Research Article
BibTex RIS Cite

Kapula Modelinin Belirlenmesinde AIC Değerinin Hatalı Seçimi

Year 2019, Volume: 4 Issue: 3, 335 - 343, 22.10.2019
https://doi.org/10.23834/isrjournal.628779

Abstract

        Kapulalar, tesadüfi
değişkenler arasındaki bağımlılığı ortaya koyan, tek değişkenli marjinalleri
[0,1] üzerinde düzgün dağılıma sahip ve çok değişkenli dağılımları kendi tek
değişkenli marjinallerine bağlayan fonksiyonlardır. Kapula ile bağımlılık
yapısı ortaya konulurken, farklı modeller kurularak aralarından uygun olan
tercih edilmelidir. Bu tercih yapılırken kullanılan farklı kriterler mevcuttur.
Bu kriterler arasında en çok tercih edilen AIC değeri, farklı gözlem
sayılarında ve farklı ilişki seviyelerinde hatalı Kapula modelinin seçilmesine
neden olabilmektedir. Bu problemi daha iyi anlamak amacıyla, AIC değerine göre
farklı kombinasyonlarda yapılan model tercihleri incelenmiştir. Modeller
içerisindeki hatalı tercihler ayrıntılı biçimde ele alınmıştır. Ayrıca hatalı
Kapula ailelerini seçmeye yönelik yatkınlıklar ortaya konulmuştur.

References

  • Akaike, H. (1974). A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike, Springer, New York, NY, 215-222.
  • Cherubini, U., Luciano, E. and Vecchiato, W. 2004. Copula methods in finance. John Wiley and Sons, New York, 289.
  • Fang, Y., Madsen, L., & Liu, L. (2014). Comparison of Two Methods to Check Copula Fitting. International Journal of Applied Mathematics, 44(1).
  • Genest, C., Quesada Molina, J. J. and Rodríguez Lallena, J. A. 1995. De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules. Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 320(6), 723-726.
  • Jordanger, L. A., & Tjøstheim, D. (2014). Model selection of copulas: AIC versus a cross validation copula information criterion. Statistics & Probability Letters, 92, 249-255.
  • Kaishev, V. K., Dimitrova, D. S. and Haberman, S. 2007. Modelling the joint distribution of competing risks survival times using copula functions. Insurance: Mathematics and Economics, 41(3), 339-361.
  • Sklar, A. 1959. Fonctions de Répartition à n Dimensions et Leurs Marges. Publ. Inst. Statist. Univ., 8, 229-231.
  • Trivedi, P. K. and Zimmer, D. M. 2005. Copula modeling: An introduction for practitioners. Publishers Inc., 28, Hanover, USA.

Incorrect Model Selection Of AIC Value When Determining Copula Model

Year 2019, Volume: 4 Issue: 3, 335 - 343, 22.10.2019
https://doi.org/10.23834/isrjournal.628779

Abstract

Copulas are functions that reveal the dependence between
random variables, have uniform distribution on univariate margins [0,1] and
link multivariate distributions to their univariate margins. When establishing
the dependency structure with Copula, different models should be established
and the appropriate one among them should be preferred. There are different
criteria used to make this choice. Among these criteria, the most preferred AIC
value may lead to the selection of incorrect Copula model at different
observation numbers and different correlation levels. In order to understand
this problem better, model choices made in different combinations according to
AIC value were examined. Incorrect selections in the models are discussed in
detail. In addition, the predisposition to select incorrect Copula families has
been revealed.

References

  • Akaike, H. (1974). A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike, Springer, New York, NY, 215-222.
  • Cherubini, U., Luciano, E. and Vecchiato, W. 2004. Copula methods in finance. John Wiley and Sons, New York, 289.
  • Fang, Y., Madsen, L., & Liu, L. (2014). Comparison of Two Methods to Check Copula Fitting. International Journal of Applied Mathematics, 44(1).
  • Genest, C., Quesada Molina, J. J. and Rodríguez Lallena, J. A. 1995. De l'impossibilité de construire des lois à marges multidimensionnelles données à partir de copules. Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 320(6), 723-726.
  • Jordanger, L. A., & Tjøstheim, D. (2014). Model selection of copulas: AIC versus a cross validation copula information criterion. Statistics & Probability Letters, 92, 249-255.
  • Kaishev, V. K., Dimitrova, D. S. and Haberman, S. 2007. Modelling the joint distribution of competing risks survival times using copula functions. Insurance: Mathematics and Economics, 41(3), 339-361.
  • Sklar, A. 1959. Fonctions de Répartition à n Dimensions et Leurs Marges. Publ. Inst. Statist. Univ., 8, 229-231.
  • Trivedi, P. K. and Zimmer, D. M. 2005. Copula modeling: An introduction for practitioners. Publishers Inc., 28, Hanover, USA.
There are 8 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mervenur Pala This is me

Fatih Sağlam 0000-0002-2084-2008

Çağlar Sözen 0000-0002-3732-5058

Publication Date October 22, 2019
Submission Date October 3, 2019
Published in Issue Year 2019 Volume: 4 Issue: 3

Cite

APA Pala, M., Sağlam, F., & Sözen, Ç. (2019). Kapula Modelinin Belirlenmesinde AIC Değerinin Hatalı Seçimi. The Journal of International Scientific Researches, 4(3), 335-343. https://doi.org/10.23834/isrjournal.628779