan, D., Culliton, D., & Nolan, C. (2024). Review of battery thermal management systems in electric vehicles. Renewable and Sustainable Energy Reviews, 192, 114171. https://doi.org/10.1016/j.rser.2023.114171
  • Ianniciello, L., Biwolé, P. H., & Achard, P. (2018). Electric vehicles batteries thermal management systems employing phase change materials. Journal of Power Sources, 378, 383-403. https://doi.org/10.1016/j.jpowsour.2017.12.071
  • Ismail, S. N. S., & Latifah, A. M. (2013). The challenge of future landfill: A case study of Malaysia. Journal Toxicology and Environmental Health Sciences (JTEHS), 5(3), 2400-2407. https://doi.org/10.5897/JTEHS12.20
  • Jarrett, A., & Kim, I. Y. (2014). Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. Journal of Power Sources, 245, 644–655. https://doi.org/10.1016/j.jpowsour.2013.06.114
  • Jhariya, M., Dewangan, A. K., Moinuddin, S. Q., Kumar, S., Ahmad, A., & Yadav, A. K. (2024). Research progress on efficient battery thermal management system (BTMs) for electric vehicles using composite phase change materials with liquid cooling and nanoadditives. Journal of Thermal Analysis and Calorimetry, 149(23), 13653-13680. https://doi.org/10.1007/s10973-024-13752-x
  • Jian, B., & Wang, H. (2022). Hardware-in-the-loop real-time validation of fuel cell electric vehicle power system based on multi-stack fuel cell construction. Journal of Cleaner Production, 331, 129807. https://doi.org/10.1016/j.jclepro.2021.129807
  • Jiang, R., Wu, C., Feng, W., You, K., Liu, J., Zhou, G., Liu, L., & Cheng, H. M. (2025). Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China. Scientific Reports, 15(1), 2267. https://doi.org/10.1038/s41598-025-86250-1
  • Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., Tian, S., & Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535. https://doi.org/10.1016/j.jclepro.2022.130535
  • Joshi, A., Sharma, R., & Baral, B. (2022). Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. Journal of Cleaner Production, 379, 134407. https://doi.org/10.1016/j.jclepro.2022.134407
  • Joshi, T. (2016, January 13). Capacity and power fade in lithium-ion batteries.
  • Jouin, M., Bressel, M., Morando, S., Gouriveau, R., Hissel, D., Péra, M. C., Zerhouni, N., Jemei, S., Hilairet, M., & Bouamama, B. O. (2016). Estimating the end-of-life of PEM fuel cells: Guidelines and metrics. Applied Energy, 177, 87-97. https://doi.org/10.1016/j.apenergy.2016.05.076
  • Jung, W., Jeong, J., Kim, J., & Chang, D. (2020). Optimization of hybrid off-grid system consisting of renewables and Li-ion batteries. Journal of Power Sources, 451, 227754. https://doi.org/10.1016/j.jpowsour.2020.227754
  • Kaarlela, T., Villagrossi, E., Rastegarpanah, A., San-Miguel-Tello, A., & Pitkäaho, T. (2024). Robotised disassembly of electric vehicle batteries: A systematic literature review. Journal of Manufacturing Systems, 74, 901-921. https://doi.org/10.1016/j.jmsy.2024.05.013
  • Kalampoka, E. (2023). New generation of batteries: Metal-air batteries (Doctoral dissertation, University of Thessaly).
  • Kang, Y., Hu, Y., Zhang, C., Yang, K., & Zhang, Q. (2024). Experimental study on charge amount of low-GWP refrigerants in electric vehicle thermal management system. Applied Thermal Engineering, 256, 124059. https://doi.org/10.1016/j.applthermaleng.2024.124059
  • Kannan, D. R. R. (2020). The Effects of Pulse Charging on Commercial Lithium-Ion Batteries (Doctoral dissertation, Florida Agricultural and Mechanical University).
  • Kazemzadeh, E., Koengkan, M., & Fuinhas, J. A. (2022). Effect of battery-electric and plug-in hybrid electric vehicles on PM2.5 emissions in 29 European countries. Sustainability, 14(4), 2188. https://doi.org/10.3390/su14042188
  • Kelly, K. J., Mihalic, M., Zolot, M. (2002). Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing. Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576), 247-252. https://doi.org/10.1109/BCAA.2002.986408
  • Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144(1), 280-294. https://doi.org/10.1016/j.jpowsour.2004.12.022
  • Khosravi, N., Dowlatabadi, M., Abdelghany, M. B., Tostado-Véliz, M., & Jurado, F. (2024). Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models. Applied Energy, 356, 122364. https://doi.org/10.1016/j.apenergy.2023.122364
  • Kim, H., Hong, J., Choi, H., Oh, J., & Lee, H. (2024). Development of PCM-based shell-and-tube thermal energy storages for efficient EV thermal management. International Communications in Heat and Mass Transfer, 154, 107401. https://doi.org/10.1016/j.icheatmasstransfer.2024.107401
  • Kim, J., Oh, J., & Lee, H. (2019). Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 149, 192-212. https://doi.org/10.1016/j.applthermaleng.2018.12.020
  • King, S., & Boxall, N. J. (2019). Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production, 215, 1279-1287. https://doi.org/10.1016/j.jclepro.2019.01.178
  • Krieger, E. M., Cannarella, J., & Arnold, C. B. (2013). A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy, 60, 492-500. https://doi.org/10.1016/j.energy.2013.08.029
  • Krishna, G. (2021). Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Transportation Research Interdisciplinary Perspectives, 10, 100364. https://doi.org/10.1016/j.trip.2021.100364
  • Kumar, M. S., & Revankar, S. T. (2017). Development scheme and key technology of an electric vehicle: An overview. Renewable and Sustainable Energy Reviews, 70, 1266-1285. https://doi.org/10.1016/j.rser.2016.12.027
  • Kumar, R., & Goel, V. (2024). Experimental study on the thermal performance of lithium-ion battery cell using a heat pipe-assisted cooling system for electric vehicles. Experimental Heat Transfer, 694-716. https://doi.org/10.1080/08916152.2024.2392812
  • Kusano, R., & Kusano, Y. (2024). Applications of plasma technologies in recycling processes. Materials, 17(7), 1687. https://doi.org/10.3390/ma17071687
  • Ladrech, F. (2010). Battery thermal management for HEV & EV–Technology overview. Proceedings of the Automotive Summit, Brussels, Belgium, 10.
  • Lajunen, A. (2014). Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transportation Research Part C: Emerging Technologies, 38, 1-15. https://doi.org/10.1016/j.trc.2013.10.008
  • Lan, T., Jermsittiparsert, K., T. Alrashood, S., Rezaei, M., Al-Ghussain, L., & A. Mohamed, M. (2021). An advanced machine learning based energy management of renewable microgrids considering hybrid electric vehicles’ charging demand. Energies, 14(3), 569. https://doi.org/10.3390/en14030569
  • Landmann, D. A. (2022). Design guidelines for next-generation sodium-nickel-chloride batteries (No. 9537). EPFL.
  • Lanzarotto, D., Marchesoni, M., Passalacqua, M., Prato, A. P., & Repetto, M. (2018). Overview of different hybrid vehicle architectures. IFAC-PapersOnLine, 51(9), 218-222. https://doi.org/10.1016/j.ifacol.2018.07.036
  • Leal, V. M., Ribeiro, J. S., Coelho, E. L. D., & Freitas, M. B. J. G. (2023). Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 79, 118-134. https://doi.org/10.1016/j.jechem.2022.08.005
  • Lee, J., Monrrabal, G., Sarma, M., Lappan, T., Hofstetter, Y. J., Trtik, P., Landgraf, S., Ding, W., Kumar, S., Vaynzof, Y., Weber, N., & Weier, T. (2023). Membrane‐Free Alkali Metal‐Iodide Battery with a Molten Salt. Energy Technology, 11(7), 2300051. https://doi.org/10.1002/ente.202300051
  • Li, C., Liu, X., Wang, C., Ye, L., Wu, T., Liang, Z., Zhang, Z., Zeng, Y., & Li, K. (2024). Electrochemical-thermal behaviors of retired power lithium-ion batteries during high-temperature and overcharge/over-discharge cycles. Case Studies in Thermal Engineering, 61, 104898. https://doi.org/10.1016/j.csite.2024.104898
  • Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018). The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochemical Energy Reviews, 1, 461-482. https://doi.org/10.1007/s41918-018-0012-1
  • Li, P., Xia, X., & Guo, J. (2022). A review of the life cycle carbon footprint of electric vehicle batteries. Separation and Purification Technology, 296, 121389. https://doi.org/10.1016/j.seppur.2022.121389
  • Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703. https://doi.org/10.1016/j.enpol.2021.112703
  • Li, Y., Bian, X., Li, H., Yu, H., & Tao, H. (2025). Thermal management of electric bus batteries simulation study using heat pipes and phase change materials under varying passenger capacity and actual driving routes. Applied Thermal Engineering, 273, 126402. https://doi.org/10.1016/j.applthermaleng.2025.126402
  • Lima, M. C. C., Pontes, L. P., Vasconcelos, A. S. M., de Araujo Silva Junior, W., & Wu, K. (2022). Economic aspects for recycling of used lithium-ion batteries from electric vehicles. Energies, 15(6), 2203. https://doi.org/10.3390/en15062203
  • Liu, G., Ouyang, M., Lu, L., Li, J., & Han, X. (2014). Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. Journal of Thermal Analysis and Calorimetry, 116(2), 1001–1010. https://doi.org/10.1007/s10973-013-3599-9
  • Liu, K., Li, K., Peng, Q., & Zhang, C. (2019). A brief review on key technologies in the battery management system of electric vehicles. Frontiers of Mechanical Engineering, 14, 47-64. https://doi.org/10.1007/s11465-018-0516-8
  • Liu, L., Zhang, X., & Lin, X. (2022a). Recent Developments of Thermal Management Strategies for Lithium‐Ion Batteries: A State‐of‐The‐Art Review. Energy Technology, 10(6), 2101135. https://doi.org/10.1002/ente.202101135
  • Liu, P., Wang, J., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, H., Musser, J., & Finamore, P. (2010). Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. Journal of the Electrochemical Society, 157(4), A499. https://doi.org/10.1149/1.3294790
  • Liu, W., Placke, T., & Chau, K. T. (2022b). Overview of batteries and battery management for electric vehicles. Energy Reports, 8, 4058-4084. https://doi.org/10.1016/j.egyr.2022.03.016
  • Loganathan, M. K., Mishra, B., Tan, C. M., Kongsvik, T., & Rai, R. N. (2021). Multi-Criteria decision making (MCDM) for the selection of Li-Ion batteries used in electric vehicles (EVs). Materials Today: Proceedings, 41, 1073-1077. https://doi.org/10.1016/j.matpr.2020.07.179
  • Łukasz, B., Rybakowska, I., Krakowiak, A., Gregorczyk, M., & Waldman, W. (2023). Lithium batteries safety, wider perspective. International Journal of Occupational Medicine and Environmental Health, 36(1), 3-20. https://doi.org/10.13075/ijomeh.1896.01995
  • Lund, H., & Kempton, W. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578-3587. https://doi.org/10.1016/j.enpol.2008.06.007
  • Luo, D., Wu, Z., Zhang, Z., Chen, H., Geng, L., Ji, Z., Zhang, W., & Zhang, P. (2025). Transient thermal analysis of a thermoelectric-based battery thermal management system at high temperatures. Energy, 318, 134833. https://doi.org/10.1016/j.energy.2025.134833
  • Luo, M., Zhang, Y., Wang, Z., Niu, Y., Lu, B., Zhu, J., Zhang, J., & Wang, K. (2024). Thermal performance enhancement with snowflake fins and liquid cooling in PCM-based battery thermal management system at high ambient temperature and high discharge rate. Journal of Energy Storage, 90, 111754. https://doi.org/10.1016/j.est.2024.111754
  • Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081
  • Lutsey, N. (2015). Transition to a global zero-emission vehicle fleet: A collaborative agenda for governments. The International Council on Clean Transportation. https://www.theicct.org/sites/default/files/publications/ICCT_GlobalZEVAlliance_201509.pdf
  • Lutsey, N., & Nicholas, M. (2019). Update on electric vehicle costs in the United States through 2030. International Council on Clean Transportation (ICCT), Washington, DC, USA
  • Lv, L., Zhou, S., Liu, C., Sun, Y., Zhang, J., Bu, C., Meng, J., & Huang, Y. (2024). Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions. Molecules, 29(13), 3161. https://doi.org/10.3390/molecules29133161
  • Lyu, Y., Siddique, A. R. M., Majid, S. H., Biglarbegian, M., Gadsden, S. A., & Mahmud, S. (2019). Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports, 5, 822-827. https://doi.org/10.1016/j.egyr.2019.06.016
  • Maeda, K., Yae, S., Fukumuro, N., Iimura, K., & Matsumoto, A. (2021). Development of a liquid immersion-type nickel-metal hydride battery under high-pressure. Journal of The Electrochemical Society, 168(12), 120511. https://doi.org/10.1149/1945-7111/ac3c22.
  • Maggetto, G., & Van Mierlo, J. (2000). Electric and electric hybrid vehicle technology: a survey. In Proceedings of the IEE Seminar Electric, Hybrid and Fuel Cell Vehicles (Ref. No. 2000/050), Durham, UK. https://doi.org/10.1049/ic:20000261
  • Maity, S. K. (2015). Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 43, 1446–1466. https://doi.org/10.1016/j.rser.2014.08.075
  • Mali, V., Saxena, R., Kumar, K., Kalam, A., & Tripathi, B. (2021). Review on battery thermal management systems for energy-efficient electric vehicles. Renewable and Sustainable Energy Reviews, 151, 111611. https://doi.org/10.1016/j.rser.2021.111611
  • Mandev, A., Plötz, P., & Sprei, F. (2021). The effect of plug-in hybrid electric vehicle charging on fuel consumption and tail-pipe emissions. Environmental Research Communications, 3(8), 081001. https://doi.org/10.1088/2515-7620/ac1498
  • Mane, N. S., Kodancha, P., Hemadri, V., & Tripathi, S. (2024). Investigation on Cooling Performance of Composite PCM and Graphite Fin for Battery Thermal Management System of Electric Vehicles. Energy Storage, 6(6), e70024. https://doi.org/10.1002/est2.70024
  • Manfo, T. A. (2023). A Comprehensive Analysis of Material Revolution to Evolution in Lithium-ion Battery Technology. Turkish Journal of Materials, 8(1), 1-13.
  • Mathew, G., Teoh, W. H., Rahman, W. M. A. W. A., & Abdullah, N. (2023). Survey on actions and willingness towards the disposal, collection, and recycling of spent lithium-ion batteries in Malaysia. Journal of Cleaner Production, 421, 138394. https://doi.org/10.1016/j.jclepro.2023.138394
  • Mathur, N., Deng, S., Singh, S., Yih, Y., & Sutherland, J. W. (2019). Evaluating the environmental benefits of implementing Industrial Symbiosis to used electric vehicle batteries. Procedia CIRP, 80, 661-666. https://doi.org/10.1016/j.procir.2019.01.074
  • Meegoda, J., Charbel, G., & Watts, D. (2024). Sustainable Management of Rechargeable Batteries Used in Electric Vehicles. Batteries, 10(5), 167. https://doi.org/10.3390/batteries10050167
  • Meydani, A., Shahinzadeh, H., Nafisi, H., & Gharehpetian, G. B. (2024, April). Optimum Energy Management Strategies for the Hybrid Sources-Powered Electric Vehicle Settings. In 2024 28th International Electrical Power Distribution Conference (EPDC), 1-19.
  • Min, D., Song, Z., Chen, H., Wang, T., & Zhang, T. (2022). Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition. Applied Energy, 306, 118036. https://doi.org/10.1016/j.apenergy.2021.118036
  • Mitsubishi 2024 Outlander Plug-In Hybrid, Available online: https://www.mitsubishicars.com/cars-and-suvs/outlander-phev (Accessed on 30 June 2024).
  • Mizushima, K. J. P. C., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  • Moeini-Aghtaie, M., Dehghanian, P., & Davoudi, M. (2022). Energy management of plug-in hybrid electric vehicles in renewable-based energy hubs. Sustainable Energy, Grids and Networks, 32, 100932. https://doi.org/10.1016/j.segan.2022.100932
  • Mourato, S., Saynor, B., & Hart, D. (2004). Greening London's black cabs: a study of driver's preferences for fuel cell taxis. Energy Policy, 32(5), 685-695. https://doi.org/10.1016/S0301-4215(02)00335-X
  • Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099-6121. https://doi.org/10.1039/D1EE00691F
  • Muslimin, S., Nawawi, Z., Suprapto, B. Y., & Dewi, T. (2022, February). Comparison of batteries used in electrical vehicles. In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021), 421-425. https://doi.org/10.2991/ahe.k.220205.074
  • Mustafa, J., Alqaed, S., & Sharifpur, M. (2022). PCM embedded radiant chilled ceiling as a solution to shift the cooling peak load-focusing on solidification process acceleration. Journal of Building Engineering, 57, 104894. https://doi.org/10.1016/j.jobe.2022.104894
  • Muthukumar, M., Rengarajan, N., Velliyangiri, B., Omprakas, M. A., Rohit, C. B., & Raja, U. K. (2021). The development of fuel cell electric vehicles–A review. Materials Today: Proceedings, 45, 1181-1187. https://doi.org/10.1016/j.matpr.2020.03.679
  • Najafi, A., Jadidi, A. M., & Rashidi, S. (2025). Experimental study on a thermal management system with air and thermoelectric module designed for lithium-ion battery. Journal of Energy Storage, 111, 115403. https://doi.org/10.1016/j.est.2025.115403
  • Nandan, G. (2019). Performance of Solar Photovoltaic panel using Forced convection of water-based CuO nanofluid: An Understanding. IOP Conference Series Materials Science and Engineering, 691(1), 012088. https://doi.org/10.1088/1757-899X/691/1/012088
  • Neubauer, J., & Wood, E. (2014). The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. Journal of Power Sources, 257, 12-20. https://doi.org/10.1016/j.jpowsour.2014.01.075
  • Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  • Noudeng, V., Quan, N. V., & Xuan, T. D. (2022). A future perspective on waste management of lithium-ion batteries for electric vehicles in Lao PDR: current status and challenges. International Journal of Environmental Research and Public Health, 19(23), 16169. https://doi.org/10.3390/ijerph192316169
  • Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5(4), 329-332. https://doi.org/10.1038/nclimate2564
  • O’Brien, S., & Nicholson, I. (2024). The Living Battery: The Bioinspired Redesign of Lithium-ion Batteries. International Journal of High School Research, 30-37. https://doi.org/10.36838/v6i4.6
  • Olabi, A. G., Abdelkareem, M. A., Wilberforce, T., Alkhalidi, A., Salameh, T., Abo-Khalil, A. G., Hassan, M. M., & Sayed, E. T. (2022). Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). International Journal of Thermofluids, 16, 100212. https://doi.org/10.1016/j.ijft.2022.100212
  • Onwuchekwa, C. N., & Kwasinski, A. (2011, March). Analysis of boundary control for a multiple-input DC-DC converter topology. In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 1232-1237. https://doi.org/10.1109/APEC.2011.5744750
  • Or, T., Gourley, S. W., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2(1), 6-43. https://doi.org/10.1002/cey2.29
  • Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205. https://doi.org/10.1016/j.rser.2015.12.363
  • Pakrouh, R., Hosseini, M. J., Ranjbar, A. A., & Rahimi, M. (2023). A novel liquid-based battery thermal management system coupling with phase change material and thermoelectric cooling. Journal of Energy Storage, 64, 107098. https://doi.org/10.1016/j.est.2023.107098
  • Panchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2016). Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery. International Journal of Thermal Sciences, 99, 204–212. https://doi.org/10.1016/j.ijthermalsci.2015.08.016
  • Panchal, S., Pierre, V., Cancian, M., Gross, O., Estefanous, F., & Badawy, T. (2023). Development and validation of cycle and calendar aging model for 144Ah NMC/graphite battery at multi temperatures, DODs, and C-rates (No. 2023-01-0503). SAE Technical Paper.
  • Paneerselvam, P., SK, N., Suyamburajan, V., Murugaiyan, T., Shekhawat, K. S., & Rengasamy, G. (2024). A review on recent progress in battery thermal management system in electric vehicle application. Materials Today. https://doi.org/10.1016/j.matpr.2024.04.094
  • Panmuang, P., Photong, C., & Soemphol, C. (2024). Experimental investigation of batteries thermal management system using water cooling and thermoelectric cooling techniques. International Journal of Power Electronics and Drive Systems (IJPEDS), 15(1), 201-212. https://doi.org/10.11591/ijpeds.v15.i1.pp201-212
  • Paoli, L., & Gül, T. (2022). Electric cars fend off supply challenges to more than double global sales. International Energy Agency. https://policycommons.net/artifacts/2232154/electric-cars-fend-off-supply%20challenges-to-more-than-double-global-sales/2989582/.
  • Park, S., & Jung, D. (2013). Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. Journal of Power Sources, 227, 191–198. https://doi.org/10.1016/j.jpowsour.2012.11.039
  • Peng, M., Liu, L., & Jiang, C. (2012). A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems. Renewable and Sustainable Energy Reviews, 16(3), 1508-1515. https://doi.org/10.1016/j.rser.2011.12.009
  • Peng, P., & Jiang, F. (2016). Thermal safety of lithium-ion batteries with various cathode materials: A numerical study. International Journal of Heat and Mass Transfer, 103, 1008–1016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088
  • Persis, P. K., Subramanian, P., Aalam, S., Kalaiselvi, K., Jeyalaksshmi, S., & Sonawane, P. R. (2024, June). A horizontal analysis on second life potentials of lithium ion batteries with its challenges involved. In AIP Conference Proceedings, 3122(1), 090011. https://doi.org/10.1063/5.0216030
  • Pesaran, A. A. (2002). Battery thermal management in EVs and HEVs: Issues and solutions. Battery Man, 43(5), 34-49.
  • Pillot, C. (2017, March). The rechargeable battery market and main trends 2016–2025. Proceedings of the 33rd Annual International Battery Seminar & Exhibit, Fort Lauderdale, FL, USA, 20, 1-45.
  • Plötz, P., Funke, S. A., Jochem, P., & Wietschel, M. (2017). CO2 mitigation potential of plug-in hybrid electric vehicles larger than expected. Scientific Reports, 7(1), 16493. https://doi.org/10.1038/s41598-017-16684-9
  • Plötz, P., Moll, C., Bieker, G., Mock, P., & Li, Y. (2020). Real-world usage of plug-in hybrid electric vehicles. Communications, 49(30), 847129.
  • Poullikkas, A. (2015). Sustainable options for electric vehicle technologies. Renewable and Sustainable Energy Reviews, 41, 1277-1287. https://doi.org/10.1016/j.rser.2014.09.016
  • PowerTech Advanced Energy Storage Systems. Lithium-ion battery advantages. 2020. https://www.powertechsystems.eu/home/tech-corner/lithium-ion-battery-advantages/ (Accessed on 04 August 2024).
  • Pramuanjaroenkij, A., & Kakaç, S. (2023). The fuel cell electric vehicles: The highlight review. International Journal of Hydrogen Energy, 48(25), 9401-9425. https://doi.org/10.1016/j.ijhydene.2022.11.103
  • Rahmani, A., Dibaj, M., & Akrami, M. (2024). A study on a battery pack in a hybrid battery thermal management system integrating with thermoelectric cooling. Case Studies in Thermal Engineering, 61, 104856. https://doi.org/10.1016/j.csite.2024.104856
  • Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y., & Heidrich, O. (2022). Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation and Recycling, 180, 106144. https://doi.org/10.1016/j.resconrec.2021.106144
  • Rallabandi, S., & Selvaraj, R. V. I. (2024). Advancements in battery cooling Techniques for Enhanced performance and Safety in Electric Vehicles: A Comprehensive review. Energy Technology, 12(5), 2301404. https://doi.org/10.1002/ente.202301404
  • Ramadass, P. H. B. W. R. P. B., Haran, B., White, R., & Popov, B. N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of Power Sources, 112(2), 606-613. https://doi.org/10.1016/S0378-7753(02)00474-3
  • Ramar, A., & Wang, F. M. (2020). Emerging anode and cathode functional materials for lithium-ion batteries. In Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, 465-491. https://doi.org/10.1016/B978-0-12-819552-9.00015-4
  • Rangarajan, S. S., Sunddararaj, S. P., Sudhakar, A. V. V., Shiva, C. K., Subramaniam, U., Collins, E. R., & Senjyu, T. (2022). Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges. Clean Technologies, 4(4), 908-930. https://doi.org/10.3390/cleantechnol4040056
  • Rani, M. F. H., Razlan, Z. M., Bakar, S. A., Desa, H., Wan, W. K., Ibrahim, I., Kamarrudin, N. S., & Bin-Abdun, N. A. (2017, September). Analysis of hybrid interface cooling system using air ventilation and nanofluid. In AIP Conference Proceedings, 1885(1), 020072. https://doi.org/10.1063/1.5002266
  • Rao, Z., & Wang, S. (2011). A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9), 4554–4571. https://doi.org/10.1016/j.rser.2011.07.096
  • Raslavičius, L., Azzopardi, B., Keršys, A., Starevičius, M., Bazaras, Ž., & Makaras, R. (2015). Electric vehicles challenges and opportunities: Lithuanian review. Renewable and Sustainable Energy Reviews, 42, 786-800. https://doi.org/10.1016/j.rser.2014.10.076
  • Rauf, M., Kumar, L., Zulkifli, S. A., & Jamil, A. (2024). Aspects of artificial intelligence in future electric vehicle technology for sustainable environmental impact. Environmental Challenges, 14, 100854. https://doi.org/10.1016/j.envc.2024.100854
  • Ruan, H., Barreras, J. V., Engstrom, T., Merla, Y., Millar, R., & Wu, B. (2023). Lithium-ion battery lifetime extension: A review of derating methods. Journal of Power Sources, 563, 232805. https://doi.org/10.1016/j.jpowsour.2023.232805
  • Sabbah, R., Kizilel, R., Selman, J., & Al-Hallaj, S. (2008). Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. Journal of Power Sources, 182(2), 630–638. https://doi.org/10.1016/j.jpowsour.2008.03.082
  • Sadeh, M., Tousi, M., Sarchami, A., Sanaie, R., Kiani, M., Ashjaee, M., & Houshfar, E. (2024). A novel hybrid liquid-cooled battery thermal management system for electric vehicles in highway fuel-economy condition. Journal of Energy Storage, 86, 111195. https://doi.org/10.1016/j.est.2024.111195
  • Sajedi, S. P., & Molaeimanesh, G. R. (2024). Employing extended surfaces for a hybrid battery thermal management system comprising PCM and refrigerated cooling air: An experimental investigation. Applied Thermal Engineering, 248, 123200. https://doi.org/10.1016/j.applthermaleng.2024.123200
  • Saju, C., Michael, P. A., & Jarin, T. (2022). Modeling and control of a hybrid electric vehicle to optimize system performance for fuel efficiency. Sustainable Energy Technologies and Assessments, 52, 102087. https://doi.org/10.1016/j.seta.2022.102087
  • Samanta, A., Chetri, C., Anekal, L., & Williamson, S. (2024). Vehicle electrification and energy storage systems in modern power grids. In Vehicle Electrification in Modern Power Grids, 249-278. https://doi.org/10.1016/B978-0-443-13969-7.00009-6
  • Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A review on electric vehicles: Technologies and challenges. Smart Cities, 4(1), 372-404. https://doi.org/10.3390/smartcities4010022
  • Sannagowdar, A. D., & Nataraj, S. K. (2024). Environmental Impact, Safety Aspects, and Recycling Technologies of Lithium‐Ion Batteries. Nanostructured Materials for Energy Storage, 2, 763-792. https://doi.org/10.1002/9783527838851.ch21
  • Satriadi, T., Winarko, R., Chaerun, S. K., Minwal, W. P., & Mubarok, M. Z. (2024). Recycling of spent electric vehicle (EV) batteries through the biohydrometallurgy process. E3S Web of Conferences, 543, 02008. https://doi.org/10.1051/e3sconf/202454302008
  • Saxon, A., Yang, C., Santhanagopalan, S., Keyser, M., & Colclasure, A. (2024). Li-Ion Battery Thermal Characterization for Thermal Management Design. Batteries, 10(4), 136. https://doi.org/10.3390/batteries10040136
  • Scrosati, B. (2000). Recent advances in lithium ion battery materials. Electrochimica Acta, 45(15-16), 2461-2466. https://doi.org/10.1016/S0013-4686(00)00333-9
  • Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  • Sen, S., Sodipo, G., & Butt, A. (2024). Life Cycle Analysis and Sustainability-Based Refinement of a Formula Student Vehicle's Energy Storage System. Available at SSRN 4925628.
  • Shahjalal, M., Shams, T., Islam, M. E., Alam, W., Modak, M., Hossain, S. B., Ramadesigan, V., Ahmed, M. R., Ahmed, H., & Iqbal, A. (2021). A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. Journal of Energy Storage, 39, 102518. https://doi.org/10.1016/j.est.2021.102518
  • Shahzad, K., & Cheema, I. I. (2024). Low-carbon technologies in automotive industry and decarbonizing transport. Journal of Power Sources, 591, 233888. https://doi.org/10.1016/j.jpowsour.2023.233888
  • Shamsuddin, M., & Sohn, H. Y. (2024). Pyrometallurgical Principles. Treatise on Process Metallurgy, 459-474. https://doi.org/10.1016/B978-0-323-85373-6.00031-4
  • Shareef, H., Islam, M. M., & Mohamed, A. (2016). A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles. Renewable and Sustainable Energy Reviews, 64, 403-420. https://doi.org/10.1016/j.rser.2016.06.033
  • Sharifi, N., Shabgard, H., Millard, C., & Etufugh, U. (2025). Hybrid Heat Pipe-PCM-Assisted Thermal Management for Lithium-Ion Batteries. Batteries, 11(2), 64. https://doi.org/10.3390/batteries11020064
  • Shen, X., Cai, T., He, C., Yang, Y., & Chen, M. (2023). Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58, 106356. https://doi.org/10.1016/j.est.2022.106356
  • Shim, J., Kostecki, R., Richardson, T., Song, X., & Striebel, K. A. (2002). Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. Journal of Power Sources, 112(1), 222–230. https://doi.org/10.1016/S0378-7753(02)00363-4
  • Singh, I. (2024). Braking Systems in Electric Motors. Pencil. Sivertsson, M., & Eriksson, L. (2017). Optimal powertrain lock-up transients for a heavy duty series hybrid electric vehicle. IFAC-PapersOnLine, 50(1), 7842-7848. https://doi.org/10.1016/j.ifacol.2017.08.1062
  • Skeete, J. P., Wells, P., Dong, X., Heidrich, O., & Harper, G. (2020). Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Research & Social Science, 69, 101581. https://doi.org/10.1016/j.erss.2020.101581
  • Smith, K., & Wang, C. Y. (2006). Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. Journal of Power Sources, 160(1), 662–673. https://doi.org/10.1016/j.jpowsour.2006.01.038
  • Sobianowska-Turek, A., Urbańska, W., Janicka, A., Zawiślak, M., & Matla, J. (2021). The necessity of recycling of waste li-ion batteries used in electric vehicles as objects posing a threat to human health and the environment. Recycling, 6(2), 35. https://doi.org/10.3390/recycling6020035
  • Soleymani, P., Saffarifard, E., Jahanpanah, J., Babaie, M., Nourian, A., Mohebbi, R., Aakcha, Z., & Ma, Y. (2023). Enhancement of an air-cooled battery thermal management system using liquid cooling with CuO and Al2O3 nanofluids under steady-state and transient conditions. Fluids, 8(10), 261. https://doi.org/10.3390/fluids8100261
  • Sommerville, R., Shaw-Stewart, J., Goodship, V., Rowson, N., & Kendrick, E. (2020). A review of physical processes used in the safe recycling of lithium ion batteries. Sustainable Materials and Technologies, 25, e00197. https://doi.org/10.1016/j.susmat.2020.e00197
  • Song, K., He, R., Gao, C., Pea, H. J. M., He, A., Zhang, Q., Zhang, K., & An, Z. (2024). Performance of a combined battery thermal management system with dual-layer phase change materials and air cooling technologies. Applied Thermal Engineering, 254, 123865. https://doi.org/10.1016/j.applthermaleng.2024.123865
  • Steckel, T., Kendall, A., & Ambrose, H. (2021). Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems. Applied Energy, 300, 117309. https://doi.org/10.1016/j.apenergy.2021.117309
  • Subramanian, M., Solomon, J. M., Raja, V., Arputharaj, B. S., Shaik, S., Saleel, C. A., Alwetaishi, M., & Cuce, E. (2024). Experimental studies and comprehensive computational investigations on composites-based phase change material for battery thermal management systems in electric vehicles. Journal of Energy Storage, 82, 110471. https://doi.org/10.1016/j.est.2024.110471
  • Sun, S., Jin, C., He, W., Li, G., Zhu, H., & Huang, J. (2021). Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. Science of The Total Environment, 776, 145913. https://doi.org/10.1016/j.scitotenv.2021.145913
  • Suo, Y., Tang, C., Jia, Q., & Zhao, W. (2024). Influence of PCM configuration and optimization of PCM proportion on the thermal management of a prismatic battery with a combined PCM and air cooling structure. Journal of Energy Storage, 80, 110340. https://doi.org/10.1016/j.est.2023.110340
  • Sutheesh, P. M., Jose, J., Hotta, T. K., & Rohinikumar, B. (2024a). Numerical investigations on thermal performance of PCM-based lithium-ion battery thermal management system equipped with advanced honeycomb structures. International Communications in Heat and Mass Transfer, 158, 107937. https://doi.org/10.1016/j.icheatmasstransfer.2024.107937
  • Sutheesh, P. M., Nichit, R. B., & Rohinikumar, B. (2024b). Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. Journal of Energy Storage, 77, 109972. https://doi.org/10.1016/j.est.2023.109972
  • Swamy, K. A., Verma, S., & Bhattacharyya, S. (2024). Experimental and numerical investigation of nanoparticle assisted PCM-based battery thermal management system. Journal of Thermal Analysis and Calorimetry, 149(19), 11223-11237. https://doi.org/10.1007/s10973-024-13052-4
  • Symeonidou, M. M., Giama, E., & Papadopoulos, A. M. (2021). Life cycle assessment for supporting dimensioning battery storage systems in micro-grids for residential applications. Energies, 14(19), 6189. https://doi.org/10.3390/en14196189
  • Szulc, J., Okrasa, M., Nowak, A., Ryngajłło, M., Nizioł, J., Kuźniar, A., Ruman, T., & Gutarowska, B. (2024). Uncontrolled Post-Industrial Landfill—Source of Metals, Potential Toxic Compounds, Dust, and Pathogens in Environment—A Case Study. Molecules, 29(7), 1496. https://doi.org/10.3390/molecules29071496
  • Tao, Y., Rahn, C. D., Archer, L. A., & You, F. (2021). Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances, 7(45), eabi7633. https://doi.org/10.1126/sciadv.abi7633
  • Tariq, A. H., Kazmi, S. A. A., Hassan, M., Ali, S. M., & Anwar, M. (2024). Analysis of fuel cell integration with hybrid microgrid systems for clean energy: A comparative review. International Journal of Hydrogen Energy, 52, 1005-1034. https://doi.org/10.1016/j.ijhydene.2023.07.238
  • Tesla Model 3. https://www.tesla.com/tr_tr/model3 (Accessed on 10 August 2024).
  • The International Journal of Heat and Mass Transfer. (1960). Nature, 188(4748), 366.
  • Thomas, K. E., & Newman, J. (2003). Thermal modeling of porous insertion electrodes. Journal of the Electrochemical Society, 150(2), A176. https://doi.org/10.1149/1.1531194
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82-102. https://doi.org/10.1016/j.rser.2012.11.077
  • Tognan, M., Turpin, C., & Simon, P. (2019). OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible (Doctoral dissertation, LAboratoire PLasma et Conversion d'Energie; Centre interuniversitaire de recherche et d'ingenierie des matériaux).
  • Tran, D. D., Vafaeipour, M., El Baghdadi, M., Barrero, R., Van Mierlo, J., & Hegazy, O. (2020). Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies. Renewable and Sustainable Energy Reviews, 119, 109596. https://doi.org/10.1016/j.rser.2019.109596
  • Troxler, Y., Wu, B., Marinescu, M., Yufit, V., Patel, Y., Marquis, A. J., Brandon, N. P., & Offer, G. J. (2014). The effect of thermal gradients on the performance of lithium-ion batteries. Journal of Power Sources, 247, 1018–1025. https://doi.org/10.1016/j.jpowsour.2013.06.084
  • Vachhani, M., Sagar, K. R., Patel, V. M., & Mehta, H. B. (2024). Novel integration of dual evaporator loop heat pipe for improved electric vehicle battery thermal regulation. Applied Thermal Engineering, 236, 121832. https://doi.org/10.1016/j.applthermaleng.2023.121832
  • Van Mierlo, J., Berecibar, M., El Baghdadi, M., De Cauwer, C., Messagie, M., Coosemans, T., Jacobs, V. A., & Hegazy, O. (2021). Beyond the state of the art of electric vehicles: A fact-based paper of the current and prospective electric vehicle technologies. World Electric Vehicle Journal, 12(1), 20. https://doi.org/10.3390/wevj12010020
  • Vaverková, M. D. (2019). Landfill impacts on the environment. Geosciences, 9(10), 431. https://doi.org/10.3390/geosciences9100431
  • Verma, S., Mishra, S., Gaur, A., Chowdhury, S., Mohapatra, S., Dwivedi, G., & Verma, P. (2021). A comprehensive review on energy storage in hybrid electric vehicle. Journal of Traffic and Transportation Engineering (English Edition), 8(5), 621-637. https://doi.org/10.1016/j.jtte.2021.09.001
  • Vertiz, G., Oyarbide, M., Macicior, H., Miguel, O., Cantero, I., De Arroiabe, P. F., & Ulacia, I. (2014). Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model. Journal of Power Sources, 272, 476–484. https://doi.org/10.1016/j.jpowsour.2014.08.092
  • Viswanathan, V., Crawford, A., Stephenson, D., Kim, S., Wang, W., Li, B., Coffey, G., Thomsen, E., Graff, G., Balducci, P., Kintner-Meyer, M., & Sprenkle, V. (2014). Cost and performance model for redox flow batteries. Journal of Power Sources, 247, 1040-1051. https://doi.org/10.1016/j.jpowsour.2012.12.023
  • Wang, C., Yu, Y., Niu, J., Liu, Y., Bridges, D., Liu, X., Pooran, J., Zhang, Y., & Hu, A. (2019). Recent progress of metal–air batteries—a mini review. Applied Sciences, 9(14), 2787. https://doi.org/10.3390/app9142787
  • Wang, K., Wu, Y., Yang, C., Yu, M., Lei, C., Zhang, Y., Ding, T., Long, Y., Liu, K., & Wu, H. (2024a). Dry Electrode Processing for High‐Performance Molten Salt Batteries. Advanced Energy Materials, 14(27), 2400589. https://doi.org/10.1002/aenm.202400589
  • Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C. (2016). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038
  • Wang, R., Zhang, H., Chen, J., Ding, R., & Luo, D. (2024b). Modeling and model predictive control of a battery thermal management system based on thermoelectric cooling for electric vehicles. Energy Technology, 12(5), 2301205. https://doi.org/10.1002/ente.202301205
  • Wang, X., Liu, S., Zhang, Y., Lv, S., Ni, H., Deng, Y., & Yuan, Y. (2022). A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System. Energies, 15(6), 1963. https://doi.org/10.3390/en15061963
  • Wang, Y. J., Fan, H., Ignaszak, A., Zhang, L., Shao, S., Wilkinson, D. P., & Zhang, J. (2018). Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chemical Engineering Journal, 348, 416-437. https://doi.org/10.1016/j.cej.2018.04.208
  • Wankhede, S., Pingale, A. D., & Kale, A. (2025). Experimental investigation on thermal management of lithium-ion battery pack for formula student electric vehicle using air-cooling system. Energy Storage and Saving, 4(1), 38-47. https://doi.org/10.1016/j.enss.2024.11.008
  • Weng, J., Ouyang, D., Yang, X., Chen, M., Zhang, G., & Wang, J. (2020). Optimization of the internal fin in a phase-change-material module for battery thermal management. Applied Thermal Engineering, 167, 114698. https://doi.org/10.1016/j.applthermaleng.2019.114698
  • Werner, D., Peuker, U. A., & Mütze, T. (2020). Recycling chain for spent lithium-ion batteries. Metals, 10(3), 316. https://doi.org/10.3390/met10030316
  • Wicks, F. (2003). The Remarkable Henry Ford. Mechanical Engineering, 125(5), 50-55. Wiriyasart, S., Hommalee, C., Sirikasemsuk, S., Prurapark, R., & Naphon, P. (2020). Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Studies in Thermal Engineering, 18, 100583. https://doi.org/10.1016/j.csite.2020.100583
  • Wu, C., Ni, J., Shi, X., & Huang, R. (2024a). A new design of cooling plate for liquid-cooled battery thermal management system with variable heat transfer path. Applied Thermal Engineering, 239, 122107. https://doi.org/10.1016/j.applthermaleng.2023.122107
  • Wu, C., Sun, Y., Tang, H., Zhang, S., Yuan, W., Zhu, L., & Tang, Y. (2024b). A review on the liquid cooling thermal management system of lithium-ion batteries. Applied Energy, 375, 124173. https://doi.org/10.1016/j.apenergy.2024.124173
  • Wu, H. (2022, October). Study on direct refrigerant cooling for lithium-ion batteries of electric vehicles. In Journal of Physics: Conference Series, 2310(1), 012028). https://doi.org/10.1088/1742-6596/2310/1/012028
  • Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., & Lai, Y. (2019). A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management, 182, 262–281. https://doi.org/10.1016/j.enconman.2018.12.051
  • Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. https://doi.org/10.1016/j.enpol.2012.05.060
  • Xie, S., Hu, X., Qi, S., & Lang, K. (2018). An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 163, 837-848. https://doi.org/10.1016/j.energy.2018.08.139
  • Xin, S., Wang, C., & Xi, H. (2023). Thermal management scheme and optimization of cylindrical lithium-ion battery pack based on air cooling and liquid cooling. Applied Thermal Engineering, 224, 120100. https://doi.org/10.1016/j.applthermaleng.2023.120100
  • Xiong, S., Ji, J., & Ma, X. (2020). Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Management, 102, 579-586. https://doi.org/10.1016/j.wasman.2019.11.013
  • Yamada, T., Koshiyama, T., Yoshikawa, M., Yamada, T., & Ono, N. (2017). Analysis of a lithium-ion battery cooling system for electric vehicles using a phase-change material and heat pipes. Journal of Thermal Science and Technology, 12(1), JTST0011. https://doi.org/10.1299/jtst.2017jtst0011
  • Yan, Z. (2024). Research on Lithium Battery Recycling and Utilization. International Journal of Materials Science and Technology Studies, 1(3), 1-8.
  • Yanamandra, K., Pinisetty, D., Daoud, A., & Gupta, N. (2022). Recycling of Li-ion and lead acid batteries: a review. Journal of the Indian Institute of Science, 102(1), 281-295. https://doi.org/10.1007/s41745-021-00269-7
  • Yang, H., Hu, X., Zhang, G., Dou, B., Cui, G., Yang, Q., & Yan, X. (2024a). Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Waste Management, 178, 168-175. https://doi.org/10.1016/j.wasman.2024.02.034
  • Yang, J., Wu, J., Liu, Y., Wang, X., Liu, G., Wen, Q., Li, F., & Wang, Z. (2024b). Numerical study on side cooling technology of battery with a flat confined loop heat pipe. Applied Thermal Engineering, 236, 121490. https://doi.org/10.1016/j.applthermaleng.2023.121490
  • Yazami, R. (1999). Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochimica Acta, 45(1-2), 87-97. https://doi.org/10.1016/S0013-4686(99)00195-4
  • Yoshino, A. (2022). Brief history and future of the lithium-ion battery. The Nobel Prizes, 2019, 207-218.
  • Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012(1), 435873. https://doi.org/10.1155/2012/435873
  • Yudhistira, R., Khatiwada, D., & Sanchez, F. (2022). A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. Journal of Cleaner Production, 358, 131999. https://doi.org/10.1016/j.jclepro.2022.131999
  • Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180
  • Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569-596. http://dx.doi.org/10.1016/j.rser.2014.10.011
  • Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries, 10(1), 38. https://doi.org/10.3390/batteries10010038
  • Zeng, J., Feng, S., Lai, C., Song, J., Fu, L., Chen, H., Deng, S., & Gao, T. (2023). Prediction on thermal performance of refrigerant-based battery thermal management system for a HEV battery pack. International Journal of Heat and Mass Transfer, 201, 123657. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123657
  • Zhang, B., Yuan, N., Kong, B., Zou, Y., & Shi, H. (2024). Simulation of hybrid air-cooled and liquid-cooled systems for optimal lithium-ion battery performance and condensation prevention in high-humidity environments. Applied Thermal Engineering, 257, 124455. https://doi.org/10.1016/j.applthermaleng.2024.124455
  • Zhao, C., Zu, B., Xu, Y., Wang, Z., Zhou, J., & Liu, L. (2020). Design and analysis of an engine-start control strategy for a single-shaft parallel hybrid electric vehicle. Energy, 202, 117621. https://doi.org/10.1016/j.energy.2020.117621
  • Zhao, G., Wang, X., Negnevitsky, M., & Li, C. (2023a). An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles. Applied Thermal Engineering, 219, 119626. https://doi.org/10.1016/j.applthermaleng.2022.119626
  • Zhao, G., Wang, X., Negnevitsky, M., & Zhang, H. (2021a). A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. Journal of Power Sources, 501, 230001. https://doi.org/10.1016/j.jpowsour.2021.230001
  • Zhao, H., Zhang, B., & Zhang, B. (2008, September). Research on parameters matching of parallel hybrid electric vehicle powertrain. In 2008 IEEE Vehicle Power and Propulsion Conference, pp. 1-4. https://doi.org/10.1109/VPPC.2008.4677431
  • Zhao, L., Li, W., Wang, G., Cheng, W., & Chen, M. (2023b). A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling. Applied Thermal Engineering, 232, 120992. https://doi.org/10.1016/j.applthermaleng.2023.120992
  • Zhao, Y., Pohl, O., Bhatt, A. I., Collis, G. E., Mahon, P. J., Rüther, T., & Hollenkamp, A. F. (2021b). A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry, 2(1), 167-205. https://doi.org/10.3390/suschem2010011
  • Zheng, Z., Petrone, R., Péra, M. C., Hissel, D., Becherif, M., Pianese, C., Steiner, N. Y., & Sorrentino, M. (2013). A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. International Journal of Hydrogen Energy, 38(21), 8914-8926. https://doi.org/10.1016/j.ijhydene.2013.04.007
  • Zhou, H., Li, W., Yang, W., Guo, X., Cui, L., & Liu, T. (2024). A hybrid battery thermal management strategy that couples internal PCM with external air-jet cooling. Journal of Energy Storage, 98, 113127. https://doi.org/10.1016/j.est.2024.113127

Comprehensive insights into electric vehicle classification and lithium-ion battery technologies: Applications, disposal, and thermal management

Year 2025, Volume: 45 Issue: 2, 230 - 271, 30.10.2025
https://doi.org/10.47480/isibted.1640239

Abstract

Electric vehicles (EVs) have emerged as a critical solution to reducing greenhouse gas emissions in the transportation sector. However, the effectiveness and sustainability of EVs are closely tied to the performance and environmental impact of lithium ion batteries (LIBs). This study provides an in-depth exploration of LIB technologies, focusing on battery thermal management systems (BTMS), recycling processes, and the environmental consequences of large-scale battery deployment. We compare different battery types, including lithium-ion, nickel-metal hydride, lead-acid, and metal-air batteries, presenting their advantages, limitations, and sustainability metrics in a comprehensive table. Furthermore, this work investigates a variety of cooling methods—air, liquid, phase change material (PCM), and thermoelectric systems—highlighting their effects on battery lifespan, efficiency, and safety. The analysis extends to the environmental impacts of LIB production and disposal, exploring recycling technologies like pyrometallurgical, hydrometallurgical, and direct recycling processes. By integrating intelligent cooling systems and addressing challenges in waste management, this research bridges a crucial gap in the literature, offering innovative solutions to enhance LIB efficiency, longevity, and sustainability in EV applications.

References

  • Abdalla, A. M., Abdullah, M. F., Dawood, M. K., Wei, B., Subramanian, Y., Azad, A. T., Nourin, S., Afroze, S., Taweekun, J., & Azad, A. K. (2023). Innovative lithium-ion battery recycling: Sustainable process for recovery of critical materials from lithium-ion batteries. Journal of Energy Storage, 67, 107551. https://doi.org/10.1016/j.est.2023.107551
  • Abdelkareem, M. A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E. T., & Olabi, A. (2021). Environmental aspects of fuel cells: A review. Science of The Total Environment, 752, 141803. https://doi.org/10.1016/j.scitotenv.2020.141803
  • Abdelkareem, M. A., Maghrabie, H. M., Abo-Khalil, A. G., Adhari, O. H. K., Sayed, E. T., Radwan, A., Elsaid, K., Wilberforce, T., & Olabi, A. G. (2022). Battery thermal management systems based on nanofluids for electric vehicles. Journal of Energy Storage, 50, 104385. https://doi.org/10.1016/j.est.2022.104385
  • Abdul-Jabbar, T. A., A Obed, A., & Abid, A. J. (2021). Design of an uninterrupted power supply with Li-ion battery pack: a proposal for a cost-efficient design with high protection features. Journal of Techniques, 3(2), 1-10. https://doi.org/10.51173/jt.v3i2.296
  • Afroze, S., Reza, M. S., Kuterbekov, K., Kabyshev, A., Kubenova, M. M., Bekmyrza, K. Z., & Azad, A. K. (2023). Emerging and recycling of Li-ion batteries to aid in energy storage, a review. Recycling, 8(3), 48. https://doi.org/10.3390/recycling8030048
  • Aggarwal, S., & Singh, A. K. (2025). Electric vehicles the future of transportation sector: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 11126-11146. https://doi.org/10.1080/15567036.2021.1976322
  • Ahuis, M., Aluzoun, A., Keppeler, M., Melzig, S., & Kwade, A. (2024). Direct recycling of lithium-ion battery production scrap–Solvent-based recovery and reuse of anode and cathode coating materials. Journal of Power Sources, 593, 233995. https://doi.org/10.1016/j.jpowsour.2023.233995
  • Akbarzadeh, M., Kalogiannis, T., Jaguemont, J., Jin, L., Behi, H., Karimi, D., Beheshti, H., Mierlo, J. V., & Berecibar, M. (2021). A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module. Applied Thermal Engineering, 198, 117503. https://doi.org/10.1016/j.applthermaleng.2021.117503
  • Al Tahhan, A. B., AlKhedher, M., Ramadan, M., ElCheikh, A., Choi, D. S., & Ghazal, M. (2024). Experimental and numerical analysis of a liquid-air hybrid system for advanced battery thermal management. Applied Thermal Engineering, 253, 123754. https://doi.org/10.1016/j.applthermaleng.2024.123754
  • Ali, H. M. (2023). Thermal management systems for batteries in electric vehicles: A recent review. Energy Reports, 9, 5545–5564. https://doi.org/10.1016/j.egyr.2023.04.359
  • Amer, M. M., Shouman, M. A., Salem, M. S., Kannan, A. M., & Hamed, A. M. (2024). Advances in thermal management systems for Li-Ion batteries: A review. Thermal Science and Engineering Progress, 53, 102714. https://doi.org/10.1016/j.tsep.2024.102714
  • Amjad, S., Neelakrishnan, S., & Rudramoorthy, R. (2010). Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 14(3), 1104-1110. https://doi.org/10.1016/j.rser.2009.11.001
  • An, Z., Zhong, H., Liu, H., & Gao, Z. (2025). Performance evaluation on liquid-PCM hybrid battery thermal management with spatial network flow channels. Journal of Energy Storage, 118, 116251. https://doi.org/10.1016/j.est.2025.116251
  • Andújar, J. M., Segura, F., Rey, J., & Vivas, F. J. (2022). Batteries and hydrogen storage: Technical analysis and commercial revision to select the best option. Energies, 15(17), 6196. https://doi.org/10.3390/en15176196
  • Andwari, A. M., Pesiridis, A., Rajoo, S., Martinez-Botas, R., & Esfahanian, V. (2017). A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 78, 414-430. https://doi.org/10.1016/j.rser.2017.03.138
  • Arun, V., Kannan, R., Ramesh, S., Vijayakumar, M., Raghavendran, P. S., Siva Ramkumar, M., Anbarasu, P., & Sundramurthy, V. P. (2022). Review on Li‐Ion Battery vs Nickel Metal Hydride Battery in EV. Advances in Materials Science and Engineering, 2022(1), 7910072. https://doi.org/10.1155/2022/7910072
  • Bagheri, S., Huang, Y., Walker, P. D., Zhou, J. L., & Surawski, N. C. (2021). Strategies for improving the emission performance of hybrid electric vehicles. Science of the Total Environment, 771, 144901. https://doi.org/10.1016/j.scitotenv.2020.144901
  • Bahiraei, F., Fartaj, A., & Nazri, G. (2017). Electrochemical-thermal modeling to evaluate active thermal management of a lithium-ion battery module. Electrochimica Acta, 254, 59–71. https://doi.org/10.1016/j.electacta.2017.09.084
  • Balakrishnan, P., Ramesh, R., & Kumar, T. P. (2006). Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 155(2), 401–414. https://doi.org/10.1016/j.jpowsour.2005.12.002
  • Balali, Y., & Stegen, S. (2021). Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renewable and Sustainable Energy Reviews, 135, 110185. https://doi.org/10.1016/j.rser.2020.110185
  • Bandhauer, T. M., Garimella, S., & Fuller, T. F. (2011). A critical review of thermal issues in Lithium-Ion batteries. Journal of the Electrochemical Society, 158(3), R1. https://doi.org/10.1149/1.3515880
  • Bansal, A., Verghese, S., Massey, M. H., Massey, D. D., & Singh, R. (2023). A review of the effects of environmental heavy metal contamination from electronic waste on human health. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 10(4), 40-82.
  • Behi, H., Gandoman, F. H., Karimi, D., Hosen, M. S., Behi, M., Jaguemont, J., Mierlo, J. V., & Berecibar, M. (2022). Thermal Management of the Li‐Ion Batteries to Improve the Performance of the Electric Vehicles Applications. Modern Automotive Electrical Systems, 149-191. https://doi.org/10.1002/9781119801078.ch4
  • Behi, H., Karimi, D., Jaguemont, J., Gandoman, F. H., Kalogiannis, T., Berecibar, M., & Van Mierlo, J. (2021). Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy, 224, 120165. https://doi.org/10.1016/j.energy.2021.120165
  • Belt, J. R., Ho, C. D., Miller, T. J., Habib, M. A., & Duong, T. Q. (2005). The effect of temperature on capacity and power in cycled lithium ion batteries. Journal of Power Sources, 142(1–2), 354–360. https://doi.org/10.1016/j.jpowsour.2004.10.029
  • Bhatt, D. K., & Darieby, M. E. (2018, August). An assessment of batteries form battery electric vehicle perspectives. In 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), 255-259. https://doi.org/10.1109/SEGE.2018.8499462.
  • Bhattacharyya, S., Dinh, Q. T., & McGordon, A. (2025). Optimising thermoelectric coolers for battery thermal management in light electric vehicles. Applied Energy, 386, 125516. https://doi.org/10.1016/j.apenergy.2025.125516
  • Bhowmik, S., Bhattacharjee, U., Ghosh, S., & Martha, S. K. (2023). Evaluating the feasibility of the spinel-based Li4Ti5O12 and LiNi0. 5Mn1. 5O4 materials towards a battery supercapacitor hybrid device. Journal of Energy Storage, 73, 109099. https://doi.org/10.1016/j.est.2023.109099
  • Bian, X., Tao, H., Li, Y., Chu, Z., Bai, X., Xian, Y., Yang, L., & Zhang, Z. (2024). Heat pipe/phase change material passive thermal management of power battery packs under different driving modes. Applied Thermal Engineering, 248, 123172. https://doi.org/10.1016/j.applthermaleng.2024.123172
  • Bibin, C., Vijayaram, M., Suriya, V., Ganesh, R. S., & Soundarraj, S. (2020). A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Materials Today: Proceedings, 33, 116-128. https://doi.org/10.1016/j.matpr.2020.03.317
  • Biswal, B. K., Zhang, B., Tran, P. T. M., Zhang, J., & Balasubramanian, R. (2024). Recycling of spent lithium-ion batteries for a sustainable future: recent advancements. Chemical Society Reviews, 53(11), 5552-5592. https://doi.org/10.1039/D3CS00898C
  • Blomgren, G. E. (2017). The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), A5019-A5025. https://doi.org/10.1149/2.0251701jes
  • BloombergNEF. (2023). Electric Cars Have Dented Fuel Demand. By 2040, They’ll Slash It. Available online: https://about.bnef.com/blog/electric-cars-have-dented-fuel-demand-by-2040-theyll-slash-it/ (Accessed on 18 September 2024).
  • Blumbergs, E., Serga, V., Platacis, E., Maiorov, M., & Shishkin, A. (2021). Cadmium recovery from spent Ni-Cd batteries: a brief review. Metals, 11(11), 1714. https://doi.org/10.3390/met11111714
  • Boretti, A. (2021). Battery electric vehicles with small battery pack and high efficiency onboard electricity production by a combustion engine. FISITA2020 submitted paper under review.
  • Boretti, A. (2022). Plug‐in hybrid electric vehicles are better than battery electric vehicles to reduce CO2 emissions until 2030. International Journal of Energy Research, 46(14), 20136-20145. https://doi.org/10.1002/er.8313
  • Boretti, A. (2024). Better integrating battery and fuel cells in electric vehicles. Energy Storage, 6(4), e669. https://doi.org/10.1002/est2.669
  • Cai, W., Yao, Y. X., Zhu, G. L., Yan, C., Jiang, L. L., He, C., Huang, J. Q., & Zhang, Q. (2020). A review on energy chemistry of fast-charging anodes. Chemical Society Reviews, 49(12), 3806-3833. https://doi.org/10.1039/C9CS00728H
  • Carlucci, F., Cirà, A., & Lanza, G. (2018). Hybrid electric vehicles: Some theoretical considerations on consumption behaviour. Sustainability, 10(4), 1302. https://doi.org/10.3390/su10041302
  • Castro, T. S., de Souza, T. M., & Silveira, J. L. (2017). Feasibility of electric vehicle: electricity by grid × photovoltaic energy. Renewable and Sustainable Energy Reviews, 69, 1077-1084. https://doi.org/10.1016/j.rser.2016.09.099
  • Cengel, Y. A., & Boles, M. A. (1989). Thermodynamics : an Engineering Approach.
  • Chan, C. C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 704-718. https://doi.org/10.1109/JPROC.2007.892489
  • Chau, K. T., & Wong, Y. S. (2002). Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 43(15), 1953-1968. https://doi.org/10.1016/S0196-8904(01)00148-0
  • Chavan, S., Venkateswarlu, B., Salman, M., Liu, J., Pawar, P., Joo, S. W., Choi, G. S., & Kim, S. C. (2024). Thermal management strategies for lithium-ion batteries in electric vehicles: Fundamentals, recent advances, thermal models, and cooling techniques. International Journal of Heat and Mass Transfer, 232, 125918. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125918
  • Chen, H., Wei, G., Xu, L., & Du, X. (2025). Performance study on a novel hybrid thermal management system for cylindrical lithium-ion battery pack based on liquid cooling and PCM. Applied Thermal Engineering, 271, 126392. https://doi.org/10.1016/j.applthermaleng.2025.126392
  • Chen, K., Zhang, Z., Wu, B., Song, M., & Wu, X. (2024). An air-cooled system with a control strategy for efficient battery thermal management. Applied Thermal Engineering, 236, 121578. https://doi.org/10.1016/j.applthermaleng.2023.121578
  • Chen, Z., Liu, Y., Ye, M., Zhang, Y., & Li, G. (2021). A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 151, 111607. https://doi.org/10.1016/j.rser.2021.111607
  • Chen, Z., Liu, Y., Zhang, Y., Lei, Z., Chen, Z., & Li, G. (2022a). A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 243, 122727. bhttps://doi.org/10.1016/j.energy.2021.122727
  • Chen, Z., Yildizbasi, A., Wang, Y., & Sarkis, J. (2022b). Safety Concerns for the Management of End‐of‐Life Lithium‐Ion Batteries. Global Challenges, 6(12), 2200049. https://doi.org/10.1002/gch2.202200049
  • Chian, T. Y., Wei, W., Ze, E., Ren, L., Ping, Y., Bakar, N. A., Faizal, M., & Sivakumar, S. (2019). A review on recent progress of batteries for electric vehicles. International Journal of Applied Engineering Research, 14(24), 4441-4461.
  • Chigbu, B. I. (2024). Advancing sustainable development through circular economy and skill development in EV lithium-ion battery recycling: a comprehensive review. Frontiers in Sustainability, 5, 1409498. https://doi.org/10.3389/frsus.2024.1409498
  • Christensen, P. A., Anderson, P. A., Harper, G. D., Lambert, S. M., Mrozik, W., Rajaeifar, M. A., Wise, M. S., & Heidrich, O. (2021). Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renewable and Sustainable Energy Reviews, 148, 111240. https://doi.org/10.1016/j.rser.2021.111240
  • Chuang, Y. S., Cheng, H. P., & Cheng, C. C. (2024). Reuse of Retired Lithium-Ion Batteries (LIBs) for Electric Vehicles (EVs) from the Perspective of Extended Producer Responsibility (EPR) in Taiwan. World Electric Vehicle Journal, 15(3), 105. https://doi.org/10.3390/wevj15030105
  • Costa, C. M., Barbosa, J. C., Gonçalves, R., Ferdov, S., & Lanceros-Mendez, S. (2022). Lithium-Based Battery Systems: Technological and Environmental Challenges and Opportunities. Handbook of Energy Transitions, 215-235.
  • Cui, X., & Jiang, S. (2024). A novel temperature distribution modeling method for thermoelectric cooler with application to battery thermal management system. Energy, 306, 132426. https://doi.org/10.1016/j.energy.2024.132426
  • Dai, H., & Zhu, J. (2024). Advances in Lithium-Ion Batteries for Electric Vehicles: Degradation Mechanism, Health Estimation, and Lifetime Prediction. Elsevier.
  • Das, H. J., Shah, A., Singh, L. R., & Mahato, M. (2021). Waste derived low cost PbO-Carbon nanocomposite and its energy storage application. Materials Today: Proceedings, 47, 1072-1077. https://doi.org/10.1016/j.matpr.2021.06.434
  • de Moura Oliveira, A., Bertoti, E., Eckert, J. J., Yamashita, R. Y., dos Santos Costa, E., e Silva, L. C. D. A., & Dedini, F. G. (2016). Evaluation of energy recovery potential through regenerative braking for a hybrid electric vehicle in a real urban drive scenario (No. 2016-36-0348). SAE Technical Paper. https://doi.org/10.4271/2016-36-0348
  • Delucchi, M. A., & Lipman, T. E. (2001). An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transportation Research Part D: Transport and Environment, 6(6), 371-404. https://doi.org/10.1016/S1361-9209(00)00031-6
  • Demirocak, D. E., Srinivasan, S. S., & Stefanakos, E. K. (2017). A review on nanocomposite materials for rechargeable Li-ion batteries. Applied Sciences, 7(7), 731. https://doi.org/10.3390/app7070731
  • Denton, T. (2020). Electric and hybrid vehicles. Routledge: New York, NY, USA.
  • Dhamodharan, P., Salman, M., Prabakaran, R., & Kim, S. C. (2024). Comparative analysis of R290 and R1234yf cooling performance in offset strip-fin plate heat exchanger for electric-vehicle battery thermal management. International Communications in Heat and Mass Transfer, 157, 107708. https://doi.org/10.1016/j.icheatmasstransfer.2024.107708
  • Dobó, Z., Dinh, T., & Kulcsár, T. (2023). A review on recycling of spent lithium-ion batteries. Energy Reports, 9, 6362-6395. https://doi.org/10.1016/j.egyr.2023.05.264
  • Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/science.1212741
  • Edalati, P., Mohammadi, A., Li, Y., Li, H. W., Floriano, R., Fuji, M., & Edalati, K. (2022). High-entropy alloys as anode materials of nickel-metal hydride batteries. Scripta Materialia, 209, 114387. https://doi.org/10.1016/j.scriptamat.2021.114387
  • Ehsani, M., Gao, Y., & Miller, J. M. (2007). Hybrid electric vehicles: Architecture and motor drives. Proceedings of the IEEE, 95(4), 719-728. https://doi.org/10.1109/JPROC.2007.892492
  • Ehsani, M., Singh, K. V., Bansal, H. O., & Mehrjardi, R. T. (2021). State of the art and trends in electric and hybrid electric vehicles. Proceedings of the IEEE, 109(6), 967-984. https://doi.org/10.1109/JPROC.2021.3072788.
  • Fan, L., Tu, Z., & Chan, S. H. (2021). Recent development of hydrogen and fuel cell technologies: A review. Energy Reports, 7, 8421-8446. https://doi.org/10.1016/j.egyr.2021.08.003
  • Fan, T., Liang, W., Guo, W., Feng, T., & Li, W. (2023). Life cycle assessment of electric vehicles' lithium-ion batteries reused for energy storage. Journal of Energy Storage, 71, 108126. https://doi.org/10.1016/j.est.2023.108126
  • Fathabadi, H. (2014). High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy, 70, 529–538. https://doi.org/10.1016/j.energy.2014.04.046
  • Fazzo, L., Manno, V., Iavarone, I., Minelli, G., De Santis, M., Beccaloni, E., Scaini, F., Miotto, E., Airoma, D., & Comba, P. (2023). The health impact of hazardous waste landfills and illegal dumps contaminated sites: An epidemiological study at ecological level in Italian Region. Frontiers in Public Health, 11, 996960. https://doi.org/10.3389/fpubh.2023.996960
  • Feng, X. H., Lou, Y. L., Zhang, K., Li, Z. Z., & Zhang, M. L. (2024). Optimization of liquid-cooled lithium-ion battery thermal management system under extreme temperature. Journal of Energy Storage, 99, 113214. https://doi.org/10.1016/j.est.2024.113214
  • Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060
  • Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315, 128005. https://doi.org/10.1016/j.jclepro.2021.128005
  • Fu, Z., Zhu, L., Tao, F., Si, P., & Sun, L. (2020). Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan. International Journal of Hydrogen Energy, 45(15), 8875-8886. https://doi.org/10.1016/j.ijhydene.2020.01.017
  • Gabsi, I., Saad, I., Maalej, S., & Zaghdoudi, M. C. (2024). Thermal management of Li-ion batteries in electric vehicles by nanofluid-filled loop heat pipes. Science and Technology for Energy Transition, 79, 23. https://doi.org/10.2516/stet/2024019
  • Gao, C., Sun, K., Song, K., Zhang, K., & Hou, Q. (2024). Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe. Journal of Energy Storage, 82, 110512. https://doi.org/10.1016/j.est.2024.110512
  • Gao, L., Selman, J. R., & Nash, P. (2023). Materials and wetting issues in molten carbonate fuel cell technology: a review. Journal of Materials Science, 58(41), 15936-15972. https://doi.org/10.1007/s10853-023-08958-7
  • Gao, Y., Pan, Z., Sun, J., Liu, Z., & Wang, J. (2022). High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Letters, 14(1), 94. https://doi.org/10.1007/s40820-022-00844-2
  • García, A., & Monsalve-Serrano, J. (2019). Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering, 1, 100001. https://doi.org/10.1016/j.rineng.2019.01.001
  • Garg, A., Yun, L., Gao, L., & Putungan, D. B. (2020). Development of recycling strategy for large stacked systems: Experimental and machine learning approach to form reuse battery packs for secondary applications. Journal of Cleaner Production, 275, 124152. https://doi.org/10.1016/j.jclepro.2020.124152
  • Ghafari, A., Bayat, V., Akbari, S., & Yeklangi, A. G. (2023). Current and future prospects of Li-ion batteries: a review. NanoScience Technology, 8, 24-42.
  • Gharehghani, A., Gholami, J., Shamsizadeh, P., & Mehranfar, S. (2022). Effect analysis on performance improvement of battery thermal management in cold weather. Journal of Energy Storage, 45, 103728. https://doi.org/10.1016/j.est.2021.103728
  • Gharehghani, A., Rabiei, M., Mehranfar, S., Saeedipour, S., Andwari, A. M., García, A., & Reche, C. M. (2024). Progress in battery thermal management systems technologies for electric vehicles. Renewable and Sustainable Energy Reviews, 202, 114654. https://doi.org/10.1016/j.rser.2024.114654
  • Golmohammadzadeh, R., Faraji, F., Jong, B., Pozo-Gonzalo, C., & Banerjee, P. C. (2022). Current challenges and future opportunities toward recycling of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 159, 112202. https://doi.org/10.1016/j.rser.2022.112202
  • Gou, J., & Liu, W. (2019). Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle. Applied Thermal Engineering, 152, 362–369. https://doi.org/10.1016/j.applthermaleng.2019.02.034
  • Gu, W. B., & Wang, C. Y. (2000). Thermal-Electrochemical modeling of battery systems. Journal of the Electrochemical Society, 147(8), 2910. https://doi.org/10.1149/1.1393625
  • Guo, B., Zhao, L., Zhou, J., Sun, X., & Yang, Z. (2024). Experimental investigation on the R1234yf air conditioning system with a battery cooling loop under realistic conditions of electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(7), 1913-1930. https://doi.org/10.1177/09544070231156953
  • Gupta, A. K., Landge, B. A., & Seth, B. (2009). Development of a parallel hybrid electric vehicle (No. 2009-28-0045). SAE Technical Paper.
  • Hadi, M. W., Putra, N., Trisnadewi, T., Sukarno, R., Fathoni, A. M., & Bhaskara, N. A. (2025). Innovative thermal management system for electric vehicle batteries: phase change material, heat pipe and heat sink box integration. Heat Transfer Engineering, 46(6), 503-513. https://doi.org/10.1080/01457632.2024.2325275
  • Hallaj, S. A., Maleki, H., Hong, J., & Selman, J. (1999). Thermal modeling and design considerations of lithium-ion batteries. Journal of Power Sources, 83(1–2), 1–8. https://doi.org/10.1016/S0378-7753(99)00178-0
  • Hamdan, A., Daudu, C. D., Fabuyide, A., Etukudoh, E. A., & Sonko, S. (2024). Next-generation batteries and US energy storage: A comprehensive review: Scrutinizing advancements in battery technology, their role in renewable energy, and grid stability. World Journal of Advanced Research and Reviews, 21(1), 1984-1998. https://doi.org/10.30574/wjarr.2024.21.1.0256
  • Han, J. Y., & Jung, S. (2022). Thermal stability and the effect of water on hydrogen fluoride generation in lithium-ion battery electrolytes containing LiPF6. Batteries, 8(7), 61. https://doi.org/10.3390/batteries8070061
  • Hannan, M. A., Lipu, M. H., Hussain, A., & Mohamed, A. (2017). A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renewable and Sustainable Energy Reviews, 78, 834-854. https://doi.org/10.1016/j.rser.2017.05.001
  • Harlow, J. E., Ma, L., Li, J., Logan, E., Liu, Y., Zhang, N., Ma, L., Glazier, S. L., Cormier, M. M. E., Genovese, M., Buteau, S., Cameron, A., & Dahn, J. R. (2019). A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. Journal of The Electrochemical Society, 166(13), A3031-A3044. https://doi.org/10.1149/2.0981913jes
  • Hasselwander, S., Meyer, M., & Österle, I. (2023). Techno-economic analysis of different battery cell chemistries for the passenger vehicle market. Batteries, 9(7), 379. https://doi.org/10.3390/batteries9070379
  • Hawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17(1), 53-64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
  • He, R., Song, K., Wu, X., Zhang, Q., Zhang, K., Su, M., & Hou, Q. (2025). Effectiveness analysis of novel battery thermal management systems combining phase change material and air-cooled technologies. Applied Thermal Engineering, 264, 125499. https://doi.org/10.1016/j.applthermaleng.2025.125499
  • He, Y., Yuan, X., Zhang, G., Wang, H., Zhang, T., Xie, W., & Li, L. (2021). A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Science of The Total Environment, 766, 142382. https://doi.org/10.1016/j.scitotenv.2020.142382
  • He, Z., Li, R., Yang, L., Mikulčić, H., Wang, J., & Čuček, L. (2024). Performance analysis of a battery thermal management system based on phase change materials with micro heat pipe arrays. Energy conversion and management, 311, 118506. https://doi.org/10.1016/j.enconman.2024.118506
  • Hendrayanto, P. A., Fathoni, A. M., Aliefiansyah, M. S., & Putra, N. (2024). Experimental study on Start-Up and heat transfer characteristics in loop heat pipes with dual heat sources for battery thermal management system. Thermal Science and Engineering Progress, 55, 102980. https://doi.org/10.1016/j.tsep.2024.102980
  • Hesse, H. C., Schimpe, M., Kucevic, D., & Jossen, A. (2017). Lithium-ion battery storage for the grid—A review of stationary battery storage system design tailored for applications in modern power grids. Energies, 10(12), 2107. https://doi.org/10.3390/en10122107
  • Hong, S. H., Jang, D. S., Park, S., Yun, S., & Kim, Y. (2020). Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles. Applied Thermal Engineering, 173, 115213. https://doi.org/10.1016/j.applthermaleng.2020.115213
  • Hossain, R., Sarkar, M., & Sahajwalla, V. (2023). Technological options and design evolution for recycling spent lithium‐ion batteries: impact, challenges, and opportunities. Wiley Interdisciplinary Reviews: Energy and Environment, 12(5), e481. https://doi.org/10.1002/wene.481
  • Hosseinzadeh E, Barai A, Marco J, Jennings P. (2017). A comparative study on different cooling strategies for lithium-ion battery cells. In: Proceedings of the European battery hybrid and fuel cell electric vehicle congress, 1-9. Geneva, Switzerland.
  • Hou, S., Yin, H., Xu, F., Benjamín, P., Gao, J., & Chen, H. (2023). Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles. Energy, 266, 126466. https://doi.org/10.1016/j.energy.2022.126466
  • Hu, X., Zou, Y., & Yang, Y. (2016). Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy, 111, 971-980. https://doi.org/10.1016/j.energy.2016.06.037
  • Hua, Y., Liu, X., Zhou, S., Huang, Y., Ling, H., & Yang, S. (2021). Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resources, Conservation and Recycling, 168, 105249. https://doi.org/10.1016/j.resconrec.2020.105249
  • Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C., & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478, 228753. https://doi.org/10.1016/j.jpowsour.2020.228753
  • Hwang, F. S., Confrey, T., Reidy, C., Picovici, D., Callaghan, D., Culliton, D., & Nolan, C. (2024). Review of battery thermal management systems in electric vehicles. Renewable and Sustainable Energy Reviews, 192, 114171. https://doi.org/10.1016/j.rser.2023.114171
  • Ianniciello, L., Biwolé, P. H., & Achard, P. (2018). Electric vehicles batteries thermal management systems employing phase change materials. Journal of Power Sources, 378, 383-403. https://doi.org/10.1016/j.jpowsour.2017.12.071
  • Ismail, S. N. S., & Latifah, A. M. (2013). The challenge of future landfill: A case study of Malaysia. Journal Toxicology and Environmental Health Sciences (JTEHS), 5(3), 2400-2407. https://doi.org/10.5897/JTEHS12.20
  • Jarrett, A., & Kim, I. Y. (2014). Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. Journal of Power Sources, 245, 644–655. https://doi.org/10.1016/j.jpowsour.2013.06.114
  • Jhariya, M., Dewangan, A. K., Moinuddin, S. Q., Kumar, S., Ahmad, A., & Yadav, A. K. (2024). Research progress on efficient battery thermal management system (BTMs) for electric vehicles using composite phase change materials with liquid cooling and nanoadditives. Journal of Thermal Analysis and Calorimetry, 149(23), 13653-13680. https://doi.org/10.1007/s10973-024-13752-x
  • Jian, B., & Wang, H. (2022). Hardware-in-the-loop real-time validation of fuel cell electric vehicle power system based on multi-stack fuel cell construction. Journal of Cleaner Production, 331, 129807. https://doi.org/10.1016/j.jclepro.2021.129807
  • Jiang, R., Wu, C., Feng, W., You, K., Liu, J., Zhou, G., Liu, L., & Cheng, H. M. (2025). Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China. Scientific Reports, 15(1), 2267. https://doi.org/10.1038/s41598-025-86250-1
  • Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., Tian, S., & Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535. https://doi.org/10.1016/j.jclepro.2022.130535
  • Joshi, A., Sharma, R., & Baral, B. (2022). Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. Journal of Cleaner Production, 379, 134407. https://doi.org/10.1016/j.jclepro.2022.134407
  • Joshi, T. (2016, January 13). Capacity and power fade in lithium-ion batteries.
  • Jouin, M., Bressel, M., Morando, S., Gouriveau, R., Hissel, D., Péra, M. C., Zerhouni, N., Jemei, S., Hilairet, M., & Bouamama, B. O. (2016). Estimating the end-of-life of PEM fuel cells: Guidelines and metrics. Applied Energy, 177, 87-97. https://doi.org/10.1016/j.apenergy.2016.05.076
  • Jung, W., Jeong, J., Kim, J., & Chang, D. (2020). Optimization of hybrid off-grid system consisting of renewables and Li-ion batteries. Journal of Power Sources, 451, 227754. https://doi.org/10.1016/j.jpowsour.2020.227754
  • Kaarlela, T., Villagrossi, E., Rastegarpanah, A., San-Miguel-Tello, A., & Pitkäaho, T. (2024). Robotised disassembly of electric vehicle batteries: A systematic literature review. Journal of Manufacturing Systems, 74, 901-921. https://doi.org/10.1016/j.jmsy.2024.05.013
  • Kalampoka, E. (2023). New generation of batteries: Metal-air batteries (Doctoral dissertation, University of Thessaly).
  • Kang, Y., Hu, Y., Zhang, C., Yang, K., & Zhang, Q. (2024). Experimental study on charge amount of low-GWP refrigerants in electric vehicle thermal management system. Applied Thermal Engineering, 256, 124059. https://doi.org/10.1016/j.applthermaleng.2024.124059
  • Kannan, D. R. R. (2020). The Effects of Pulse Charging on Commercial Lithium-Ion Batteries (Doctoral dissertation, Florida Agricultural and Mechanical University).
  • Kazemzadeh, E., Koengkan, M., & Fuinhas, J. A. (2022). Effect of battery-electric and plug-in hybrid electric vehicles on PM2.5 emissions in 29 European countries. Sustainability, 14(4), 2188. https://doi.org/10.3390/su14042188
  • Kelly, K. J., Mihalic, M., Zolot, M. (2002). Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing. Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576), 247-252. https://doi.org/10.1109/BCAA.2002.986408
  • Kempton, W., & Tomić, J. (2005). Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144(1), 280-294. https://doi.org/10.1016/j.jpowsour.2004.12.022
  • Khosravi, N., Dowlatabadi, M., Abdelghany, M. B., Tostado-Véliz, M., & Jurado, F. (2024). Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models. Applied Energy, 356, 122364. https://doi.org/10.1016/j.apenergy.2023.122364
  • Kim, H., Hong, J., Choi, H., Oh, J., & Lee, H. (2024). Development of PCM-based shell-and-tube thermal energy storages for efficient EV thermal management. International Communications in Heat and Mass Transfer, 154, 107401. https://doi.org/10.1016/j.icheatmasstransfer.2024.107401
  • Kim, J., Oh, J., & Lee, H. (2019). Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 149, 192-212. https://doi.org/10.1016/j.applthermaleng.2018.12.020
  • King, S., & Boxall, N. J. (2019). Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production, 215, 1279-1287. https://doi.org/10.1016/j.jclepro.2019.01.178
  • Krieger, E. M., Cannarella, J., & Arnold, C. B. (2013). A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications. Energy, 60, 492-500. https://doi.org/10.1016/j.energy.2013.08.029
  • Krishna, G. (2021). Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Transportation Research Interdisciplinary Perspectives, 10, 100364. https://doi.org/10.1016/j.trip.2021.100364
  • Kumar, M. S., & Revankar, S. T. (2017). Development scheme and key technology of an electric vehicle: An overview. Renewable and Sustainable Energy Reviews, 70, 1266-1285. https://doi.org/10.1016/j.rser.2016.12.027
  • Kumar, R., & Goel, V. (2024). Experimental study on the thermal performance of lithium-ion battery cell using a heat pipe-assisted cooling system for electric vehicles. Experimental Heat Transfer, 694-716. https://doi.org/10.1080/08916152.2024.2392812
  • Kusano, R., & Kusano, Y. (2024). Applications of plasma technologies in recycling processes. Materials, 17(7), 1687. https://doi.org/10.3390/ma17071687
  • Ladrech, F. (2010). Battery thermal management for HEV & EV–Technology overview. Proceedings of the Automotive Summit, Brussels, Belgium, 10.
  • Lajunen, A. (2014). Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transportation Research Part C: Emerging Technologies, 38, 1-15. https://doi.org/10.1016/j.trc.2013.10.008
  • Lan, T., Jermsittiparsert, K., T. Alrashood, S., Rezaei, M., Al-Ghussain, L., & A. Mohamed, M. (2021). An advanced machine learning based energy management of renewable microgrids considering hybrid electric vehicles’ charging demand. Energies, 14(3), 569. https://doi.org/10.3390/en14030569
  • Landmann, D. A. (2022). Design guidelines for next-generation sodium-nickel-chloride batteries (No. 9537). EPFL.
  • Lanzarotto, D., Marchesoni, M., Passalacqua, M., Prato, A. P., & Repetto, M. (2018). Overview of different hybrid vehicle architectures. IFAC-PapersOnLine, 51(9), 218-222. https://doi.org/10.1016/j.ifacol.2018.07.036
  • Leal, V. M., Ribeiro, J. S., Coelho, E. L. D., & Freitas, M. B. J. G. (2023). Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 79, 118-134. https://doi.org/10.1016/j.jechem.2022.08.005
  • Lee, J., Monrrabal, G., Sarma, M., Lappan, T., Hofstetter, Y. J., Trtik, P., Landgraf, S., Ding, W., Kumar, S., Vaynzof, Y., Weber, N., & Weier, T. (2023). Membrane‐Free Alkali Metal‐Iodide Battery with a Molten Salt. Energy Technology, 11(7), 2300051. https://doi.org/10.1002/ente.202300051
  • Li, C., Liu, X., Wang, C., Ye, L., Wu, T., Liang, Z., Zhang, Z., Zeng, Y., & Li, K. (2024). Electrochemical-thermal behaviors of retired power lithium-ion batteries during high-temperature and overcharge/over-discharge cycles. Case Studies in Thermal Engineering, 61, 104898. https://doi.org/10.1016/j.csite.2024.104898
  • Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018). The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochemical Energy Reviews, 1, 461-482. https://doi.org/10.1007/s41918-018-0012-1
  • Li, P., Xia, X., & Guo, J. (2022). A review of the life cycle carbon footprint of electric vehicle batteries. Separation and Purification Technology, 296, 121389. https://doi.org/10.1016/j.seppur.2022.121389
  • Li, Y., & Taghizadeh-Hesary, F. (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703. https://doi.org/10.1016/j.enpol.2021.112703
  • Li, Y., Bian, X., Li, H., Yu, H., & Tao, H. (2025). Thermal management of electric bus batteries simulation study using heat pipes and phase change materials under varying passenger capacity and actual driving routes. Applied Thermal Engineering, 273, 126402. https://doi.org/10.1016/j.applthermaleng.2025.126402
  • Lima, M. C. C., Pontes, L. P., Vasconcelos, A. S. M., de Araujo Silva Junior, W., & Wu, K. (2022). Economic aspects for recycling of used lithium-ion batteries from electric vehicles. Energies, 15(6), 2203. https://doi.org/10.3390/en15062203
  • Liu, G., Ouyang, M., Lu, L., Li, J., & Han, X. (2014). Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. Journal of Thermal Analysis and Calorimetry, 116(2), 1001–1010. https://doi.org/10.1007/s10973-013-3599-9
  • Liu, K., Li, K., Peng, Q., & Zhang, C. (2019). A brief review on key technologies in the battery management system of electric vehicles. Frontiers of Mechanical Engineering, 14, 47-64. https://doi.org/10.1007/s11465-018-0516-8
  • Liu, L., Zhang, X., & Lin, X. (2022a). Recent Developments of Thermal Management Strategies for Lithium‐Ion Batteries: A State‐of‐The‐Art Review. Energy Technology, 10(6), 2101135. https://doi.org/10.1002/ente.202101135
  • Liu, P., Wang, J., Hicks-Garner, J., Sherman, E., Soukiazian, S., Verbrugge, M., Tataria, H., Musser, J., & Finamore, P. (2010). Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. Journal of the Electrochemical Society, 157(4), A499. https://doi.org/10.1149/1.3294790
  • Liu, W., Placke, T., & Chau, K. T. (2022b). Overview of batteries and battery management for electric vehicles. Energy Reports, 8, 4058-4084. https://doi.org/10.1016/j.egyr.2022.03.016
  • Loganathan, M. K., Mishra, B., Tan, C. M., Kongsvik, T., & Rai, R. N. (2021). Multi-Criteria decision making (MCDM) for the selection of Li-Ion batteries used in electric vehicles (EVs). Materials Today: Proceedings, 41, 1073-1077. https://doi.org/10.1016/j.matpr.2020.07.179
  • Łukasz, B., Rybakowska, I., Krakowiak, A., Gregorczyk, M., & Waldman, W. (2023). Lithium batteries safety, wider perspective. International Journal of Occupational Medicine and Environmental Health, 36(1), 3-20. https://doi.org/10.13075/ijomeh.1896.01995
  • Lund, H., & Kempton, W. (2008). Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy, 36(9), 3578-3587. https://doi.org/10.1016/j.enpol.2008.06.007
  • Luo, D., Wu, Z., Zhang, Z., Chen, H., Geng, L., Ji, Z., Zhang, W., & Zhang, P. (2025). Transient thermal analysis of a thermoelectric-based battery thermal management system at high temperatures. Energy, 318, 134833. https://doi.org/10.1016/j.energy.2025.134833
  • Luo, M., Zhang, Y., Wang, Z., Niu, Y., Lu, B., Zhu, J., Zhang, J., & Wang, K. (2024). Thermal performance enhancement with snowflake fins and liquid cooling in PCM-based battery thermal management system at high ambient temperature and high discharge rate. Journal of Energy Storage, 90, 111754. https://doi.org/10.1016/j.est.2024.111754
  • Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081
  • Lutsey, N. (2015). Transition to a global zero-emission vehicle fleet: A collaborative agenda for governments. The International Council on Clean Transportation. https://www.theicct.org/sites/default/files/publications/ICCT_GlobalZEVAlliance_201509.pdf
  • Lutsey, N., & Nicholas, M. (2019). Update on electric vehicle costs in the United States through 2030. International Council on Clean Transportation (ICCT), Washington, DC, USA
  • Lv, L., Zhou, S., Liu, C., Sun, Y., Zhang, J., Bu, C., Meng, J., & Huang, Y. (2024). Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions. Molecules, 29(13), 3161. https://doi.org/10.3390/molecules29133161
  • Lyu, Y., Siddique, A. R. M., Majid, S. H., Biglarbegian, M., Gadsden, S. A., & Mahmud, S. (2019). Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports, 5, 822-827. https://doi.org/10.1016/j.egyr.2019.06.016
  • Maeda, K., Yae, S., Fukumuro, N., Iimura, K., & Matsumoto, A. (2021). Development of a liquid immersion-type nickel-metal hydride battery under high-pressure. Journal of The Electrochemical Society, 168(12), 120511. https://doi.org/10.1149/1945-7111/ac3c22.
  • Maggetto, G., & Van Mierlo, J. (2000). Electric and electric hybrid vehicle technology: a survey. In Proceedings of the IEE Seminar Electric, Hybrid and Fuel Cell Vehicles (Ref. No. 2000/050), Durham, UK. https://doi.org/10.1049/ic:20000261
  • Maity, S. K. (2015). Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 43, 1446–1466. https://doi.org/10.1016/j.rser.2014.08.075
  • Mali, V., Saxena, R., Kumar, K., Kalam, A., & Tripathi, B. (2021). Review on battery thermal management systems for energy-efficient electric vehicles. Renewable and Sustainable Energy Reviews, 151, 111611. https://doi.org/10.1016/j.rser.2021.111611
  • Mandev, A., Plötz, P., & Sprei, F. (2021). The effect of plug-in hybrid electric vehicle charging on fuel consumption and tail-pipe emissions. Environmental Research Communications, 3(8), 081001. https://doi.org/10.1088/2515-7620/ac1498
  • Mane, N. S., Kodancha, P., Hemadri, V., & Tripathi, S. (2024). Investigation on Cooling Performance of Composite PCM and Graphite Fin for Battery Thermal Management System of Electric Vehicles. Energy Storage, 6(6), e70024. https://doi.org/10.1002/est2.70024
  • Manfo, T. A. (2023). A Comprehensive Analysis of Material Revolution to Evolution in Lithium-ion Battery Technology. Turkish Journal of Materials, 8(1), 1-13.
  • Mathew, G., Teoh, W. H., Rahman, W. M. A. W. A., & Abdullah, N. (2023). Survey on actions and willingness towards the disposal, collection, and recycling of spent lithium-ion batteries in Malaysia. Journal of Cleaner Production, 421, 138394. https://doi.org/10.1016/j.jclepro.2023.138394
  • Mathur, N., Deng, S., Singh, S., Yih, Y., & Sutherland, J. W. (2019). Evaluating the environmental benefits of implementing Industrial Symbiosis to used electric vehicle batteries. Procedia CIRP, 80, 661-666. https://doi.org/10.1016/j.procir.2019.01.074
  • Meegoda, J., Charbel, G., & Watts, D. (2024). Sustainable Management of Rechargeable Batteries Used in Electric Vehicles. Batteries, 10(5), 167. https://doi.org/10.3390/batteries10050167
  • Meydani, A., Shahinzadeh, H., Nafisi, H., & Gharehpetian, G. B. (2024, April). Optimum Energy Management Strategies for the Hybrid Sources-Powered Electric Vehicle Settings. In 2024 28th International Electrical Power Distribution Conference (EPDC), 1-19.
  • Min, D., Song, Z., Chen, H., Wang, T., & Zhang, T. (2022). Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition. Applied Energy, 306, 118036. https://doi.org/10.1016/j.apenergy.2021.118036
  • Mitsubishi 2024 Outlander Plug-In Hybrid, Available online: https://www.mitsubishicars.com/cars-and-suvs/outlander-phev (Accessed on 30 June 2024).
  • Mizushima, K. J. P. C., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  • Moeini-Aghtaie, M., Dehghanian, P., & Davoudi, M. (2022). Energy management of plug-in hybrid electric vehicles in renewable-based energy hubs. Sustainable Energy, Grids and Networks, 32, 100932. https://doi.org/10.1016/j.segan.2022.100932
  • Mourato, S., Saynor, B., & Hart, D. (2004). Greening London's black cabs: a study of driver's preferences for fuel cell taxis. Energy Policy, 32(5), 685-695. https://doi.org/10.1016/S0301-4215(02)00335-X
  • Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099-6121. https://doi.org/10.1039/D1EE00691F
  • Muslimin, S., Nawawi, Z., Suprapto, B. Y., & Dewi, T. (2022, February). Comparison of batteries used in electrical vehicles. In 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021), 421-425. https://doi.org/10.2991/ahe.k.220205.074
  • Mustafa, J., Alqaed, S., & Sharifpur, M. (2022). PCM embedded radiant chilled ceiling as a solution to shift the cooling peak load-focusing on solidification process acceleration. Journal of Building Engineering, 57, 104894. https://doi.org/10.1016/j.jobe.2022.104894
  • Muthukumar, M., Rengarajan, N., Velliyangiri, B., Omprakas, M. A., Rohit, C. B., & Raja, U. K. (2021). The development of fuel cell electric vehicles–A review. Materials Today: Proceedings, 45, 1181-1187. https://doi.org/10.1016/j.matpr.2020.03.679
  • Najafi, A., Jadidi, A. M., & Rashidi, S. (2025). Experimental study on a thermal management system with air and thermoelectric module designed for lithium-ion battery. Journal of Energy Storage, 111, 115403. https://doi.org/10.1016/j.est.2025.115403
  • Nandan, G. (2019). Performance of Solar Photovoltaic panel using Forced convection of water-based CuO nanofluid: An Understanding. IOP Conference Series Materials Science and Engineering, 691(1), 012088. https://doi.org/10.1088/1757-899X/691/1/012088
  • Neubauer, J., & Wood, E. (2014). The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. Journal of Power Sources, 257, 12-20. https://doi.org/10.1016/j.jpowsour.2014.01.075
  • Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  • Noudeng, V., Quan, N. V., & Xuan, T. D. (2022). A future perspective on waste management of lithium-ion batteries for electric vehicles in Lao PDR: current status and challenges. International Journal of Environmental Research and Public Health, 19(23), 16169. https://doi.org/10.3390/ijerph192316169
  • Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5(4), 329-332. https://doi.org/10.1038/nclimate2564
  • O’Brien, S., & Nicholson, I. (2024). The Living Battery: The Bioinspired Redesign of Lithium-ion Batteries. International Journal of High School Research, 30-37. https://doi.org/10.36838/v6i4.6
  • Olabi, A. G., Abdelkareem, M. A., Wilberforce, T., Alkhalidi, A., Salameh, T., Abo-Khalil, A. G., Hassan, M. M., & Sayed, E. T. (2022). Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). International Journal of Thermofluids, 16, 100212. https://doi.org/10.1016/j.ijft.2022.100212
  • Onwuchekwa, C. N., & Kwasinski, A. (2011, March). Analysis of boundary control for a multiple-input DC-DC converter topology. In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 1232-1237. https://doi.org/10.1109/APEC.2011.5744750
  • Or, T., Gourley, S. W., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2(1), 6-43. https://doi.org/10.1002/cey2.29
  • Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205. https://doi.org/10.1016/j.rser.2015.12.363
  • Pakrouh, R., Hosseini, M. J., Ranjbar, A. A., & Rahimi, M. (2023). A novel liquid-based battery thermal management system coupling with phase change material and thermoelectric cooling. Journal of Energy Storage, 64, 107098. https://doi.org/10.1016/j.est.2023.107098
  • Panchal, S., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2016). Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery. International Journal of Thermal Sciences, 99, 204–212. https://doi.org/10.1016/j.ijthermalsci.2015.08.016
  • Panchal, S., Pierre, V., Cancian, M., Gross, O., Estefanous, F., & Badawy, T. (2023). Development and validation of cycle and calendar aging model for 144Ah NMC/graphite battery at multi temperatures, DODs, and C-rates (No. 2023-01-0503). SAE Technical Paper.
  • Paneerselvam, P., SK, N., Suyamburajan, V., Murugaiyan, T., Shekhawat, K. S., & Rengasamy, G. (2024). A review on recent progress in battery thermal management system in electric vehicle application. Materials Today. https://doi.org/10.1016/j.matpr.2024.04.094
  • Panmuang, P., Photong, C., & Soemphol, C. (2024). Experimental investigation of batteries thermal management system using water cooling and thermoelectric cooling techniques. International Journal of Power Electronics and Drive Systems (IJPEDS), 15(1), 201-212. https://doi.org/10.11591/ijpeds.v15.i1.pp201-212
  • Paoli, L., & Gül, T. (2022). Electric cars fend off supply challenges to more than double global sales. International Energy Agency. https://policycommons.net/artifacts/2232154/electric-cars-fend-off-supply%20challenges-to-more-than-double-global-sales/2989582/.
  • Park, S., & Jung, D. (2013). Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. Journal of Power Sources, 227, 191–198. https://doi.org/10.1016/j.jpowsour.2012.11.039
  • Peng, M., Liu, L., & Jiang, C. (2012). A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems. Renewable and Sustainable Energy Reviews, 16(3), 1508-1515. https://doi.org/10.1016/j.rser.2011.12.009
  • Peng, P., & Jiang, F. (2016). Thermal safety of lithium-ion batteries with various cathode materials: A numerical study. International Journal of Heat and Mass Transfer, 103, 1008–1016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088
  • Persis, P. K., Subramanian, P., Aalam, S., Kalaiselvi, K., Jeyalaksshmi, S., & Sonawane, P. R. (2024, June). A horizontal analysis on second life potentials of lithium ion batteries with its challenges involved. In AIP Conference Proceedings, 3122(1), 090011. https://doi.org/10.1063/5.0216030
  • Pesaran, A. A. (2002). Battery thermal management in EVs and HEVs: Issues and solutions. Battery Man, 43(5), 34-49.
  • Pillot, C. (2017, March). The rechargeable battery market and main trends 2016–2025. Proceedings of the 33rd Annual International Battery Seminar & Exhibit, Fort Lauderdale, FL, USA, 20, 1-45.
  • Plötz, P., Funke, S. A., Jochem, P., & Wietschel, M. (2017). CO2 mitigation potential of plug-in hybrid electric vehicles larger than expected. Scientific Reports, 7(1), 16493. https://doi.org/10.1038/s41598-017-16684-9
  • Plötz, P., Moll, C., Bieker, G., Mock, P., & Li, Y. (2020). Real-world usage of plug-in hybrid electric vehicles. Communications, 49(30), 847129.
  • Poullikkas, A. (2015). Sustainable options for electric vehicle technologies. Renewable and Sustainable Energy Reviews, 41, 1277-1287. https://doi.org/10.1016/j.rser.2014.09.016
  • PowerTech Advanced Energy Storage Systems. Lithium-ion battery advantages. 2020. https://www.powertechsystems.eu/home/tech-corner/lithium-ion-battery-advantages/ (Accessed on 04 August 2024).
  • Pramuanjaroenkij, A., & Kakaç, S. (2023). The fuel cell electric vehicles: The highlight review. International Journal of Hydrogen Energy, 48(25), 9401-9425. https://doi.org/10.1016/j.ijhydene.2022.11.103
  • Rahmani, A., Dibaj, M., & Akrami, M. (2024). A study on a battery pack in a hybrid battery thermal management system integrating with thermoelectric cooling. Case Studies in Thermal Engineering, 61, 104856. https://doi.org/10.1016/j.csite.2024.104856
  • Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y., & Heidrich, O. (2022). Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation and Recycling, 180, 106144. https://doi.org/10.1016/j.resconrec.2021.106144
  • Rallabandi, S., & Selvaraj, R. V. I. (2024). Advancements in battery cooling Techniques for Enhanced performance and Safety in Electric Vehicles: A Comprehensive review. Energy Technology, 12(5), 2301404. https://doi.org/10.1002/ente.202301404
  • Ramadass, P. H. B. W. R. P. B., Haran, B., White, R., & Popov, B. N. (2002). Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of Power Sources, 112(2), 606-613. https://doi.org/10.1016/S0378-7753(02)00474-3
  • Ramar, A., & Wang, F. M. (2020). Emerging anode and cathode functional materials for lithium-ion batteries. In Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, 465-491. https://doi.org/10.1016/B978-0-12-819552-9.00015-4
  • Rangarajan, S. S., Sunddararaj, S. P., Sudhakar, A. V. V., Shiva, C. K., Subramaniam, U., Collins, E. R., & Senjyu, T. (2022). Lithium-ion batteries—The crux of electric vehicles with opportunities and challenges. Clean Technologies, 4(4), 908-930. https://doi.org/10.3390/cleantechnol4040056
  • Rani, M. F. H., Razlan, Z. M., Bakar, S. A., Desa, H., Wan, W. K., Ibrahim, I., Kamarrudin, N. S., & Bin-Abdun, N. A. (2017, September). Analysis of hybrid interface cooling system using air ventilation and nanofluid. In AIP Conference Proceedings, 1885(1), 020072. https://doi.org/10.1063/1.5002266
  • Rao, Z., & Wang, S. (2011). A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9), 4554–4571. https://doi.org/10.1016/j.rser.2011.07.096
  • Raslavičius, L., Azzopardi, B., Keršys, A., Starevičius, M., Bazaras, Ž., & Makaras, R. (2015). Electric vehicles challenges and opportunities: Lithuanian review. Renewable and Sustainable Energy Reviews, 42, 786-800. https://doi.org/10.1016/j.rser.2014.10.076
  • Rauf, M., Kumar, L., Zulkifli, S. A., & Jamil, A. (2024). Aspects of artificial intelligence in future electric vehicle technology for sustainable environmental impact. Environmental Challenges, 14, 100854. https://doi.org/10.1016/j.envc.2024.100854
  • Ruan, H., Barreras, J. V., Engstrom, T., Merla, Y., Millar, R., & Wu, B. (2023). Lithium-ion battery lifetime extension: A review of derating methods. Journal of Power Sources, 563, 232805. https://doi.org/10.1016/j.jpowsour.2023.232805
  • Sabbah, R., Kizilel, R., Selman, J., & Al-Hallaj, S. (2008). Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. Journal of Power Sources, 182(2), 630–638. https://doi.org/10.1016/j.jpowsour.2008.03.082
  • Sadeh, M., Tousi, M., Sarchami, A., Sanaie, R., Kiani, M., Ashjaee, M., & Houshfar, E. (2024). A novel hybrid liquid-cooled battery thermal management system for electric vehicles in highway fuel-economy condition. Journal of Energy Storage, 86, 111195. https://doi.org/10.1016/j.est.2024.111195
  • Sajedi, S. P., & Molaeimanesh, G. R. (2024). Employing extended surfaces for a hybrid battery thermal management system comprising PCM and refrigerated cooling air: An experimental investigation. Applied Thermal Engineering, 248, 123200. https://doi.org/10.1016/j.applthermaleng.2024.123200
  • Saju, C., Michael, P. A., & Jarin, T. (2022). Modeling and control of a hybrid electric vehicle to optimize system performance for fuel efficiency. Sustainable Energy Technologies and Assessments, 52, 102087. https://doi.org/10.1016/j.seta.2022.102087
  • Samanta, A., Chetri, C., Anekal, L., & Williamson, S. (2024). Vehicle electrification and energy storage systems in modern power grids. In Vehicle Electrification in Modern Power Grids, 249-278. https://doi.org/10.1016/B978-0-443-13969-7.00009-6
  • Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A review on electric vehicles: Technologies and challenges. Smart Cities, 4(1), 372-404. https://doi.org/10.3390/smartcities4010022
  • Sannagowdar, A. D., & Nataraj, S. K. (2024). Environmental Impact, Safety Aspects, and Recycling Technologies of Lithium‐Ion Batteries. Nanostructured Materials for Energy Storage, 2, 763-792. https://doi.org/10.1002/9783527838851.ch21
  • Satriadi, T., Winarko, R., Chaerun, S. K., Minwal, W. P., & Mubarok, M. Z. (2024). Recycling of spent electric vehicle (EV) batteries through the biohydrometallurgy process. E3S Web of Conferences, 543, 02008. https://doi.org/10.1051/e3sconf/202454302008
  • Saxon, A., Yang, C., Santhanagopalan, S., Keyser, M., & Colclasure, A. (2024). Li-Ion Battery Thermal Characterization for Thermal Management Design. Batteries, 10(4), 136. https://doi.org/10.3390/batteries10040136
  • Scrosati, B. (2000). Recent advances in lithium ion battery materials. Electrochimica Acta, 45(15-16), 2461-2466. https://doi.org/10.1016/S0013-4686(00)00333-9
  • Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  • Sen, S., Sodipo, G., & Butt, A. (2024). Life Cycle Analysis and Sustainability-Based Refinement of a Formula Student Vehicle's Energy Storage System. Available at SSRN 4925628.
  • Shahjalal, M., Shams, T., Islam, M. E., Alam, W., Modak, M., Hossain, S. B., Ramadesigan, V., Ahmed, M. R., Ahmed, H., & Iqbal, A. (2021). A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. Journal of Energy Storage, 39, 102518. https://doi.org/10.1016/j.est.2021.102518
  • Shahzad, K., & Cheema, I. I. (2024). Low-carbon technologies in automotive industry and decarbonizing transport. Journal of Power Sources, 591, 233888. https://doi.org/10.1016/j.jpowsour.2023.233888
  • Shamsuddin, M., & Sohn, H. Y. (2024). Pyrometallurgical Principles. Treatise on Process Metallurgy, 459-474. https://doi.org/10.1016/B978-0-323-85373-6.00031-4
  • Shareef, H., Islam, M. M., & Mohamed, A. (2016). A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles. Renewable and Sustainable Energy Reviews, 64, 403-420. https://doi.org/10.1016/j.rser.2016.06.033
  • Sharifi, N., Shabgard, H., Millard, C., & Etufugh, U. (2025). Hybrid Heat Pipe-PCM-Assisted Thermal Management for Lithium-Ion Batteries. Batteries, 11(2), 64. https://doi.org/10.3390/batteries11020064
  • Shen, X., Cai, T., He, C., Yang, Y., & Chen, M. (2023). Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58, 106356. https://doi.org/10.1016/j.est.2022.106356
  • Shim, J., Kostecki, R., Richardson, T., Song, X., & Striebel, K. A. (2002). Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. Journal of Power Sources, 112(1), 222–230. https://doi.org/10.1016/S0378-7753(02)00363-4
  • Singh, I. (2024). Braking Systems in Electric Motors. Pencil. Sivertsson, M., & Eriksson, L. (2017). Optimal powertrain lock-up transients for a heavy duty series hybrid electric vehicle. IFAC-PapersOnLine, 50(1), 7842-7848. https://doi.org/10.1016/j.ifacol.2017.08.1062
  • Skeete, J. P., Wells, P., Dong, X., Heidrich, O., & Harper, G. (2020). Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Research & Social Science, 69, 101581. https://doi.org/10.1016/j.erss.2020.101581
  • Smith, K., & Wang, C. Y. (2006). Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. Journal of Power Sources, 160(1), 662–673. https://doi.org/10.1016/j.jpowsour.2006.01.038
  • Sobianowska-Turek, A., Urbańska, W., Janicka, A., Zawiślak, M., & Matla, J. (2021). The necessity of recycling of waste li-ion batteries used in electric vehicles as objects posing a threat to human health and the environment. Recycling, 6(2), 35. https://doi.org/10.3390/recycling6020035
  • Soleymani, P., Saffarifard, E., Jahanpanah, J., Babaie, M., Nourian, A., Mohebbi, R., Aakcha, Z., & Ma, Y. (2023). Enhancement of an air-cooled battery thermal management system using liquid cooling with CuO and Al2O3 nanofluids under steady-state and transient conditions. Fluids, 8(10), 261. https://doi.org/10.3390/fluids8100261
  • Sommerville, R., Shaw-Stewart, J., Goodship, V., Rowson, N., & Kendrick, E. (2020). A review of physical processes used in the safe recycling of lithium ion batteries. Sustainable Materials and Technologies, 25, e00197. https://doi.org/10.1016/j.susmat.2020.e00197
  • Song, K., He, R., Gao, C., Pea, H. J. M., He, A., Zhang, Q., Zhang, K., & An, Z. (2024). Performance of a combined battery thermal management system with dual-layer phase change materials and air cooling technologies. Applied Thermal Engineering, 254, 123865. https://doi.org/10.1016/j.applthermaleng.2024.123865
  • Steckel, T., Kendall, A., & Ambrose, H. (2021). Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems. Applied Energy, 300, 117309. https://doi.org/10.1016/j.apenergy.2021.117309
  • Subramanian, M., Solomon, J. M., Raja, V., Arputharaj, B. S., Shaik, S., Saleel, C. A., Alwetaishi, M., & Cuce, E. (2024). Experimental studies and comprehensive computational investigations on composites-based phase change material for battery thermal management systems in electric vehicles. Journal of Energy Storage, 82, 110471. https://doi.org/10.1016/j.est.2024.110471
  • Sun, S., Jin, C., He, W., Li, G., Zhu, H., & Huang, J. (2021). Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. Science of The Total Environment, 776, 145913. https://doi.org/10.1016/j.scitotenv.2021.145913
  • Suo, Y., Tang, C., Jia, Q., & Zhao, W. (2024). Influence of PCM configuration and optimization of PCM proportion on the thermal management of a prismatic battery with a combined PCM and air cooling structure. Journal of Energy Storage, 80, 110340. https://doi.org/10.1016/j.est.2023.110340
  • Sutheesh, P. M., Jose, J., Hotta, T. K., & Rohinikumar, B. (2024a). Numerical investigations on thermal performance of PCM-based lithium-ion battery thermal management system equipped with advanced honeycomb structures. International Communications in Heat and Mass Transfer, 158, 107937. https://doi.org/10.1016/j.icheatmasstransfer.2024.107937
  • Sutheesh, P. M., Nichit, R. B., & Rohinikumar, B. (2024b). Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. Journal of Energy Storage, 77, 109972. https://doi.org/10.1016/j.est.2023.109972
  • Swamy, K. A., Verma, S., & Bhattacharyya, S. (2024). Experimental and numerical investigation of nanoparticle assisted PCM-based battery thermal management system. Journal of Thermal Analysis and Calorimetry, 149(19), 11223-11237. https://doi.org/10.1007/s10973-024-13052-4
  • Symeonidou, M. M., Giama, E., & Papadopoulos, A. M. (2021). Life cycle assessment for supporting dimensioning battery storage systems in micro-grids for residential applications. Energies, 14(19), 6189. https://doi.org/10.3390/en14196189
  • Szulc, J., Okrasa, M., Nowak, A., Ryngajłło, M., Nizioł, J., Kuźniar, A., Ruman, T., & Gutarowska, B. (2024). Uncontrolled Post-Industrial Landfill—Source of Metals, Potential Toxic Compounds, Dust, and Pathogens in Environment—A Case Study. Molecules, 29(7), 1496. https://doi.org/10.3390/molecules29071496
  • Tao, Y., Rahn, C. D., Archer, L. A., & You, F. (2021). Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances, 7(45), eabi7633. https://doi.org/10.1126/sciadv.abi7633
  • Tariq, A. H., Kazmi, S. A. A., Hassan, M., Ali, S. M., & Anwar, M. (2024). Analysis of fuel cell integration with hybrid microgrid systems for clean energy: A comparative review. International Journal of Hydrogen Energy, 52, 1005-1034. https://doi.org/10.1016/j.ijhydene.2023.07.238
  • Tesla Model 3. https://www.tesla.com/tr_tr/model3 (Accessed on 10 August 2024).
  • The International Journal of Heat and Mass Transfer. (1960). Nature, 188(4748), 366.
  • Thomas, K. E., & Newman, J. (2003). Thermal modeling of porous insertion electrodes. Journal of the Electrochemical Society, 150(2), A176. https://doi.org/10.1149/1.1531194
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82-102. https://doi.org/10.1016/j.rser.2012.11.077
  • Tognan, M., Turpin, C., & Simon, P. (2019). OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible (Doctoral dissertation, LAboratoire PLasma et Conversion d'Energie; Centre interuniversitaire de recherche et d'ingenierie des matériaux).
  • Tran, D. D., Vafaeipour, M., El Baghdadi, M., Barrero, R., Van Mierlo, J., & Hegazy, O. (2020). Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies. Renewable and Sustainable Energy Reviews, 119, 109596. https://doi.org/10.1016/j.rser.2019.109596
  • Troxler, Y., Wu, B., Marinescu, M., Yufit, V., Patel, Y., Marquis, A. J., Brandon, N. P., & Offer, G. J. (2014). The effect of thermal gradients on the performance of lithium-ion batteries. Journal of Power Sources, 247, 1018–1025. https://doi.org/10.1016/j.jpowsour.2013.06.084
  • Vachhani, M., Sagar, K. R., Patel, V. M., & Mehta, H. B. (2024). Novel integration of dual evaporator loop heat pipe for improved electric vehicle battery thermal regulation. Applied Thermal Engineering, 236, 121832. https://doi.org/10.1016/j.applthermaleng.2023.121832
  • Van Mierlo, J., Berecibar, M., El Baghdadi, M., De Cauwer, C., Messagie, M., Coosemans, T., Jacobs, V. A., & Hegazy, O. (2021). Beyond the state of the art of electric vehicles: A fact-based paper of the current and prospective electric vehicle technologies. World Electric Vehicle Journal, 12(1), 20. https://doi.org/10.3390/wevj12010020
  • Vaverková, M. D. (2019). Landfill impacts on the environment. Geosciences, 9(10), 431. https://doi.org/10.3390/geosciences9100431
  • Verma, S., Mishra, S., Gaur, A., Chowdhury, S., Mohapatra, S., Dwivedi, G., & Verma, P. (2021). A comprehensive review on energy storage in hybrid electric vehicle. Journal of Traffic and Transportation Engineering (English Edition), 8(5), 621-637. https://doi.org/10.1016/j.jtte.2021.09.001
  • Vertiz, G., Oyarbide, M., Macicior, H., Miguel, O., Cantero, I., De Arroiabe, P. F., & Ulacia, I. (2014). Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model. Journal of Power Sources, 272, 476–484. https://doi.org/10.1016/j.jpowsour.2014.08.092
  • Viswanathan, V., Crawford, A., Stephenson, D., Kim, S., Wang, W., Li, B., Coffey, G., Thomsen, E., Graff, G., Balducci, P., Kintner-Meyer, M., & Sprenkle, V. (2014). Cost and performance model for redox flow batteries. Journal of Power Sources, 247, 1040-1051. https://doi.org/10.1016/j.jpowsour.2012.12.023
  • Wang, C., Yu, Y., Niu, J., Liu, Y., Bridges, D., Liu, X., Pooran, J., Zhang, Y., & Hu, A. (2019). Recent progress of metal–air batteries—a mini review. Applied Sciences, 9(14), 2787. https://doi.org/10.3390/app9142787
  • Wang, K., Wu, Y., Yang, C., Yu, M., Lei, C., Zhang, Y., Ding, T., Long, Y., Liu, K., & Wu, H. (2024a). Dry Electrode Processing for High‐Performance Molten Salt Batteries. Advanced Energy Materials, 14(27), 2400589. https://doi.org/10.1002/aenm.202400589
  • Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C. (2016). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038
  • Wang, R., Zhang, H., Chen, J., Ding, R., & Luo, D. (2024b). Modeling and model predictive control of a battery thermal management system based on thermoelectric cooling for electric vehicles. Energy Technology, 12(5), 2301205. https://doi.org/10.1002/ente.202301205
  • Wang, X., Liu, S., Zhang, Y., Lv, S., Ni, H., Deng, Y., & Yuan, Y. (2022). A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System. Energies, 15(6), 1963. https://doi.org/10.3390/en15061963
  • Wang, Y. J., Fan, H., Ignaszak, A., Zhang, L., Shao, S., Wilkinson, D. P., & Zhang, J. (2018). Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chemical Engineering Journal, 348, 416-437. https://doi.org/10.1016/j.cej.2018.04.208
  • Wankhede, S., Pingale, A. D., & Kale, A. (2025). Experimental investigation on thermal management of lithium-ion battery pack for formula student electric vehicle using air-cooling system. Energy Storage and Saving, 4(1), 38-47. https://doi.org/10.1016/j.enss.2024.11.008
  • Weng, J., Ouyang, D., Yang, X., Chen, M., Zhang, G., & Wang, J. (2020). Optimization of the internal fin in a phase-change-material module for battery thermal management. Applied Thermal Engineering, 167, 114698. https://doi.org/10.1016/j.applthermaleng.2019.114698
  • Werner, D., Peuker, U. A., & Mütze, T. (2020). Recycling chain for spent lithium-ion batteries. Metals, 10(3), 316. https://doi.org/10.3390/met10030316
  • Wicks, F. (2003). The Remarkable Henry Ford. Mechanical Engineering, 125(5), 50-55. Wiriyasart, S., Hommalee, C., Sirikasemsuk, S., Prurapark, R., & Naphon, P. (2020). Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Studies in Thermal Engineering, 18, 100583. https://doi.org/10.1016/j.csite.2020.100583
  • Wu, C., Ni, J., Shi, X., & Huang, R. (2024a). A new design of cooling plate for liquid-cooled battery thermal management system with variable heat transfer path. Applied Thermal Engineering, 239, 122107. https://doi.org/10.1016/j.applthermaleng.2023.122107
  • Wu, C., Sun, Y., Tang, H., Zhang, S., Yuan, W., Zhu, L., & Tang, Y. (2024b). A review on the liquid cooling thermal management system of lithium-ion batteries. Applied Energy, 375, 124173. https://doi.org/10.1016/j.apenergy.2024.124173
  • Wu, H. (2022, October). Study on direct refrigerant cooling for lithium-ion batteries of electric vehicles. In Journal of Physics: Conference Series, 2310(1), 012028). https://doi.org/10.1088/1742-6596/2310/1/012028
  • Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., & Lai, Y. (2019). A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management, 182, 262–281. https://doi.org/10.1016/j.enconman.2018.12.051
  • Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. https://doi.org/10.1016/j.enpol.2012.05.060
  • Xie, S., Hu, X., Qi, S., & Lang, K. (2018). An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 163, 837-848. https://doi.org/10.1016/j.energy.2018.08.139
  • Xin, S., Wang, C., & Xi, H. (2023). Thermal management scheme and optimization of cylindrical lithium-ion battery pack based on air cooling and liquid cooling. Applied Thermal Engineering, 224, 120100. https://doi.org/10.1016/j.applthermaleng.2023.120100
  • Xiong, S., Ji, J., & Ma, X. (2020). Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Management, 102, 579-586. https://doi.org/10.1016/j.wasman.2019.11.013
  • Yamada, T., Koshiyama, T., Yoshikawa, M., Yamada, T., & Ono, N. (2017). Analysis of a lithium-ion battery cooling system for electric vehicles using a phase-change material and heat pipes. Journal of Thermal Science and Technology, 12(1), JTST0011. https://doi.org/10.1299/jtst.2017jtst0011
  • Yan, Z. (2024). Research on Lithium Battery Recycling and Utilization. International Journal of Materials Science and Technology Studies, 1(3), 1-8.
  • Yanamandra, K., Pinisetty, D., Daoud, A., & Gupta, N. (2022). Recycling of Li-ion and lead acid batteries: a review. Journal of the Indian Institute of Science, 102(1), 281-295. https://doi.org/10.1007/s41745-021-00269-7
  • Yang, H., Hu, X., Zhang, G., Dou, B., Cui, G., Yang, Q., & Yan, X. (2024a). Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Waste Management, 178, 168-175. https://doi.org/10.1016/j.wasman.2024.02.034
  • Yang, J., Wu, J., Liu, Y., Wang, X., Liu, G., Wen, Q., Li, F., & Wang, Z. (2024b). Numerical study on side cooling technology of battery with a flat confined loop heat pipe. Applied Thermal Engineering, 236, 121490. https://doi.org/10.1016/j.applthermaleng.2023.121490
  • Yazami, R. (1999). Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochimica Acta, 45(1-2), 87-97. https://doi.org/10.1016/S0013-4686(99)00195-4
  • Yoshino, A. (2022). Brief history and future of the lithium-ion battery. The Nobel Prizes, 2019, 207-218.
  • Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012(1), 435873. https://doi.org/10.1155/2012/435873
  • Yudhistira, R., Khatiwada, D., & Sanchez, F. (2022). A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. Journal of Cleaner Production, 358, 131999. https://doi.org/10.1016/j.jclepro.2022.131999
  • Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180
  • Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569-596. http://dx.doi.org/10.1016/j.rser.2014.10.011
  • Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries, 10(1), 38. https://doi.org/10.3390/batteries10010038
  • Zeng, J., Feng, S., Lai, C., Song, J., Fu, L., Chen, H., Deng, S., & Gao, T. (2023). Prediction on thermal performance of refrigerant-based battery thermal management system for a HEV battery pack. International Journal of Heat and Mass Transfer, 201, 123657. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123657
  • Zhang, B., Yuan, N., Kong, B., Zou, Y., & Shi, H. (2024). Simulation of hybrid air-cooled and liquid-cooled systems for optimal lithium-ion battery performance and condensation prevention in high-humidity environments. Applied Thermal Engineering, 257, 124455. https://doi.org/10.1016/j.applthermaleng.2024.124455
  • Zhao, C., Zu, B., Xu, Y., Wang, Z., Zhou, J., & Liu, L. (2020). Design and analysis of an engine-start control strategy for a single-shaft parallel hybrid electric vehicle. Energy, 202, 117621. https://doi.org/10.1016/j.energy.2020.117621
  • Zhao, G., Wang, X., Negnevitsky, M., & Li, C. (2023a). An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles. Applied Thermal Engineering, 219, 119626. https://doi.org/10.1016/j.applthermaleng.2022.119626
  • Zhao, G., Wang, X., Negnevitsky, M., & Zhang, H. (2021a). A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. Journal of Power Sources, 501, 230001. https://doi.org/10.1016/j.jpowsour.2021.230001
  • Zhao, H., Zhang, B., & Zhang, B. (2008, September). Research on parameters matching of parallel hybrid electric vehicle powertrain. In 2008 IEEE Vehicle Power and Propulsion Conference, pp. 1-4. https://doi.org/10.1109/VPPC.2008.4677431
  • Zhao, L., Li, W., Wang, G., Cheng, W., & Chen, M. (2023b). A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling. Applied Thermal Engineering, 232, 120992. https://doi.org/10.1016/j.applthermaleng.2023.120992
  • Zhao, Y., Pohl, O., Bhatt, A. I., Collis, G. E., Mahon, P. J., Rüther, T., & Hollenkamp, A. F. (2021b). A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry, 2(1), 167-205. https://doi.org/10.3390/suschem2010011
  • Zheng, Z., Petrone, R., Péra, M. C., Hissel, D., Becherif, M., Pianese, C., Steiner, N. Y., & Sorrentino, M. (2013). A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. International Journal of Hydrogen Energy, 38(21), 8914-8926. https://doi.org/10.1016/j.ijhydene.2013.04.007
  • Zhou, H., Li, W., Yang, W., Guo, X., Cui, L., & Liu, T. (2024). A hybrid battery thermal management strategy that couples internal PCM with external air-jet cooling. Journal of Energy Storage, 98, 113127. https://doi.org/10.1016/j.est.2024.113127
There are 314 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Pinar Mert Cuce 0000-0002-6522-7092

Gamze Genç 0000-0002-1133-2161

Erdem Cüce 0000-0003-0150-4705

Mustafa Serdar Genç 0000-0002-6540-620X

Emre Alvur 0000-0002-4771-5025

Muhammed Hatem 0000-0002-1201-1933

Publication Date October 30, 2025
Submission Date February 17, 2025
Acceptance Date May 8, 2025
Published in Issue Year 2025 Volume: 45 Issue: 2

Cite

APA Cuce, P. M., Genç, G., Cüce, E., … Genç, M. S. (2025). Comprehensive insights into electric vehicle classification and lithium-ion battery technologies: Applications, disposal, and thermal management. Isı Bilimi Ve Tekniği Dergisi, 45(2), 230-271. https://doi.org/10.47480/isibted.1640239