Research Article
BibTex RIS Cite

Bir Tekstil Perakendecisinin Müşterileri İçin RFM Modeli ile Müşteri Segmentasyonu

Year 2023, Volume: 8 Issue: 3, 393 - 409, 27.10.2023
https://doi.org/10.23834/isrjournal.1339753

Abstract

Günümüzde teknolojinin gelişimi ile birçok sektörde olduğu gibi perakende sektöründe de gelişim ve dijital dönüşüm yaşanmaktadır. Bu çalışma, teknolojinin hızla geliştiği ve veri biliminin her sektörde önem kazandığı bir dönemde, perakende sektöründe müşteri segmentasyonunun önemini vurgulamaktadır. Özellikle tekstil perakendeciliği alanında, müşteri satın alma davranışlarının doğru bir şekilde analiz edilmesi ve segmente edilmesi, işletmelerin müşteri ilişkilerini yönetme ve pazarlama stratejilerini belirleme süreçlerinde kritik bir rol oynamaktadır. Bu çalışma, bir tekstil perakendecisinin maskelenmiş verilerini kullanarak, RFM (Recency, Frequency, Monetary) modeli ile müşteri segmentasyonu yapmayı hedeflemektedir. Veriler, ön işleme tabi tutulmuş ve RFM değerleri hesaplanmıştır. Ardından, K-means ve Fuzzy C-means algoritmaları kullanılarak müşteri kümeleri oluşturulmuştur. Oluşturulan bu kümelerin sonuçları değerlendirilmiş ve müşteri gruplarına yönelik yorumlar yapmak için kullanılmıştır. Sonuçlar, müşteri segmentasyonunun, perakende sektöründe müşteri davranışlarını anlamak, müşteri ilişkilerini yönetmek ve etkili pazarlama stratejileri geliştirmek için ne kadar önemli olduğunu göstermektedir. Bu çalışma, perakende sektöründeki işletmelerin, müşteri verilerini etkin bir şekilde kullanarak, müşteri memnuniyetini artırmak ve işletme performansını iyileştirmek için nasıl stratejiler geliştirebileceğine dair değerli bilgiler sunmaktadır.

References

  • Bachtiar, F. A., (2018) Customer Segmentation Using Two-Step Mining Method Based on RFM Model, 2018 International Conference on Sustainable Information Engineering and Technology (SIET), Malang, Indonesia, pp. 10-15, doi: 10.1109/SIET.2018.8693173.
  • Barus, O. P., Nathasya, C., & Pangaribuan, J. J. (2023). The Implementation of RFM Analysis to Customer Profiling Using K-Means Clustering. Mathematical Modelling of Engineering Problems, 10(1).
  • Baykasoğlu, A., Gölcük, İ., & Özsoydan, F. (2018). Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm. Hacettepe Journal of Mathematics and Statistics, 48(3), 859-882. https://doi.org/10.15672/hjms.2019.657.
  • Chan (2008) Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer, Expert Systems with Applications, Volume 34, Issue 4, May 2008, Pages 2754-2762 https://doi.org/10.1016/j.eswa.2007.05.043.
  • Christy, A.J. (2018). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.09.004
  • Dabholkar, P.A., Thorpe, D.I., Rentz, J.O. (1996). A measure of service quality for retail stores: Scale development and validation. Journal of the Academy of Marketing Science, Vol. 24 (1), pp. 3-16.
  • Erpolat Taşabat, S., & Akca, E. (2020). Recycling Project with RFM Analysis in Industrial Material Sector. Sigma Journal of Engineering and Natural Sciences, 38(4), 1681-1692.
  • González Martínez, Carrasco, García-Madariaga, Porcel Gallego, Herrera-Viedma, (2019). A comparison between Fuzzy Linguistic RFM Model and traditional RFM model applied to Campaign Management. Case study of retail business. Procedia Computer Science Volume, 162, 2019, Pages 281-289 https://doi.org/10.1016/j.procs.2019.11.286.
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning, Vol. 112, p. 18. New York: Springer.
  • Köse, U. & Arslan, A. (2020). A Novel Customer Segmentation Approach Based on RFM and Clustering: A Case Study in the Retail Industry. Gaziantep University Journal of Social Sciences, 19(4), 1229-1248. https://doi.org/10.17671/gazibtd.570866.
  • Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8(1), 67–72.
  • Reichheld, F. & Sasser, W. (1990). Zero defections: quality comes to services. Harvard Business Review, Vol. 68 (5), pp. 105-11.
  • Sarvari, P. A., Ustundag, A., & Takci, H. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129–1157. https://doi.org/10.1108/k-07-2015- 0180.
  • Starczewski, A., & Krzyżak, A. (2015). Performance Evaluation of the Silhouette Index. Artificial Intelligence & Soft Computing: 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-28, 2015, Proceedings, Part II, 49–58. https://doi.org/10.1007/978-3-319-19369-4_5.
  • Taşabat, S. E., Özçay, T., Sertbaş, S., & Akca, E. (2023). A New RFM Model Approach: RFMS. In Industry 4.0 and the Digital Transformation of International Business (pp. 143-172). Singapore: Springer Nature Singapore.
  • Wan, S., Chen, J., Qi, Z., Gan, W., & Tang, L. (2022, April). Fast RFM model for customer segmentation. In Companion Proceedings of the Web Conference 2022 (pp. 965-972).
  • Yang, A. X. (2004). How to develop new approaches to RFM segmentation. Journal of Targeting, Measurement and Analysis for Marketing, 13(1), 50–60.

Customer Segmentation Analysis Based on RFM for The Customers of A Retailer

Year 2023, Volume: 8 Issue: 3, 393 - 409, 27.10.2023
https://doi.org/10.23834/isrjournal.1339753

Abstract

With the development of technology, as in many sectors, the retail sector is also experiencing development and digital transformation. This study emphasizes the importance of customer segmentation in the retail sector in a period where technology is rapidly developing, and data science is gaining importance in every sector. Especially in the field of textile retailing, the correct analysis and segmentation of customer purchasing behaviors play a critical role in managing customer relationships and determining marketing strategies for businesses. This study aims to perform customer segmentation using the masked data of a textile retailer with the RFM (Recency, Frequency, Monetary) model. The data has been preprocessed and RFM values have been calculated. Then, customer clusters were created using K-means and Fuzzy C-means algorithms. These clusters were evaluated to make comments on customer groups. The results show how important customer segmentation is to understand customer behaviors in the retail sector, manage customer relationships, and develop effective marketing strategies. This study provides valuable information on how businesses in the retail sector can develop strategies to increase customer satisfaction and improve business performance by effectively using customer data.

References

  • Bachtiar, F. A., (2018) Customer Segmentation Using Two-Step Mining Method Based on RFM Model, 2018 International Conference on Sustainable Information Engineering and Technology (SIET), Malang, Indonesia, pp. 10-15, doi: 10.1109/SIET.2018.8693173.
  • Barus, O. P., Nathasya, C., & Pangaribuan, J. J. (2023). The Implementation of RFM Analysis to Customer Profiling Using K-Means Clustering. Mathematical Modelling of Engineering Problems, 10(1).
  • Baykasoğlu, A., Gölcük, İ., & Özsoydan, F. (2018). Improving fuzzy c-means clustering via quantum-enhanced weighted superposition attraction algorithm. Hacettepe Journal of Mathematics and Statistics, 48(3), 859-882. https://doi.org/10.15672/hjms.2019.657.
  • Chan (2008) Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer, Expert Systems with Applications, Volume 34, Issue 4, May 2008, Pages 2754-2762 https://doi.org/10.1016/j.eswa.2007.05.043.
  • Christy, A.J. (2018). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2018.09.004
  • Dabholkar, P.A., Thorpe, D.I., Rentz, J.O. (1996). A measure of service quality for retail stores: Scale development and validation. Journal of the Academy of Marketing Science, Vol. 24 (1), pp. 3-16.
  • Erpolat Taşabat, S., & Akca, E. (2020). Recycling Project with RFM Analysis in Industrial Material Sector. Sigma Journal of Engineering and Natural Sciences, 38(4), 1681-1692.
  • González Martínez, Carrasco, García-Madariaga, Porcel Gallego, Herrera-Viedma, (2019). A comparison between Fuzzy Linguistic RFM Model and traditional RFM model applied to Campaign Management. Case study of retail business. Procedia Computer Science Volume, 162, 2019, Pages 281-289 https://doi.org/10.1016/j.procs.2019.11.286.
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning, Vol. 112, p. 18. New York: Springer.
  • Köse, U. & Arslan, A. (2020). A Novel Customer Segmentation Approach Based on RFM and Clustering: A Case Study in the Retail Industry. Gaziantep University Journal of Social Sciences, 19(4), 1229-1248. https://doi.org/10.17671/gazibtd.570866.
  • Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8(1), 67–72.
  • Reichheld, F. & Sasser, W. (1990). Zero defections: quality comes to services. Harvard Business Review, Vol. 68 (5), pp. 105-11.
  • Sarvari, P. A., Ustundag, A., & Takci, H. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129–1157. https://doi.org/10.1108/k-07-2015- 0180.
  • Starczewski, A., & Krzyżak, A. (2015). Performance Evaluation of the Silhouette Index. Artificial Intelligence & Soft Computing: 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-28, 2015, Proceedings, Part II, 49–58. https://doi.org/10.1007/978-3-319-19369-4_5.
  • Taşabat, S. E., Özçay, T., Sertbaş, S., & Akca, E. (2023). A New RFM Model Approach: RFMS. In Industry 4.0 and the Digital Transformation of International Business (pp. 143-172). Singapore: Springer Nature Singapore.
  • Wan, S., Chen, J., Qi, Z., Gan, W., & Tang, L. (2022, April). Fast RFM model for customer segmentation. In Companion Proceedings of the Web Conference 2022 (pp. 965-972).
  • Yang, A. X. (2004). How to develop new approaches to RFM segmentation. Journal of Targeting, Measurement and Analysis for Marketing, 13(1), 50–60.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Machine Learning (Other), Fuzzy Computation, Customer Relationship Management
Journal Section Articles
Authors

Samet Kanca 0009-0004-0027-2978

Tuncay Özcan 0000-0002-9520-2494

Yakup Çelikbilek 0000-0003-0585-1085

Publication Date October 27, 2023
Submission Date August 8, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Kanca, S., Özcan, T., & Çelikbilek, Y. (2023). Bir Tekstil Perakendecisinin Müşterileri İçin RFM Modeli ile Müşteri Segmentasyonu. The Journal of International Scientific Researches, 8(3), 393-409. https://doi.org/10.23834/isrjournal.1339753