Research Article
BibTex RIS Cite

A Comparison of the Artificial Neural Network with Classical Methods in Corporate Credit Scoring

Year 2019, , 207 - 246, 31.12.2019
https://doi.org/10.26650/ISTJECON2019-0021

Abstract

The failure of banks to correctly analyze the credit worthiness of their customers has devastating consequences. Therefore, the importance of credit scoring in the banking sector has become a major field of research in recent years. There are some methods such as logistic regression, linear regression, discriminant analysis and artificial neural networks for credit scoring. The subject of this research is to evaluate the performance of machine learning and logistic regression models on credit scoring by comparison. In this study, it is aimed to develop a scorecard model in which banks can be exposed to a minimum level of credit risk by comparing the logistic regression and artificial neural network methods which are two of these methods. Although there are studies on the comparison of credit scoring models in the literature, the studies have been conducted through retail portfolios and a sample that covers a maximum of 4 years. Unlike the studies in the literature, this research was conducted through corporate firms and a larger sample than the studies in the literature. The result of the study indicated that artificial neural networks which have higher success than logistic regression on the development sample, saw lower success on the out of sample data. Thus, while artificial neural networks show higher performance, it is concluded that logistic regression provides more consistent results, and it is thought that artificial neural networks can produce more consistent results by optimization of the iteration processes.

References

  • Abdou, H. A., & Pointon, J. (2011). Credit Scoring, Statistical Tecniques and Evaluatiın Criteria: A Review of the Literature. Intelligent Systems in Accounting, Finance & Management, 18(2-3), 59– 88.
  • Abdou, H., El-Masry, A., & Pointon, J. (2007). On the Applicability of Credit Scoring Models in Egyptian Banks. Banks and Bank Systems, 2(1), 4–20.
  • Abdou, H., Pointon, J., & El-Masry, A. (2008). Neural Nets versus Conventional Techniques in Credit Scoring in Egyptian Banking. Expert Systems with Applications, 35, 1275–1292.
  • Al Doori, M., & Beyrouti, B. (2014). Credit Scoring Model Based on Back Propagation Neural Network Using Various Activation and Error Function. International Journal of Computer Science and Network Security, 14(3), 16–24.
  • Alavala, C. (2007). Fuzzy Logic and Neural Networks. India: New Age International Publishers.
  • Ataseven, B. (2013). Yapay sinir ağları ile öngörü modellemesi. Öneri Dergisi, 10(39), 101–115.
  • Ballı, M. T. (2014). Yapay sinir ağları ile talep tahmini ve gıda sektöründe uygulanması. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Bayır, F. (2006). Yapay sinir ağları ve tahmin modellemesi üzerine bir uygulama. İstanbul: (Yüksek lisans tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. Erişim Adresi: http://acikerisim. istanbul.edu.tr/bitstream/handle/123456789/26274/41491.pdf?sequence=1&isAllowed=y
  • Bekhet, H., & Kamel Eletter, S. (2014). Credit risk assessment model for Jordanian commercial banks: Neuralscoring approach. Review of Development Finance, 4, 20–28.
  • Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press.
  • Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39, 3446–3453.
  • Budak, H., & Erpolat, S. (2012). Kredi Riski Tahmininde Yapay Sinir Ağları ve Lojistik Regresyon Analizi Karşılaştırılması. Online Academic Journal of Information Technology, 3, 23–30.
  • Chih-Fong, T., & Jhen-Wei, W. (tarih yok). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring.
  • Çevik, K., & Dandıl, E. (2012). Bilişim Teknolojileri Dergisi, 5(1), 19–28.
  • Demirbulut, Y., Aktaş, M., Kalıpsız, O., & Bayracı, S. (2017). İstatistiksel ve Makine Öğrenimi Yöntemleriyle Kredi Skorlama. CEUR-WS (s. 273-284). Antalya: Turkish National Software Engineering Symposium.
  • Desai, V., Crook, J., & Jr. Overstreet, G. (1996). A Comparison of Neural Networks and Linear Scoring Models in the Credit Union Environment. European Journal of Operational Research, 95, 24–37.
  • Dinçer, H., Hacıoğlu, Ü., & Yüksel, S. (2016). Performance Assessment of Deposit Banks with CAMELS Analysis using Fuzzy ANP-MOORA Approaches and an Application on Turkish Banking Sector. Asian Research Consortium, 6(2), 32–56.
  • Donel, B. (2012). Yapay Sinir Ağları Yöntemiyle Kredi Skorlama. (Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Ersoy, E., & Karal, Ö. (2012). Yapay Sinir Ağları ve İnsan Beyni. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 1(2), 188–205.
  • Han, L., Han, L., & Zhao, H. (2013). Orthogonal support vector machine for credit scoring. Engineering Applications of Artificial Intelligence, 26(2), 669–936.
  • Hooman, A., Marthandan, G., Wan Yusoff, W., Omid, M., & Karamizadeh, S. (2016). Statistical and data mining methods in credit scoring. The Journal of Developing Areas, 50(5), 371–381.
  • Irwin, R. (1965). Credit Management Handbook, National Associotion of Credit Management. Oxford: Credit Research Foundation. Jensen, H. (1992). Using Neural Networks for Credit Scoring. Managerial Finance, 18(6), 15–26.
  • Kamuyu Aydınlatma Platformu. (2019). KAP Yatımcı Kuruluşlar. 09/28/2019. Erişim Adresi: https:// www.kap.org.tr/tr/sirketler/YK
  • Kangal, D. P. (2017). Kredi skorlaması ve kullanılan yöntemlerin karşılaştırılmasına yönelik bir uygulama. (Yüksek lisans tezi). Bahçeşehir Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Karimi, A. (2014). Credit Risk Modeling for Commercial Banks. International Journal of Academic Research in Accounting, Finance and Management Sciences, 4(3), 187–192.
  • Keskenler, E. F., & Keskenler, M. F. (2017). Geçmişten Günümüze Yapay Sinir Ağları ve Tarihçesi.
  • Takvim-i Vekayi, 5(2), 8–18. Keskinkılıç, T. (2008). Temerrüt Olasılığının Tespitine İlişkin Ampirik Bir Çalışma. (Yüksek lisans tezi). Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Kılıç, S. (2015). Binary logistic regression analysis. Journal of Mood Disorders, 5(4), 191–194. doi:10.5455/jmood.20151202122141
  • Koç, S. (2018). Lojistik Regresyon Yöntemi ile Kredi Skorlama Uygulaması. (Yüksek Lisans Tezi). Kadir Has Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Kurtaran Çelik, M. (2010). Bankaların Finansal Başarısızlıklarının Geleneksel ve Yeni Yöntemlerle Öngörüsü. Yönetim ve Ekonomi, 17(2), 129–143.
  • Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based Learning medium: the Role of Extrinsic and Intrinsic Motivation. Information & Management, 42, 1095–1104.
  • Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23, 245–254.
  • Malhotra, R., & Malhotra, D. (2002). Differentiating Between Good Credits and Bad Credits Using Neuro-fuzzy Systems. European Journal of Operational Research, 136, 190–211.
  • Marques, A., García, V., & Sánchez, J. (2012). Exploring The Behaviour of Base Classifiers in Credit Scoring Ensembles. Expert Systems with Applications, 39, 10244–10250.
  • Marques, G., & Marques, S. (2013). A literature review on the application of evolutionary computing to credit scoring. Journal of the Operational Reserch Society, 64, 1384–1399.
  • Merkez Bankası. (2019, 09 01). Elektronik Veri Dağıtım Servisi. 09/09/2019. Erişim Adresi: https:// evds2.tcmb.gov.tr: https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket/#collapse_4
  • Niklis, D., Doumpos, M., & Zopounidis, C. (2012). Combining Market and Accounting-based Models for Credit Scoring Using a Classification Scheme Based on Support Vector Machines. Financial Engineering Laboratory, 1–28.
  • Öker, A. (2007). Ticari bankalarda kredi ve kredi riski yönetimi-bir uygulama. (Doktora tezi). Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. Erişim Adresi: http://www.tk.org.tr/APA/apa_2.pdf
  • Öztemel, E. (2012). Yapay Sinir Ağları. İstanbul: Papatya Yayıncılık.
  • Pacelli, V., & Azzollini, M. (2011). An Artificial Neural Network Approach for Credit Risk Management. Journal of Intelligent Learning Systems and Applications, 3, 103–112. doi:10.4236/ jilsa.2011.32012
  • Ramchoun, H., Janati Idrissi, M., Ghanou, Y., & Ettaouil, M. (2016). Multilayer Perceptron: Architecture Optimization and Training. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 26–30. doi:10.9781/ijimai.2016.415
  • Řezáč,, M., & Řezáč, F. (2011). How to Measure the Quality of Credit Scoring Models. Finance a úvěr: Czech Journal of Economics and Finance, 61(5), 486–507.
  • Soni, A., & Abdullahi, A. U. (2015). Using Neural Networks for Credit Scoring. International Journal of Science, Tecnology&Management, 04(05), 26–31.
  • Soydemir, S. (2019). Bankacılık Sermaye Yeterliliği ve Yeni Ekonomi Programı. Ufuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 301–325.
  • Taylan, D., & Aydın, T. (2018). The Trend Analysis of Lakes Region Precipitation Data in Turkey. Cumhuriyet Sciences Journal, 39(1), 258–273.
  • Tsai, C.-F., & Wu, J.-W. (2008). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. Expert Systems with Applications, 34, 2639–2649.
  • Türkiye Bankalar Birliği. (09.09.2019). Türkiye Bankalar Birliği Risk Merkezi Aylık Bülten Haziran 2019. Erişim Adresi: https://www.riskmerkezi.org/Content/Upload/istatistikiraporlar/ekler/1926/Risk_ Merkezi_Aylik_Bulten_Ozeti_Haziran_2019.pdf
  • Türkiye Bankalar Birliği Çalışma Grubu. (2006). Kredi Riski Modelleri. Bankacılar Dergisi, 57, 33–66. 09.09.2019. Erişim Adresi: https://www.tbb.org.tr/Dosyalar/Arastirma_ve_Raporlar/kredi_riski_ modelleri.pdf
  • Uruş, A. (2019). Finansal Krizler Sonrası Uygulanan Regülasyonlar ve Etkinliği. Manisa Celal Bayar Üniversitesi İ.İ.B.F., 26(1), 32–48.
  • West, D. (2000). Neural network credit scoring models. Computers & Operations Reserch, 27, 1131–1152.
  • Yakut, E., & Elmas, B. (2013). işletmenin Finansal Başarısızlığının Veri Madenciliği ve Diskriminant Analizi Modelleri ile Tahmin Edilmesi. Afyon Kocatepe Üniversitesi, İİBF Dergisi, 15(1), 261–280.
  • Zekic-Susac, M., Sarlija, N., & Bensic, M. (2005). Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models. Intelligent Systems in Accounting, Finance & Management: International Journal, 13(3), 133–150.
  • Zhao, Z., Xu, S., Kang, B., Kabir, M., Liu, Y., & Wasinger, R. (2015). Investigation and improvement of multi-layer perception neural networks for credit scoring. Expert Systems with Applications, 42, 3508–3516.
  • Zhu, Y., Xie, C., Sun, B., Wang, G.-J., & Yan, X.-G. (2016). Predicting China’s SME Credit Risk in Supply Chain Financing by Logistic Regression, Artificial Neural Network and Hybrid Models. Sustainability, 8(433), 1–17.

Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması

Year 2019, , 207 - 246, 31.12.2019
https://doi.org/10.26650/ISTJECON2019-0021

Abstract

Bankaların, müşterilerinin kredi değerliliğini doğru bir şekilde analiz etmemeleri yıkıcı sonuçlar doğurmaktadır. Bu nedenle, bankacılık sektöründe kredi skorlamasının önemi son yıllarda büyük bir araştırma alanı haline gelmiştir. Kredi değerliliğinin skorlanması için lojistik regresyon, doğrusal regresyon, diskriminant analizi ve yapay sinir ağları gibi yöntemler mevcuttur. Bu araştırmanın konusu makine öğrenmesi ve lojistik regresyon modellerinin kredi skorlaması modelindeki performanslarınnı kıyaslama yoluyla değerlendirmektir. Bu çalışma ile klasik yöntemlerle yapay sinir ağlarını karşılaştırarak, bankaların kredi riskine en az düzeyde maruz kalabilecekleri bir skorkart modeli geliştirilmesi amaçlanmıştır. Literatürde kredi skorlaması modellerinin kıyaslanmasına ilişkin çalışmalar mevcut olmakla birlikte, çalışmalar perakende portföyler üzerinden ve en fazla 4 yılı kapsayan bir örneklem üzerinden yapılmıştır. Araştırma literatürdeki çalışmalardan farklı olarak kurumsal firmalar üzerinden ve literatürdeki çalışmalara göre daha geniş bir örneklem üzerinden ele alınmıştır. Çalışma sonucunda geliştirme örnekleminde daha yüksek başarı sergileyen yapay sinir ağlarının, örneklem dışı veri seti üzerinde lojistik regresyondan daha düşük bir performans sergilediği görülmüştür. Böylece yapay sinir ağları yüksek performans gösterse de, lojistik regresyonun daha tutarlı sonuçlar verdiği bulgusuna ulaşılmakla birlikte yapay sinir ağlarının iterasyon süreçlerinde optimizasyon yapılması ile daha tutarlı sonuçlar üretebileceği düşünülmektedir.

References

  • Abdou, H. A., & Pointon, J. (2011). Credit Scoring, Statistical Tecniques and Evaluatiın Criteria: A Review of the Literature. Intelligent Systems in Accounting, Finance & Management, 18(2-3), 59– 88.
  • Abdou, H., El-Masry, A., & Pointon, J. (2007). On the Applicability of Credit Scoring Models in Egyptian Banks. Banks and Bank Systems, 2(1), 4–20.
  • Abdou, H., Pointon, J., & El-Masry, A. (2008). Neural Nets versus Conventional Techniques in Credit Scoring in Egyptian Banking. Expert Systems with Applications, 35, 1275–1292.
  • Al Doori, M., & Beyrouti, B. (2014). Credit Scoring Model Based on Back Propagation Neural Network Using Various Activation and Error Function. International Journal of Computer Science and Network Security, 14(3), 16–24.
  • Alavala, C. (2007). Fuzzy Logic and Neural Networks. India: New Age International Publishers.
  • Ataseven, B. (2013). Yapay sinir ağları ile öngörü modellemesi. Öneri Dergisi, 10(39), 101–115.
  • Ballı, M. T. (2014). Yapay sinir ağları ile talep tahmini ve gıda sektöründe uygulanması. (Yüksek lisans tezi). Yıldız Teknik Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Bayır, F. (2006). Yapay sinir ağları ve tahmin modellemesi üzerine bir uygulama. İstanbul: (Yüksek lisans tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. Erişim Adresi: http://acikerisim. istanbul.edu.tr/bitstream/handle/123456789/26274/41491.pdf?sequence=1&isAllowed=y
  • Bekhet, H., & Kamel Eletter, S. (2014). Credit risk assessment model for Jordanian commercial banks: Neuralscoring approach. Review of Development Finance, 4, 20–28.
  • Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press.
  • Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39, 3446–3453.
  • Budak, H., & Erpolat, S. (2012). Kredi Riski Tahmininde Yapay Sinir Ağları ve Lojistik Regresyon Analizi Karşılaştırılması. Online Academic Journal of Information Technology, 3, 23–30.
  • Chih-Fong, T., & Jhen-Wei, W. (tarih yok). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring.
  • Çevik, K., & Dandıl, E. (2012). Bilişim Teknolojileri Dergisi, 5(1), 19–28.
  • Demirbulut, Y., Aktaş, M., Kalıpsız, O., & Bayracı, S. (2017). İstatistiksel ve Makine Öğrenimi Yöntemleriyle Kredi Skorlama. CEUR-WS (s. 273-284). Antalya: Turkish National Software Engineering Symposium.
  • Desai, V., Crook, J., & Jr. Overstreet, G. (1996). A Comparison of Neural Networks and Linear Scoring Models in the Credit Union Environment. European Journal of Operational Research, 95, 24–37.
  • Dinçer, H., Hacıoğlu, Ü., & Yüksel, S. (2016). Performance Assessment of Deposit Banks with CAMELS Analysis using Fuzzy ANP-MOORA Approaches and an Application on Turkish Banking Sector. Asian Research Consortium, 6(2), 32–56.
  • Donel, B. (2012). Yapay Sinir Ağları Yöntemiyle Kredi Skorlama. (Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Ersoy, E., & Karal, Ö. (2012). Yapay Sinir Ağları ve İnsan Beyni. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 1(2), 188–205.
  • Han, L., Han, L., & Zhao, H. (2013). Orthogonal support vector machine for credit scoring. Engineering Applications of Artificial Intelligence, 26(2), 669–936.
  • Hooman, A., Marthandan, G., Wan Yusoff, W., Omid, M., & Karamizadeh, S. (2016). Statistical and data mining methods in credit scoring. The Journal of Developing Areas, 50(5), 371–381.
  • Irwin, R. (1965). Credit Management Handbook, National Associotion of Credit Management. Oxford: Credit Research Foundation. Jensen, H. (1992). Using Neural Networks for Credit Scoring. Managerial Finance, 18(6), 15–26.
  • Kamuyu Aydınlatma Platformu. (2019). KAP Yatımcı Kuruluşlar. 09/28/2019. Erişim Adresi: https:// www.kap.org.tr/tr/sirketler/YK
  • Kangal, D. P. (2017). Kredi skorlaması ve kullanılan yöntemlerin karşılaştırılmasına yönelik bir uygulama. (Yüksek lisans tezi). Bahçeşehir Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Karimi, A. (2014). Credit Risk Modeling for Commercial Banks. International Journal of Academic Research in Accounting, Finance and Management Sciences, 4(3), 187–192.
  • Keskenler, E. F., & Keskenler, M. F. (2017). Geçmişten Günümüze Yapay Sinir Ağları ve Tarihçesi.
  • Takvim-i Vekayi, 5(2), 8–18. Keskinkılıç, T. (2008). Temerrüt Olasılığının Tespitine İlişkin Ampirik Bir Çalışma. (Yüksek lisans tezi). Gazi Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Kılıç, S. (2015). Binary logistic regression analysis. Journal of Mood Disorders, 5(4), 191–194. doi:10.5455/jmood.20151202122141
  • Koç, S. (2018). Lojistik Regresyon Yöntemi ile Kredi Skorlama Uygulaması. (Yüksek Lisans Tezi). Kadir Has Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Kurtaran Çelik, M. (2010). Bankaların Finansal Başarısızlıklarının Geleneksel ve Yeni Yöntemlerle Öngörüsü. Yönetim ve Ekonomi, 17(2), 129–143.
  • Lee, M. K., Cheung, C. M., & Chen, Z. (2005). Acceptance of Internet-based Learning medium: the Role of Extrinsic and Intrinsic Motivation. Information & Management, 42, 1095–1104.
  • Lee, T.-S., Chiu, C.-C., Lu, C.-J., & Chen, I.-F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23, 245–254.
  • Malhotra, R., & Malhotra, D. (2002). Differentiating Between Good Credits and Bad Credits Using Neuro-fuzzy Systems. European Journal of Operational Research, 136, 190–211.
  • Marques, A., García, V., & Sánchez, J. (2012). Exploring The Behaviour of Base Classifiers in Credit Scoring Ensembles. Expert Systems with Applications, 39, 10244–10250.
  • Marques, G., & Marques, S. (2013). A literature review on the application of evolutionary computing to credit scoring. Journal of the Operational Reserch Society, 64, 1384–1399.
  • Merkez Bankası. (2019, 09 01). Elektronik Veri Dağıtım Servisi. 09/09/2019. Erişim Adresi: https:// evds2.tcmb.gov.tr: https://evds2.tcmb.gov.tr/index.php?/evds/serieMarket/#collapse_4
  • Niklis, D., Doumpos, M., & Zopounidis, C. (2012). Combining Market and Accounting-based Models for Credit Scoring Using a Classification Scheme Based on Support Vector Machines. Financial Engineering Laboratory, 1–28.
  • Öker, A. (2007). Ticari bankalarda kredi ve kredi riski yönetimi-bir uygulama. (Doktora tezi). Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul. Erişim Adresi: http://www.tk.org.tr/APA/apa_2.pdf
  • Öztemel, E. (2012). Yapay Sinir Ağları. İstanbul: Papatya Yayıncılık.
  • Pacelli, V., & Azzollini, M. (2011). An Artificial Neural Network Approach for Credit Risk Management. Journal of Intelligent Learning Systems and Applications, 3, 103–112. doi:10.4236/ jilsa.2011.32012
  • Ramchoun, H., Janati Idrissi, M., Ghanou, Y., & Ettaouil, M. (2016). Multilayer Perceptron: Architecture Optimization and Training. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 26–30. doi:10.9781/ijimai.2016.415
  • Řezáč,, M., & Řezáč, F. (2011). How to Measure the Quality of Credit Scoring Models. Finance a úvěr: Czech Journal of Economics and Finance, 61(5), 486–507.
  • Soni, A., & Abdullahi, A. U. (2015). Using Neural Networks for Credit Scoring. International Journal of Science, Tecnology&Management, 04(05), 26–31.
  • Soydemir, S. (2019). Bankacılık Sermaye Yeterliliği ve Yeni Ekonomi Programı. Ufuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 301–325.
  • Taylan, D., & Aydın, T. (2018). The Trend Analysis of Lakes Region Precipitation Data in Turkey. Cumhuriyet Sciences Journal, 39(1), 258–273.
  • Tsai, C.-F., & Wu, J.-W. (2008). Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. Expert Systems with Applications, 34, 2639–2649.
  • Türkiye Bankalar Birliği. (09.09.2019). Türkiye Bankalar Birliği Risk Merkezi Aylık Bülten Haziran 2019. Erişim Adresi: https://www.riskmerkezi.org/Content/Upload/istatistikiraporlar/ekler/1926/Risk_ Merkezi_Aylik_Bulten_Ozeti_Haziran_2019.pdf
  • Türkiye Bankalar Birliği Çalışma Grubu. (2006). Kredi Riski Modelleri. Bankacılar Dergisi, 57, 33–66. 09.09.2019. Erişim Adresi: https://www.tbb.org.tr/Dosyalar/Arastirma_ve_Raporlar/kredi_riski_ modelleri.pdf
  • Uruş, A. (2019). Finansal Krizler Sonrası Uygulanan Regülasyonlar ve Etkinliği. Manisa Celal Bayar Üniversitesi İ.İ.B.F., 26(1), 32–48.
  • West, D. (2000). Neural network credit scoring models. Computers & Operations Reserch, 27, 1131–1152.
  • Yakut, E., & Elmas, B. (2013). işletmenin Finansal Başarısızlığının Veri Madenciliği ve Diskriminant Analizi Modelleri ile Tahmin Edilmesi. Afyon Kocatepe Üniversitesi, İİBF Dergisi, 15(1), 261–280.
  • Zekic-Susac, M., Sarlija, N., & Bensic, M. (2005). Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models. Intelligent Systems in Accounting, Finance & Management: International Journal, 13(3), 133–150.
  • Zhao, Z., Xu, S., Kang, B., Kabir, M., Liu, Y., & Wasinger, R. (2015). Investigation and improvement of multi-layer perception neural networks for credit scoring. Expert Systems with Applications, 42, 3508–3516.
  • Zhu, Y., Xie, C., Sun, B., Wang, G.-J., & Yan, X.-G. (2016). Predicting China’s SME Credit Risk in Supply Chain Financing by Logistic Regression, Artificial Neural Network and Hybrid Models. Sustainability, 8(433), 1–17.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Research Article
Authors

Şahap Kavcıoğlu 0000-0003-4622-7668

Publication Date December 31, 2019
Submission Date October 4, 2019
Published in Issue Year 2019

Cite

APA Kavcıoğlu, Ş. (2019). Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması. İstanbul İktisat Dergisi, 69(2), 207-246. https://doi.org/10.26650/ISTJECON2019-0021
AMA Kavcıoğlu Ş. Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması. İstanbul İktisat Dergisi. December 2019;69(2):207-246. doi:10.26650/ISTJECON2019-0021
Chicago Kavcıoğlu, Şahap. “Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması”. İstanbul İktisat Dergisi 69, no. 2 (December 2019): 207-46. https://doi.org/10.26650/ISTJECON2019-0021.
EndNote Kavcıoğlu Ş (December 1, 2019) Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması. İstanbul İktisat Dergisi 69 2 207–246.
IEEE Ş. Kavcıoğlu, “Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması”, İstanbul İktisat Dergisi, vol. 69, no. 2, pp. 207–246, 2019, doi: 10.26650/ISTJECON2019-0021.
ISNAD Kavcıoğlu, Şahap. “Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması”. İstanbul İktisat Dergisi 69/2 (December 2019), 207-246. https://doi.org/10.26650/ISTJECON2019-0021.
JAMA Kavcıoğlu Ş. Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması. İstanbul İktisat Dergisi. 2019;69:207–246.
MLA Kavcıoğlu, Şahap. “Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması”. İstanbul İktisat Dergisi, vol. 69, no. 2, 2019, pp. 207-46, doi:10.26650/ISTJECON2019-0021.
Vancouver Kavcıoğlu Ş. Kurumsal Kredi Skorlamasında Klasik Yöntemlerle Yapay Sinir Ağı Karşılaştırması. İstanbul İktisat Dergisi. 2019;69(2):207-46.