Ozone, recognized as an environmentally friendly oxidative compound, holds substantial promise for sustainable applications in the textile industry. Silk fiber, a valuable natural material composed of sericin and fibroin proteins, is particularly significant in this context. This study focuses on assessing the impact of 15-minute ozonation periods applied to raw silk fabrics under neutral, acidic, and basic conditions. The evaluation includes weight loss, whiteness-yellowness, hydrophilicity, and strength tests performed on the samples, with a thorough examination of the obtained results. The results was evaluated the effects of the ozonation process and it was determined that the most effective medium in terms of weight loss, whiteness-yellowness and strength was the neutral medium.
[1] Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 101271.
[2] Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials, 6, 226.
[3] Asakura, T., Kametani, S., & Suzuki, Y. (2002). Silk. Encyclopedia of polymer science and technology, 1-19.
[4] Arango, M. C., Montoya, Y., Peresin, M. S., Bustamante, J., & Álvarez-López, C. (2021). Silk sericin as a biomaterial for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(16), 1115-1129.
[5] Reddy, N. (2020). New developments in degumming silk. Silk Mater Process Appl.
[6] Uddin, F. (2019). Introductory chapter: textile manufacturing processes. In Textile manufacturing processes. IntechOpen.
[7] Biswal, B., Dan, A. K., Sengupta, A., Das, M., Bindhani, B. K., Das, D., & Parhi, P. K. (2022). Extraction of silk fibroin with several sericin removal processes and its importance in tissue engineering: A review. Journal of Polymers and the Environment, 30(6), 2222-2253.
[8] Mondal, M., Trivedy, K., & NIRMAL, K. S. (2007). The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review.
[9] Aniş, P., Çapar, G., Toprak, T., & Yener, E. (2016). Sericin removal from silk fibers with eco-friendly alternative methods. Textile and Apparel, 26(4), 368-374.
[10] Freddi, G., Mossotti, R., & Innocenti, R. (2003). Degumming of silk fabric with several proteases. Journal of Biotechnology, 106(1), 101-112.
[11] Mahmoodi, N. M., Arami, M., Mazaheri, F., & Rahimi, S. (2010). Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production, 18(2), 146-151.
[12] Teh, T. K., Toh, S. L., & Goh, J. C. (2010). Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties. Biomedical Materials, 5(3), 035008.
[13] Vyas, S. K., & Shukla, S. R. (2016). Comparative study of degumming of silk varieties by different techniques. The Journal of the Textile Institute, 107(2), 191-199.
[14] Kutlu, B. (2020). Comparison of effects of several oxygen containing low frequency plasmas on the removal of silk sericin layer of raw silk fabrics. Tekstil ve Mühendis, 27(117), 41-47.
[15] Stenton, M., Houghton, J. A., Kapsali, V., & Blackburn, R. S. (2021). The potential for regenerated protein fibres within a circular economy: Lessons from the past can inform sustainable innovation in the textiles industry. Sustainability, 13(4), 2328.
[16] Eren, S., & Yetişir, İ. (2018). Ozone bleaching of woven cotton fabric. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(7), 1245-1248.
[17] Eren, H. A., Yiğit, İ., Eren, S., & Avinc, O. (2020). Ozone: an alternative oxidant for textile applications. Sustainability in the Textile and Apparel Industries: Production Process Sustainability, 81-98.
[18] Yigit, I., Eren, S., & Eren, H. A. (2018). Ozone utilisation for discharge printing of reactive dyed cotton. Coloration Technology, 134(1), 13-23.
[19] Gulrajani, M. L. (Ed.). (1988). Silk dyeing, printing, and finishing. Department of Textile Technology, Indian Institute of Technology.
[20] Hōjō, N. (2000). Structure of silk yarn. (No Title).
[21] Sargunamani, D., & Selvakumar, N. (2006). A study on the effects of ozone treatment on the properties of raw and degummed mulberry silk fabrics. Polymer degradation and stability, 91(11), 2644-2653.
[22] Langlais, B., Reckhow, D. A., & Brink, D. R. (Eds.). (2019). Ozone in water treatment: application and engineering. Routledge.
[23] Balcı, N., Ömeroğulları, Z., Kut, D., Eren, H. (2015). Effects of plasma and ozone treatments on tensile and whiteness properties of 100% silk. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2), 43-56.
[24] Sargunamani, D., & Selvakumar, N. (2007). Effects of ozone treatment on the properties of raw and degummed tassar silk fabrics. Journal of Applied Polymer Science, 104(1), 147-155.
[25] Tarakçıoğlu, I. (1979). Tekstil terbiyesi ve Makinaları. Ege Üniversitesi.
Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi
Ozon, oksidatif çevreci bir gaz olmasıyla bilinen bir bileşiktir ve tekstil endüstrisinde kullanılması, sürdürülebilir tekstil uygulamalarında önemli bir potansiyele işaret etmektedir. İpek lifi, serisin ve fibroin proteininden oluşan önemli ve kıymetli bir doğal liftir. Bu çalışmada, ham ipek kumaşlarına uygulanan 15 dakikalık ozonlama sürelerinin nötr, asidik ve bazik ortamlarda meydana getirdiği etkiler değerlendirilmiştir. Numunelere ağırlık kaybı, beyazlık-sarılık, hidrofilite ve mukavemet testleri yapılmış ve sonuçlar incelenmiştir. Sonuçlar, ozonlama işleminin etkilerini değerlendirerek, ağırlık kaybı, beyazlık-sarılık ve mukavemet açılarından en etkili ortamın nötr ortam olduğu tespit edilmiştir.
[1] Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 101271.
[2] Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials, 6, 226.
[3] Asakura, T., Kametani, S., & Suzuki, Y. (2002). Silk. Encyclopedia of polymer science and technology, 1-19.
[4] Arango, M. C., Montoya, Y., Peresin, M. S., Bustamante, J., & Álvarez-López, C. (2021). Silk sericin as a biomaterial for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(16), 1115-1129.
[5] Reddy, N. (2020). New developments in degumming silk. Silk Mater Process Appl.
[6] Uddin, F. (2019). Introductory chapter: textile manufacturing processes. In Textile manufacturing processes. IntechOpen.
[7] Biswal, B., Dan, A. K., Sengupta, A., Das, M., Bindhani, B. K., Das, D., & Parhi, P. K. (2022). Extraction of silk fibroin with several sericin removal processes and its importance in tissue engineering: A review. Journal of Polymers and the Environment, 30(6), 2222-2253.
[8] Mondal, M., Trivedy, K., & NIRMAL, K. S. (2007). The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review.
[9] Aniş, P., Çapar, G., Toprak, T., & Yener, E. (2016). Sericin removal from silk fibers with eco-friendly alternative methods. Textile and Apparel, 26(4), 368-374.
[10] Freddi, G., Mossotti, R., & Innocenti, R. (2003). Degumming of silk fabric with several proteases. Journal of Biotechnology, 106(1), 101-112.
[11] Mahmoodi, N. M., Arami, M., Mazaheri, F., & Rahimi, S. (2010). Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production, 18(2), 146-151.
[12] Teh, T. K., Toh, S. L., & Goh, J. C. (2010). Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties. Biomedical Materials, 5(3), 035008.
[13] Vyas, S. K., & Shukla, S. R. (2016). Comparative study of degumming of silk varieties by different techniques. The Journal of the Textile Institute, 107(2), 191-199.
[14] Kutlu, B. (2020). Comparison of effects of several oxygen containing low frequency plasmas on the removal of silk sericin layer of raw silk fabrics. Tekstil ve Mühendis, 27(117), 41-47.
[15] Stenton, M., Houghton, J. A., Kapsali, V., & Blackburn, R. S. (2021). The potential for regenerated protein fibres within a circular economy: Lessons from the past can inform sustainable innovation in the textiles industry. Sustainability, 13(4), 2328.
[16] Eren, S., & Yetişir, İ. (2018). Ozone bleaching of woven cotton fabric. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(7), 1245-1248.
[17] Eren, H. A., Yiğit, İ., Eren, S., & Avinc, O. (2020). Ozone: an alternative oxidant for textile applications. Sustainability in the Textile and Apparel Industries: Production Process Sustainability, 81-98.
[18] Yigit, I., Eren, S., & Eren, H. A. (2018). Ozone utilisation for discharge printing of reactive dyed cotton. Coloration Technology, 134(1), 13-23.
[19] Gulrajani, M. L. (Ed.). (1988). Silk dyeing, printing, and finishing. Department of Textile Technology, Indian Institute of Technology.
[20] Hōjō, N. (2000). Structure of silk yarn. (No Title).
[21] Sargunamani, D., & Selvakumar, N. (2006). A study on the effects of ozone treatment on the properties of raw and degummed mulberry silk fabrics. Polymer degradation and stability, 91(11), 2644-2653.
[22] Langlais, B., Reckhow, D. A., & Brink, D. R. (Eds.). (2019). Ozone in water treatment: application and engineering. Routledge.
[23] Balcı, N., Ömeroğulları, Z., Kut, D., Eren, H. (2015). Effects of plasma and ozone treatments on tensile and whiteness properties of 100% silk. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 20(2), 43-56.
[24] Sargunamani, D., & Selvakumar, N. (2007). Effects of ozone treatment on the properties of raw and degummed tassar silk fabrics. Journal of Applied Polymer Science, 104(1), 147-155.
[25] Tarakçıoğlu, I. (1979). Tekstil terbiyesi ve Makinaları. Ege Üniversitesi.
Eren, S., & Akarsu Özenç, A. (2023). Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi. Uluslararası Bilim Teknoloji Ve Tasarım Dergisi, 4(2), 66-75.
AMA
Eren S, Akarsu Özenç A. Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. Aralık 2023;4(2):66-75.
Chicago
Eren, Semiha, ve Aliye Akarsu Özenç. “Ozonlama İşleminin Ham İpek Kumaşların Fiziksel Ve Mekanik Özelliklerine Etkisinin İncelenmesi”. Uluslararası Bilim Teknoloji Ve Tasarım Dergisi 4, sy. 2 (Aralık 2023): 66-75.
EndNote
Eren S, Akarsu Özenç A (01 Aralık 2023) Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 4 2 66–75.
IEEE
S. Eren ve A. Akarsu Özenç, “Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi”, Uluslararası Bilim Teknoloji ve Tasarım Dergisi, c. 4, sy. 2, ss. 66–75, 2023.
ISNAD
Eren, Semiha - Akarsu Özenç, Aliye. “Ozonlama İşleminin Ham İpek Kumaşların Fiziksel Ve Mekanik Özelliklerine Etkisinin İncelenmesi”. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 4/2 (Aralık 2023), 66-75.
JAMA
Eren S, Akarsu Özenç A. Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. 2023;4:66–75.
MLA
Eren, Semiha ve Aliye Akarsu Özenç. “Ozonlama İşleminin Ham İpek Kumaşların Fiziksel Ve Mekanik Özelliklerine Etkisinin İncelenmesi”. Uluslararası Bilim Teknoloji Ve Tasarım Dergisi, c. 4, sy. 2, 2023, ss. 66-75.
Vancouver
Eren S, Akarsu Özenç A. Ozonlama İşleminin Ham İpek Kumaşların Fiziksel ve Mekanik Özelliklerine Etkisinin İncelenmesi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. 2023;4(2):66-75.