Research Article
BibTex RIS Cite

The Impact of Environmental Technological Innovations on CO2Emissions: The Case of OECD Countries

Year 2021, , 569 - 590, 31.12.2021
https://doi.org/10.26650/ISTJECON2021-935480

Abstract

Global warming and climate change, caused by greenhouse gas emissions, have compelled all countries to reconsider their production factors. Developing technologies to reduce emission volumes has been one of the priority targets for countries. This study investigated the impact of environmental technological innovations on CO2 emissions in 18 OECD members. The panel generalized method of moments (GMM)was employed in the study to produce estimates for the period between 2005 and 2018. Energy consumption, economic growth (GDP), and technological innovation data were used as independent variables in the study, CO2 emissions were used as dependent variable, whereas the  number of patents preventing climate change was used as a technological innovation indicator. The analysis results showed that a 1% increase in patent applications for preventing climate change reduced CO2 emissions by 0.02%. However, a 1% increase in energy consumption caused an increase of 0.56% in CO2 emissions. Finally, the 1% increase in the GDP growth rate caused an increase of 0.002% in CO2 emissions.

References

  • Albino, V., Ardito, L., Dangelico, R.M. & Petruzzelli, A.M. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836-854.
  • Anderson, T.W. ve Hsiao, C. (1982). Formulation And Estimation Of Dynamic Models Using Panel Data, Journal of Econometrics, 18, 47-82.
  • Arellano, M., ve Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277-297.
  • Balestra, P. ve Nerlove, M. (1966). Pooling Cross Section and Time Series Data in the Estimation of Dynamic Model: The Demand for Natural Gas, Econometrica, 34(3), 585-612.
  • Baltagi, B. (2005). Econometric Analysis of Panel Data. John Wiley & Sons
  • Bindi, G. (2015). Technological innovation and the environment, An analysis based on patent counts (Master dissertation, Lund University, Sweeden). Retrieved from http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8981996&fileOId=8982016
  • Chen, Y. & Lee, C.C. (2020). Does technological innovation reduce CO2 emissions? Cross-country evidence. Journal of Cleaner Production, 263, 1-11.
  • Cheng, C., Ren, X., Dong, K., Dong, X. & Wang, Z. (2021). How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. Journal of Environmental Management, 280, 1-11.
  • Çağlayan Akay, E. (2018). Dinamik Panel Veri Modelleri, (Ed) Selahattin Güriş, Uygulamalı Panel Veri Ekonometrisi içinde (s. 114-120). İstanbul: Der Yayınları.
  • Dauda, L., Long, X., Mensah, C.N., Salman, M., Boamah, K.B., Ampon-Wireko, S. & Dogbe, C.S.K. (2021). Innovation, trade openness and CO2 emissions in selected countries in Africa. Journal of Cleaner Production, 281, 1-11.
  • Eom, T.H., Lee, S.H. & Xu, H. (2008). Introduction to Panel Data Analysis: Concepts and Practices. Miller, G.J. & Yang, K. (Eds.), Handbook of Research Methods in Public Administration (pp. 575-594). Middletown, Pennsylvania, ABD: CRC Press.
  • Erdoğan, S., Yıldırım, S., Yıldırım, D.Ç. & Gedikli, A. (2019 Kasım). G20 Ülkelerinde İnnovasyon ve CO2 Emisyonu. S. Erdoğan ve ark. (Ed.), Uluslararası Enerji Ekonomi ve Güvenlik Kongresi. Tam Metin Bildiriler Kitabı içinde (s. 193-202). İstanbul, Türkiye: Basım Pazıl Reklam, Danışmanlık, Matbaa ve Organizasyon.
  • Fernandez, Y.F., Lopez, M.A.F. & Blanco, B.O. (2018). Innovation for sustainability: The impact of R&D spending on CO2 emissions. Journal of Cleaner Production, 172, 3459-3467.
  • Gedik, Y. (2020). Sosyal, Ekonomik ve Çevresel Boyutlarla Sürdürülebilirlik ve Sürdürülebilir Kalkınma. International Journal of Economics, Politics, Humanities & Social Sciences, 3(3), 196-215.
  • Grossman, G., Krueger, A. (1991). Environmental Impacts of a North American Free Trade Agreement. NBER Working paper, 3914. National Bureau of Economic Research, Cambridge, MA.
  • Hashmi, R. & Alam, K. (2019). Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation. Journal of Cleaner Production, 231, 1100-1109.
  • Johnstone, N., Hascic, I. & Popp, D. (2010). Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environmental and Resource Economics, 45, 133-155.
  • Lin, B. & Zhu, J. (2019a). Determinants of renewable energy technological innovation in China under CO2 emissions constraint. Journal of Environmental Management, 247, 662-671.
  • Lin, B. & Zhu, J. (2019b). The role of renewable energy technological innovation on climate change: empirical evidence from China. Science of the Total Environment, 659, 1505–1512.
  • Mongo, M., Belaid, F. & Ramdani, B. (2021). The effects of environmental innovations on CO2 emissions: Empirical evidence from Europe. Environmental Science and Policy, 118, 1-9.
  • OECD-Organisation for Economic Co-operation and Development. (2015). Measuring environmental innovation using patent data. Paris: Ivan Hascic and Mauro Migotto.
  • Popp, D., Newell R.G. & Jaffe, A.B. (2010). Energy, the environment and technological change. Handbook of the Economics of Innovation, 2, 873-937.
  • Romer, P. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002-1037.
  • Schumpeter, J.A., 1934. The Theory of Economic Development: an Inquiry in to Profits. Capital, Credit, Interest, and the Business Cycle, vol. 55. Transaction publishers.
  • Stokey, N.L. (1998). Are there limits to growth?. International economic review, 39 (1), 1-31.
  • Tatoğlu, F.Y. (2013). İleri Panel Veri Analizi: Stata Uygulamalı (2.bs.). İstanbul: Beta.
  • Wang, Z. & Zhu, Y. (2020). Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Science of the Total Environment, 726, 1-14.
  • Yii, K.J. & Geetha, J. (2017). The nexus between technology innovation and CO2 emissions in Malaysia: Evidence from granger causality test. Energy Procedia, 105, 3118-3124.
  • Yu, Y. & Du, Y. (2019). Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’economy in China. Atmospheric Pollution Research, 10 (1), 152-161.
  • Zhang, Y.J., Peng, Y.L., Ma, C.Q. & Shen, B. (2017). Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy, 100, 18–28.

Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ

Year 2021, , 569 - 590, 31.12.2021
https://doi.org/10.26650/ISTJECON2021-935480

Abstract

Sera gazı emisyonlarının neden olduğu küresel ısınma ve iklim değişikliği tüm ülkeleri üretim faktörlerini yeniden gözden geçirmeye zorlamaktadır. Emisyon hacimlerini düşürücü teknolojilerin geliştirilmesi ülkeler için öncelikli hedeflerden biri olmuştur. Bu çalışmada çevresel teknolojik inovasyonların CO2 emisyonu üzerindeki etkisi OECD kurucu üyesi 18 ülke için araştırılmıştır. 2005-2018 yılları arası dönemin incelendiği çalışmada panel genelleştirilmiş momentler metodu (GMM) yönteminden yararlanılmıştır. Bağımlı değişken olarak CO2 emisyonunun kullanıldığı çalışmada enerji tüketimi, ekonomik büyüme (GSYH) ve teknolojik inovasyon verileri bağımsız değişken olarak kullanılmıştır. Teknolojik inovasyon göstergesi olarak iklim değişikliğini önleyici patent sayıları kullanılmıştır. Analiz sonuçlarına göre, iklim değişikliğini önlemeye yönelik patent başvurularında meydana gelen %1 düzeyinde artış CO2 emisyonunu %0.02 oranında azaltmaktadır. Diğer yandan enerji tüketiminde meydana gelen %1 düzeyindeki artış CO2 emisyonu üzerinde %0.56 oranında artışa neden olmaktadır. Son olarak GSYH büyüme hızında meydana gelen %1 düzeyindeki artış ise CO2 emisyonu üzerinde %0.001 oranında artışa neden olmaktadır.

References

  • Albino, V., Ardito, L., Dangelico, R.M. & Petruzzelli, A.M. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836-854.
  • Anderson, T.W. ve Hsiao, C. (1982). Formulation And Estimation Of Dynamic Models Using Panel Data, Journal of Econometrics, 18, 47-82.
  • Arellano, M., ve Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277-297.
  • Balestra, P. ve Nerlove, M. (1966). Pooling Cross Section and Time Series Data in the Estimation of Dynamic Model: The Demand for Natural Gas, Econometrica, 34(3), 585-612.
  • Baltagi, B. (2005). Econometric Analysis of Panel Data. John Wiley & Sons
  • Bindi, G. (2015). Technological innovation and the environment, An analysis based on patent counts (Master dissertation, Lund University, Sweeden). Retrieved from http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8981996&fileOId=8982016
  • Chen, Y. & Lee, C.C. (2020). Does technological innovation reduce CO2 emissions? Cross-country evidence. Journal of Cleaner Production, 263, 1-11.
  • Cheng, C., Ren, X., Dong, K., Dong, X. & Wang, Z. (2021). How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. Journal of Environmental Management, 280, 1-11.
  • Çağlayan Akay, E. (2018). Dinamik Panel Veri Modelleri, (Ed) Selahattin Güriş, Uygulamalı Panel Veri Ekonometrisi içinde (s. 114-120). İstanbul: Der Yayınları.
  • Dauda, L., Long, X., Mensah, C.N., Salman, M., Boamah, K.B., Ampon-Wireko, S. & Dogbe, C.S.K. (2021). Innovation, trade openness and CO2 emissions in selected countries in Africa. Journal of Cleaner Production, 281, 1-11.
  • Eom, T.H., Lee, S.H. & Xu, H. (2008). Introduction to Panel Data Analysis: Concepts and Practices. Miller, G.J. & Yang, K. (Eds.), Handbook of Research Methods in Public Administration (pp. 575-594). Middletown, Pennsylvania, ABD: CRC Press.
  • Erdoğan, S., Yıldırım, S., Yıldırım, D.Ç. & Gedikli, A. (2019 Kasım). G20 Ülkelerinde İnnovasyon ve CO2 Emisyonu. S. Erdoğan ve ark. (Ed.), Uluslararası Enerji Ekonomi ve Güvenlik Kongresi. Tam Metin Bildiriler Kitabı içinde (s. 193-202). İstanbul, Türkiye: Basım Pazıl Reklam, Danışmanlık, Matbaa ve Organizasyon.
  • Fernandez, Y.F., Lopez, M.A.F. & Blanco, B.O. (2018). Innovation for sustainability: The impact of R&D spending on CO2 emissions. Journal of Cleaner Production, 172, 3459-3467.
  • Gedik, Y. (2020). Sosyal, Ekonomik ve Çevresel Boyutlarla Sürdürülebilirlik ve Sürdürülebilir Kalkınma. International Journal of Economics, Politics, Humanities & Social Sciences, 3(3), 196-215.
  • Grossman, G., Krueger, A. (1991). Environmental Impacts of a North American Free Trade Agreement. NBER Working paper, 3914. National Bureau of Economic Research, Cambridge, MA.
  • Hashmi, R. & Alam, K. (2019). Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: a panel investigation. Journal of Cleaner Production, 231, 1100-1109.
  • Johnstone, N., Hascic, I. & Popp, D. (2010). Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environmental and Resource Economics, 45, 133-155.
  • Lin, B. & Zhu, J. (2019a). Determinants of renewable energy technological innovation in China under CO2 emissions constraint. Journal of Environmental Management, 247, 662-671.
  • Lin, B. & Zhu, J. (2019b). The role of renewable energy technological innovation on climate change: empirical evidence from China. Science of the Total Environment, 659, 1505–1512.
  • Mongo, M., Belaid, F. & Ramdani, B. (2021). The effects of environmental innovations on CO2 emissions: Empirical evidence from Europe. Environmental Science and Policy, 118, 1-9.
  • OECD-Organisation for Economic Co-operation and Development. (2015). Measuring environmental innovation using patent data. Paris: Ivan Hascic and Mauro Migotto.
  • Popp, D., Newell R.G. & Jaffe, A.B. (2010). Energy, the environment and technological change. Handbook of the Economics of Innovation, 2, 873-937.
  • Romer, P. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002-1037.
  • Schumpeter, J.A., 1934. The Theory of Economic Development: an Inquiry in to Profits. Capital, Credit, Interest, and the Business Cycle, vol. 55. Transaction publishers.
  • Stokey, N.L. (1998). Are there limits to growth?. International economic review, 39 (1), 1-31.
  • Tatoğlu, F.Y. (2013). İleri Panel Veri Analizi: Stata Uygulamalı (2.bs.). İstanbul: Beta.
  • Wang, Z. & Zhu, Y. (2020). Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Science of the Total Environment, 726, 1-14.
  • Yii, K.J. & Geetha, J. (2017). The nexus between technology innovation and CO2 emissions in Malaysia: Evidence from granger causality test. Energy Procedia, 105, 3118-3124.
  • Yu, Y. & Du, Y. (2019). Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’economy in China. Atmospheric Pollution Research, 10 (1), 152-161.
  • Zhang, Y.J., Peng, Y.L., Ma, C.Q. & Shen, B. (2017). Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy, 100, 18–28.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Research Article
Authors

Mehmet Akyol 0000-0002-1173-200X

Emrullah Mete 0000-0003-2240-9248

Publication Date December 31, 2021
Submission Date May 10, 2021
Published in Issue Year 2021

Cite

APA Akyol, M., & Mete, E. (2021). Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ. İstanbul İktisat Dergisi, 71(2), 569-590. https://doi.org/10.26650/ISTJECON2021-935480
AMA Akyol M, Mete E. Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ. İstanbul İktisat Dergisi. December 2021;71(2):569-590. doi:10.26650/ISTJECON2021-935480
Chicago Akyol, Mehmet, and Emrullah Mete. “Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ”. İstanbul İktisat Dergisi 71, no. 2 (December 2021): 569-90. https://doi.org/10.26650/ISTJECON2021-935480.
EndNote Akyol M, Mete E (December 1, 2021) Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ. İstanbul İktisat Dergisi 71 2 569–590.
IEEE M. Akyol and E. Mete, “Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ”, İstanbul İktisat Dergisi, vol. 71, no. 2, pp. 569–590, 2021, doi: 10.26650/ISTJECON2021-935480.
ISNAD Akyol, Mehmet - Mete, Emrullah. “Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ”. İstanbul İktisat Dergisi 71/2 (December 2021), 569-590. https://doi.org/10.26650/ISTJECON2021-935480.
JAMA Akyol M, Mete E. Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ. İstanbul İktisat Dergisi. 2021;71:569–590.
MLA Akyol, Mehmet and Emrullah Mete. “Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ”. İstanbul İktisat Dergisi, vol. 71, no. 2, 2021, pp. 569-90, doi:10.26650/ISTJECON2021-935480.
Vancouver Akyol M, Mete E. Çevresel Teknolojik İnovasyonların CO2 Emisyonu Üzerindeki Etkisi: OECD Ülkeleri Örneğ. İstanbul İktisat Dergisi. 2021;71(2):569-90.