Research Article
BibTex RIS Cite

Stock Price Forecasting Using Single Multiplicative Neuron Model Artificial Neural Network (SMNM-ANN): A Case Of Iron-Steel Sector in Türkiye

Year 2025, Volume: 6 Issue: 2, 213 - 225, 24.09.2025
https://doi.org/10.57116/isletme.1737812

Abstract

This study employs the Single Multiplicative Neuron Model Artificial Neural Network (SMNM-ANN) Automatic Forecasting Method for Stock Price Prediction in Turkey's steel industry. Accurate financial forecasts are critical for businesses and investors, as the primary goal is to maximize profits through predicting future stock prices. A variety of methods are used in stock price predictions, with traditional techniques being complemented by artificial neural networks and machine learning methods in recent times. In this context, the SMNM-ANN method provides a flexible, nonlinear approach for predicting stock prices. The study utilizes 1101 stock closing price data between January 28, 2015, to May 30, 2025. To facilitate comparisons, machine learning techniques such as Boosted Tree, Decision Tree, and SVM are also employed. The application calculates forecast values for the next 10 data points, revealing that the SMNM-ANN-AFM method exhibits lower error rates. The obtained RMSE value is 0.6983, while the MAPE value is 2.5138. This research highlights the potential of SMNM-ANN to enhance decision-making processes and resource allocation in the steel sector, thereby contributing significantly to the industry.

References

  • Akyüz, I., Polat, K., Bardak, S., & Ersen, N. (2024). Prediction of values of Borsa Istanbul Forest, Paper, and Printing Index using machine learning methods. BioResources, 19(3), 5141-5157. https://doi.org/10.15376/biores.19.3.5141-5157
  • Albayrak, E., & Saran, N. (2023). Istatistiksel ve derin öğrenme modellerini kullanarak hisse senedi fiyat tahmini. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 16(2), 161-169. https://doi.org/10.54525/tbbmd.1031017
  • Arslankaya, S., & Toprak, Ş. (2021). Makine öğrenmesi ve derin öğrenme algoritmalarını kullanarak hisse senedi fiyat tahmini. International Journal of Engineering Research and Development, 13(1), 178-192. https://doi.org/10.29137/umagd.771671
  • Baek, Y. & Kim, H.Y. (2018). ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM modüle and a prediction LSTM modüle. Expert Systems with Applications. 113, 457-480, https://doi.org/10.1016/j.eswa.2018.07.019
  • Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. https://doi.org/10.1016/j.eswa.2015.05.013
  • Bardak, S., Ersen, N., Polat, K., Akyüz, K. C. (2024). Makine öğrenmesi yöntemleri ile hisse senedi fiyat tahmini: kâğıt firması örneği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 25(2), 47-58. https://doi.org/10.17474/artvinofd.1500569
  • Bas E, Yolcu U, Egrioglu E, Cagcag Yolcu O & Dalar A.Z. (2016b). Single multiplicative neuron model artificial neuron network trained by bat algorithm for time series forecasting. American Journal of Intelligent Systems. 6(3): 74-77.
  • Bas E. (2016). The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. Journal of Artificial Intelligence and Soft Computing Research. 6(1): 5-11. https://doi.org/10.1515/jaiscr-2016-0001
  • Bas, E., Uslu, V.R. & Egrioglu, E. (2016a). Robust learning algorithm for multiplicative neuron model artificial neural networks. Expert Systems with Applications. 56: 80–88. https://doi.org/10.1016/j.eswa.2016.02.051
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  • Brown, T., Smith, J., & Taylor, R. (2021). Financial forecasting: Principles and applications. Wiley. Cai, W., Wen, X., Li, C., Shao, J., & Xu, J. (2023). Predicting the energy comsumption in buildings using the optimized support vector regression model. Energy, 273, https://doi.org/10.1016/j.energy.2023.127188
  • Çolak, Z. (2025). Derin öğrenme modelleri ile hisse senedi fiyat tahmini: LSTM, GRU, RNN, MLP modellerinin karşılaştırılmalı analizi. Yönetim Bilimleri Dergisi, 23(56), 1250-1286. https://doi.org/10.35408/omuybd.1596351
  • Cui H, Feng J, Guo J, Wang T. (2015). A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction. Knowledge-Based Systems. 88: 195–209. https://doi.org/10.1016/J.KNOSYS.2015.07.032
  • Egrioğlu, E. & Bas, E. (2022). A new automatic forecasting method based on a new input significancy test of a single multiplicative neuron model artificial neural network. Network: Computation in Neural Systems, 33(1-2), 1-16. https://doi.org/10.1080/0957898X.2022.2042609.
  • Egrioglu, E., Bas, E., Cansu, T., Kara, M.A. (2023). A new nonlinear causality test based on single multiplicative neuron model artificial neural network: a case study for Turkey’s macroeconomic indicators. Granul. Comput. 8, 391–396, https://doi.org/10.1007/s41066-022-00336-z
  • Hezam, Y., Luong, H., & Anthonysamy, L. (2025). Machine learning in predicting firm performance: A systematic review. China Accounting and Finance Review. 27 (3), 309-339. https://doi.org/10.1108/cafr-03-2024-0036
  • James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Linear regression. In An introduction to statiscal learning: With applications in python (pp. 69-134). Springer.
  • Ji, X., Wang, J., & Yan, Z. (2021). A stock price prediction method based on deep learning technology. International Journal of Crowd Science, 5(1), 55-72. https://doi.org/10.1108/ijcs-05-2020-0012
  • Koç Ustalı, N., Tosun, N., Tosun, Ö. (2021). Makine öğrenmesi teknikleri ile hisse senedi fiyat tahmini. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 16(1), 1-16, https://doi.org/10.17153/oguiibf.636017
  • Loh, W.Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14-23. https://doi.org/10.1002/widm.8
  • Lu, M., & Xu, X. (2024). TRNN: An efficient time-series recurrent neural network for stock price prediction. Information Sciences, 657, 119951. https://doi.org/10.1016/j.ins.2023.119951
  • Lu, W., Li, J. Wang, J., & Qin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing and Applications, 33(10), 4741-4753. https://doi.org/10.1007/s00521-020-05532-z
  • Öztürk, C., & Karacı, A. (2024). Derin öğrenme yöntemleri kullanılarak hisse senedi fiyat tahmini üzerine ampirik bir analiz: LSTM, GRU, GAN ve WGAN-GP. Gazi Journal of Engiineering Sciences, 10(3), 472-495. https://doi.org/10.30855/gmbd.0705AR03
  • Pisner, D.A. & Schnyer, D.M. (2020). Support vector machine. In Machine Learning (pp. 101-121). Academic Press. https://doi.org/10.1016/B978-0-12-815739-8.00006-7
  • Rezaei, H., Faaljou, H., & Mansourfar, G. (2021). Stock price prediction using deep learning and frequency decomposition. Expert Systems with Applications, 169, 114332. https://doi.org/10.1016/j.eswa.2020.114332
  • Samanta, B. (2015). Single multiplicative neuron model as an alternative to multi-layer perceptron neural network. Neural, Parallel, and Scientific Computations. 23: 367-376.
  • Şimşek, M., Sebetci, Ö., Rahimovv, S. (2025). LSTM vet GRU hibrit modeli ile hisse senedi fiyat tahmini: Türkiye Borsası uygulaması ve model karşılaştırmaları, İşletme Araştırmaları Dergisi, 17(2), 886-904, https://doi.org/10.20491/isarder.2025.2009
  • Tang, Y., Song, Z., Zhu, Y., Hou, M., Tang, C., & Ji, J. (2022). Adopting a dendritic neural model for predicting stock price index movement. Expert Systems with Applications, 205, 117637. https://doi.org/10.1016/j.eswa.2022.117637
  • Tokmak, M. (2022). Uzun-Kısa süreli bellek ağı kullanarak hisse senedi fiyatı tahmini. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 6(2), 309-322. https://doi.org/10.31200/makuubd.1164099
  • Yadav, R.N., Kalra, P.K., & John, J. (2007). Time series prediction with single multiplicative neuron model. Applied Soft Computing. 7: 1157-1163. https://doi.org/10.1016/j.asoc.2006.01.003
  • Yeh, W.C. (2013). New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Transactions on Neural Networks and Learning Systems. 24(4): 661-665. https://doi.org/10.1109/TNNLS.2012.2232678
  • Yürük, M. F. (2021). Yapay sinir ağları ile hisse senedi fiyat tahmin modeli: Türk Hava Yolları uygulaması. Journal of Aviation, 5(2), 282-289. https://doi.org/10.30518/jav.1015502

Tek Çarpan Nöron Modeli Yapay Sinir Ağı (SMNM-ANN) Kullanarak Hisse Senedi Fiyat Tahmini: Türkiye Demir-Çelik Sektörü Örneği

Year 2025, Volume: 6 Issue: 2, 213 - 225, 24.09.2025
https://doi.org/10.57116/isletme.1737812

Abstract

Bu çalışma, Türkiye'deki demir-çelik sektöründe Hisse Senedi Fiyat Tahmini için Tek Çarpanlı Nöron Modeli Yapay Sinir Ağı (SMNM-ANN) Otomatik Tahmin Yöntemini kullanmaktadır. Doğru finansal tahminler, işletmeler ve yatırımcılar için kritik öneme sahiptir. Bu sürecin en önemli kısmı da gelecekteki hisse senedi fiyatlarını tahmin ederek elde edilecek karı maksimize etmektir. Hisse senedi tahminlerinde birçok farklı yöntem kullanılmaktadır. Geleneksel yöntemleri yanı sıra yapay sinir ağları ve makine öğrenmesi teknikleri son dönemlerde sıkça kullanılmaya başlanmıştır. Bu bağlamda, çalışmada kullanılan SMNM-ANN yöntemi, esnek ve doğrusal olmayan bir yaklaşım sunarak hisse senedi fiyatlarını tahmin etmektedir. Çalışmada, 28 Ocak 2015 ile 30 Mayıs 2025 tarihleri arasında 1101 hisse senedi kapanış fiyatı verisi kullanılmıştır. Çalışmada karşılaştırma yapabilmek için ayrıca makine öğrenmesi tekniklerinden Boosted Tree, Decision Tree ve SVM kullanılmıştır. Uygulamada, gelecek 10 gözleme ait tahmin değerleri hesaplanmış ve elde edilen sonuçlar, SMNM-ANN-AFM yönteminin daha düşük hata oranları sergilediğini göstermiştir. Elde edilen RMSE değeri 0.6983, MAPE değeri ise 2.5138 olarak belirlenmiştir. Bu araştırma, SMNM-ANN'nin demir çelik sektöründe karar verme süreçlerini ve kaynak tahsisini geliştirme potansiyelini açıkça vurgulamaktadır, böylece sektör için önemli bir katkı sağlamaktadır.

References

  • Akyüz, I., Polat, K., Bardak, S., & Ersen, N. (2024). Prediction of values of Borsa Istanbul Forest, Paper, and Printing Index using machine learning methods. BioResources, 19(3), 5141-5157. https://doi.org/10.15376/biores.19.3.5141-5157
  • Albayrak, E., & Saran, N. (2023). Istatistiksel ve derin öğrenme modellerini kullanarak hisse senedi fiyat tahmini. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 16(2), 161-169. https://doi.org/10.54525/tbbmd.1031017
  • Arslankaya, S., & Toprak, Ş. (2021). Makine öğrenmesi ve derin öğrenme algoritmalarını kullanarak hisse senedi fiyat tahmini. International Journal of Engineering Research and Development, 13(1), 178-192. https://doi.org/10.29137/umagd.771671
  • Baek, Y. & Kim, H.Y. (2018). ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM modüle and a prediction LSTM modüle. Expert Systems with Applications. 113, 457-480, https://doi.org/10.1016/j.eswa.2018.07.019
  • Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. https://doi.org/10.1016/j.eswa.2015.05.013
  • Bardak, S., Ersen, N., Polat, K., Akyüz, K. C. (2024). Makine öğrenmesi yöntemleri ile hisse senedi fiyat tahmini: kâğıt firması örneği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 25(2), 47-58. https://doi.org/10.17474/artvinofd.1500569
  • Bas E, Yolcu U, Egrioglu E, Cagcag Yolcu O & Dalar A.Z. (2016b). Single multiplicative neuron model artificial neuron network trained by bat algorithm for time series forecasting. American Journal of Intelligent Systems. 6(3): 74-77.
  • Bas E. (2016). The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. Journal of Artificial Intelligence and Soft Computing Research. 6(1): 5-11. https://doi.org/10.1515/jaiscr-2016-0001
  • Bas, E., Uslu, V.R. & Egrioglu, E. (2016a). Robust learning algorithm for multiplicative neuron model artificial neural networks. Expert Systems with Applications. 56: 80–88. https://doi.org/10.1016/j.eswa.2016.02.051
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  • Brown, T., Smith, J., & Taylor, R. (2021). Financial forecasting: Principles and applications. Wiley. Cai, W., Wen, X., Li, C., Shao, J., & Xu, J. (2023). Predicting the energy comsumption in buildings using the optimized support vector regression model. Energy, 273, https://doi.org/10.1016/j.energy.2023.127188
  • Çolak, Z. (2025). Derin öğrenme modelleri ile hisse senedi fiyat tahmini: LSTM, GRU, RNN, MLP modellerinin karşılaştırılmalı analizi. Yönetim Bilimleri Dergisi, 23(56), 1250-1286. https://doi.org/10.35408/omuybd.1596351
  • Cui H, Feng J, Guo J, Wang T. (2015). A novel single multiplicative neuron model trained by an improved glowworm swarm optimization algorithm for time series prediction. Knowledge-Based Systems. 88: 195–209. https://doi.org/10.1016/J.KNOSYS.2015.07.032
  • Egrioğlu, E. & Bas, E. (2022). A new automatic forecasting method based on a new input significancy test of a single multiplicative neuron model artificial neural network. Network: Computation in Neural Systems, 33(1-2), 1-16. https://doi.org/10.1080/0957898X.2022.2042609.
  • Egrioglu, E., Bas, E., Cansu, T., Kara, M.A. (2023). A new nonlinear causality test based on single multiplicative neuron model artificial neural network: a case study for Turkey’s macroeconomic indicators. Granul. Comput. 8, 391–396, https://doi.org/10.1007/s41066-022-00336-z
  • Hezam, Y., Luong, H., & Anthonysamy, L. (2025). Machine learning in predicting firm performance: A systematic review. China Accounting and Finance Review. 27 (3), 309-339. https://doi.org/10.1108/cafr-03-2024-0036
  • James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Linear regression. In An introduction to statiscal learning: With applications in python (pp. 69-134). Springer.
  • Ji, X., Wang, J., & Yan, Z. (2021). A stock price prediction method based on deep learning technology. International Journal of Crowd Science, 5(1), 55-72. https://doi.org/10.1108/ijcs-05-2020-0012
  • Koç Ustalı, N., Tosun, N., Tosun, Ö. (2021). Makine öğrenmesi teknikleri ile hisse senedi fiyat tahmini. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 16(1), 1-16, https://doi.org/10.17153/oguiibf.636017
  • Loh, W.Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14-23. https://doi.org/10.1002/widm.8
  • Lu, M., & Xu, X. (2024). TRNN: An efficient time-series recurrent neural network for stock price prediction. Information Sciences, 657, 119951. https://doi.org/10.1016/j.ins.2023.119951
  • Lu, W., Li, J. Wang, J., & Qin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing and Applications, 33(10), 4741-4753. https://doi.org/10.1007/s00521-020-05532-z
  • Öztürk, C., & Karacı, A. (2024). Derin öğrenme yöntemleri kullanılarak hisse senedi fiyat tahmini üzerine ampirik bir analiz: LSTM, GRU, GAN ve WGAN-GP. Gazi Journal of Engiineering Sciences, 10(3), 472-495. https://doi.org/10.30855/gmbd.0705AR03
  • Pisner, D.A. & Schnyer, D.M. (2020). Support vector machine. In Machine Learning (pp. 101-121). Academic Press. https://doi.org/10.1016/B978-0-12-815739-8.00006-7
  • Rezaei, H., Faaljou, H., & Mansourfar, G. (2021). Stock price prediction using deep learning and frequency decomposition. Expert Systems with Applications, 169, 114332. https://doi.org/10.1016/j.eswa.2020.114332
  • Samanta, B. (2015). Single multiplicative neuron model as an alternative to multi-layer perceptron neural network. Neural, Parallel, and Scientific Computations. 23: 367-376.
  • Şimşek, M., Sebetci, Ö., Rahimovv, S. (2025). LSTM vet GRU hibrit modeli ile hisse senedi fiyat tahmini: Türkiye Borsası uygulaması ve model karşılaştırmaları, İşletme Araştırmaları Dergisi, 17(2), 886-904, https://doi.org/10.20491/isarder.2025.2009
  • Tang, Y., Song, Z., Zhu, Y., Hou, M., Tang, C., & Ji, J. (2022). Adopting a dendritic neural model for predicting stock price index movement. Expert Systems with Applications, 205, 117637. https://doi.org/10.1016/j.eswa.2022.117637
  • Tokmak, M. (2022). Uzun-Kısa süreli bellek ağı kullanarak hisse senedi fiyatı tahmini. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 6(2), 309-322. https://doi.org/10.31200/makuubd.1164099
  • Yadav, R.N., Kalra, P.K., & John, J. (2007). Time series prediction with single multiplicative neuron model. Applied Soft Computing. 7: 1157-1163. https://doi.org/10.1016/j.asoc.2006.01.003
  • Yeh, W.C. (2013). New parameter-free simplified swarm optimization for artificial neural network training and its application in the prediction of time series. IEEE Transactions on Neural Networks and Learning Systems. 24(4): 661-665. https://doi.org/10.1109/TNNLS.2012.2232678
  • Yürük, M. F. (2021). Yapay sinir ağları ile hisse senedi fiyat tahmin modeli: Türk Hava Yolları uygulaması. Journal of Aviation, 5(2), 282-289. https://doi.org/10.30518/jav.1015502
There are 32 citations in total.

Details

Primary Language English
Subjects Operation, Financial Forecast and Modelling
Journal Section Articles
Authors

Mehmet Akif Kara 0000-0003-4308-9933

Dilayla Bayyurt 0000-0001-9930-2313

Publication Date September 24, 2025
Submission Date July 8, 2025
Acceptance Date September 23, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Kara, M. A., & Bayyurt, D. (2025). Stock Price Forecasting Using Single Multiplicative Neuron Model Artificial Neural Network (SMNM-ANN): A Case Of Iron-Steel Sector in Türkiye. İşletme, 6(2), 213-225. https://doi.org/10.57116/isletme.1737812