Research Article
BibTex RIS Cite

Sağlık Kuruluşlarında Sürdürülebilir Atık Yönetimine İlişkin Değerlendirme Kriterlerinin Analizi

Year 2025, Volume: 24 Issue: 53, 421 - 447, 29.09.2025
https://doi.org/10.46928/iticusbe.1665685

Abstract

Uygun şekilde bertaraf edilmeyen tıbbi atıklar, insan sağlığının olumsuz yönde etkilenmesine, çevre sağlığının bozulmasına ve bulaşıcı hastalıkların artışına neden olmaktadır. Araştırma, İstanbul ilinde faaliyet gösteren 100 yatak üzeri 19 hastanede karar verici konumundaki uzmanlardan elde edilen verilerle gerçekleştirilmiştir. Sürdürülebilir tıbbi atık bertaraf yöntemlerinin seçiminde kullanılmak üzere Hastane Yöneticisi, Tıbbi Atık Yöneticisi, Otelcilik ve Destek Hizmetleri Müdürü ve Teknik Hizmetler Müdürü konumundaki uzmanlar tarafından 6 ana kriter ve 31 alt kriter değerlendirmiş olup; kriter önem derecelerinin belirlenmesi IMF-SWARA yöntemi ile yapılmıştır. 100 yatak üzeri 19 hastane için uzman görüşleri kapsamında elde edilen verilerin analizi sonucunda, en önemli ana kriter çevresel kriter ve emisyon kriteri iken; en az önemli kriter sosyal kriter olarak belirlenmiştir Kriterlerin global ağırlıklarının hesaplanması aşamasında 31 alt kriter içinde en önemli 5 kriter sırasıyla; çalışan riskleri, insan toksisitesi, koku, karasal ekotoksisite, gürültü olarak tespit edilmiştir. Çalışmanın bulguları sürdürülebilir tıbbi atık bertaraf yöntemleri ile ilgili çıkarımlar sunmaktadır. Ayrıca, görüşleri alınan uzman sayısının benzer nitelikteki makalelere kıyasla yüksek olması ile literatüre katkı sağlayacağı düşünülmektedir.

References

  • Adar, T., & Delice, E. K. (2019). New integrated approaches based on MC-HFLTS for healthcare waste treatment technology selection. Journal of Enterprise Information Management, 32(4), 688–711. https://doi.org/10.1108/JEIM-01-2019-0007
  • Adu, T. F., Mensah, L. D., Rockson, M. A. D., & Kemausuor, F. (2025). Decision support systems for waste-to-energy technologies: A systematic literature review of methods and future directions for sustainable implementation in Ghana. Heliyon, 11(3),1-21. https://doi.org/10.1016/j.heliyon.2025.e42353
  • Akpınar, M. E. (2022). Machine selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi Dergisi, 29(1), 107–119. https://doi.org/10.18657/yonveek.848811
  • Alamu, S. O., Wemida, A., Tsegaye, T., & Oguntimein, G. (2021). Sustainability assessment of municipal solid waste in Baltimore USA. Sustainability, 13(4), 1915. https://doi.org/10.3390/su13041915
  • Ansari, Z. N., Kant, R., & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473–494. https://doi.org/10.1080/19397038.2020.1758973
  • Amos, O. O., Abiodun, O. A., Olalekan, O. E., Opeodu, O. T., & Ademola, A. (2024). Evaluating urban service delivery in Lagos State Nigeria: A bid to enhance sustainable waste management. Discovery, 60, e7d1405. https://doi.org/10.54905/disssi.v60i334.e7d1405
  • Arıkan, E., Şimşit-Kalender, Z. T., & Vayvay, Ö. (2017). Solid waste disposal methodology selection using multi-criteria decision making methods and an application in Turkey. Journal of Cleaner Production, 142, 403–412. https://doi.org/10.1016/j.jclepro.2016.07.142
  • Askarian, M., Heidarpoor, P., & Assadian, O. (2010). A total quality management approach to healthcare waste management in Namazi Hospital, Iran. Waste Management, 30(11), 2321–2326. https://doi.org/10.1016/j.wasman.2010.06.020
  • Aung, T. S., Luan, S., & Xu, Q. (2019). Application of multi-criteria-decision approach for the analysis of medical waste management systems in Myanmar. Journal of Cleaner Production, 222, 733–745. https://doi.org/10.1016/j.jclepro.2019.03.049
  • Aydın, N. (2021). A comprehensive waste management simulation model for the assessment of waste segregation in the health sector. Environmental Engineering and Management Journal, 20(11), 1731–1738. http://www.eemj.icpm.tuiasi.ro/pdfs/vol20/no11/Full/3_86_Aydın_21.pdf
  • Badi, I., & Kridish, M. (2020). Landfill site selection using a novel FUCOM-CODAS model: A case study in Libya. Scientific African, 9, e00537, 1–10. https://doi.org/10.1016/j.sciaf.2020.e00537
  • Bakkaloğlu, E. B. (2022). Yaşam döngüsü analizi ile sürdürülebilir katı atık yönetimi: Kocaeli ili örneği (Tez No. 726774) [Yüksek lisans tezi, Sakarya Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Barbero, S., & Pallaro, A. (2017). Systemic design for sustainable healthcare. The Design Journal, 20, 2475-2484. https://doi.org/10.1080/14606925.2017.1352762
  • Bucătaru, C., Săvescu, D., Repanovici, A., Blaga, L., Coman, E., & Cocuz, M. E. (2021). The implications and effects of medical waste on development of sustainable society—A brief review of the literature. Sustainability, 13(6), 3300. https://doi.org/10.3390/su13063300
  • Büyüközkan, G., & Gocer, F. (2017). An intuitionistic fuzzy MCDM approach for effective hazardous waste management. Intelligence systems in environmental management: Theory and applications (s. 21–40) içinde. Springer, Cham. https://doi.org/10.1007/978-3-319-42993-9_2
  • Ciplak, N., & Barton, J. R. (2012). A system dynamics approach for healthcare waste management: A case study in Istanbul Metropolitan City, Turkey. Waste Management & Research, 30(6), 576–586. https://doi.org/10.1177/0734242X12443405
  • Chang, C., & Utama, D. N. (2020). Advanced fuzzy eco-DSM for medical waste treatment. ICIC Express Lett., 14, 1139-1146. http://dx.doi.org/10.24507/icicel.14.12.1139
  • Chang, H. W., Lin, Y. L., & Wey, W. M. (2024). Advancing sustainability: Development of an ESG evaluation framework for Taiwan's science parks. Challenges in Sustainability, 12(4), 255–272. https://doi.org/10.12924/cis2024.12040255
  • Çavmak, Ş., Çavmak, D., & Yaşa, E. (2024). Sağlık hizmetlerinde sürdürülebilirlik düzeyini belirleyen faktörlerin önceliklendirilmesi. Verimlilik Dergisi, 58(2), 263–282. https://doi.org/10.51551/verimlilik.1386655
  • Çıkmak, S. (2025). Sustainable 3PL Service Provider Selection in the Pharmaceutical Industry Using Fuzzy-Based SWARA and MAIRCA Methods. Abant Sosyal Bilimler Dergisi, 25(1), 306-333. https://doi.org/10.11616/asbi.1585792
  • Ertaş, H., & Güden, M. A. (2019). Hastanelerde tıbbi atık yönetimi. Sosyal Araştırmalar ve Yönetim Dergisi (1), 53–67. https://doi.org/10.35375/sayod.541876
  • Ghasemi, P., Mehdiabadi, A., Spulbar, C., & Birau, R. (2021). Ranking of sustainable medical tourism destinations in Iran: An integrated approach using fuzzy SWARA-PROMETHEE. Sustainability, 13(2), 683. https://doi.org/10.3390/su13020683
  • Gutierrez-Lopez, J., McGarvey, R. G., Costello, C., & Hall, D. M. (2023). Decision support frameworks in solid waste management: A systematic review of multi-criteria decision-making with sustainability and social indicators. Sustainability, 15(18), 13316. https://doi.org/10.3390/su151813316
  • Hasan, M. M., & Rahman, M. H. (2018). Assessment of healthcare waste management paradigms and its suitable treatment alternative: A case study. Journal of Environmental and Public Health, https://doi.org/10.1155/2018/6879751
  • Hashemkhani Zolfani, S., & Bahrami, M. (2014). Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technological and Economic Development of Economy, 20(3), 534-553. https://doi.org/10.3846/20294913.2014.881435
  • Hashemkhani Zolfani, S. H., Görçün, Ö. F., & Küçükönder, H. (2021). Evaluating logistics villages in Turkey using hybrid improved fuzzy SWARA (IMF SWARA) and fuzzy MABAC techniques. Technological and Economic Development of Economy, 27(6), 1359-1380. https://doi.org/10.3846/tede.2021.16004
  • Jiang, C., Ren, Z., Tian, Y., & Wang, K. (2012). Application of best available technologies on medical wastes disposal/treatment in China (with case study). Procedia Environmental Sciences, 16, 257–265. https://doi.org/10.1016/j.proenv.2012.10.036
  • Karabasevic, D., Zavadskas, E. K., Turskis, Z., & Stanujkic, D. (2016). The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica, 27(1), 49–65. https://doi.org/10.15388/Informatica.2016.76
  • Kargar, S., Paydar, M. M., & Safaei, A. S. (2020). A reverse supply chain for medical waste: A case study in Babol healthcare sector. Waste Management, 113, 197–209. https://doi.org/10.1016/j.wasman.2020.05.041
  • Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258.
  • Khatri, S., Shah, G. K., Bhandari, P., Koirala, S., Neupane, K., Bhattarai, N., ... & Neupane, D. (2025). Musculoskeletal disorders and other occupational health outcomes among sanitation workers in Nepal: A community-based cross-sectional survey exploring the risk factors, knowledge, and practices. BMC Public Health, 25(1), 1273. https://doi.org/10.1186/s12889-025-02236-0
  • Liu, H., Li, J., Zhang, Z., Cao, X., Zhu, J., & Chen, W. (2020). Establishing an interval-valued fuzzy decision-making method for sustainable selection of healthcare waste treatment technologies in the emerging economies. Journal of Material Cycles and Waste Management, 22, 501–514. https://doi.org/10.1007/s10163-019-00938-5
  • Liu, M., Cao, J., Liang, J., & Chen, M. (2020). Basic concept of epidemic-logistics. M. Liu, J. Cao, J. Liang, & M. Chen (Ed.), Epidemic-logistics modeling: A new perspective on operations research (s. 1–12) içinde. Springer. https://doi.org/10.1007/978-981-15-7990-0_1
  • Makan, A., & Fadili, A. (2020). Sustainability assessment of large-scale composting technologies using PROMETHEE method. Journal of Cleaner Production, 261, 121244. https://doi.org/10.1016/j.jclepro.2020.121244
  • Mardani, A., Nilashi, M., Zakuan, N., Loganathan, N., Soheilirad, S., Saman, M. Z. M., & Ibrahim, O. (2017). A systematic review and meta-analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Applied Soft Computing, 57, 265–292. https://doi.org/10.1016/j.asoc.2017.03.045
  • Manupati, V. K., Ramkumar, M., Baba, V., & Agarwal, A. (2021). Selection of the best healthcare waste disposal techniques during and post COVID-19 pandemic era. Journal of Cleaner Production, 281, 125175. https://doi.org/10.1016/j.jclepro.2020.125175
  • Mi, X., Tian, Y., & Kang, B. (2021). A hybrid multi-criteria decision making approach for assessing healthcare waste management technologies based on soft likelihood function and D-numbers. Applied Intelligence, 51, 1–20. https://doi.org/10.1007/s10489-021-02356-7
  • Nižetić, S., Djilali, N., Papadopoulos, A., & Rodrigues, J. J. (2019). Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. Journal of Cleaner Production, 231, 565–591. https://doi.org/10.1016/j.jclepro.2019.05.282
  • Olaifa, A., Govender, R. D., & Ross, A. J. (2018). Knowledge, attitudes and practices of healthcare workers about healthcare waste management at a district hospital in KwaZulu-Natal. South African Family Practice, 60(5), 137–145. https://doi.org/10.4102/safp.v60i5.4569
  • Qiu, Y. J., Bouraima, M. B., Badi, I., Stević, Ž., & Simic, V. (2024). A decision-making model for prioritizing low-carbon policies in climate change mitigation. Challanges in Sustainability, 12(1), 1-17. http://dx.doi.org/10.56578/cis120101
  • Oyewale, J. A., Tartibu, L. K., & Okokpujie, I. P. (2024). Decision analysis approaches on the collection methods of polyethylene terephthalate waste. Recycling, 9(6), 124. https://doi.org/10.3390/recycling9060124
  • Petrović, G., Mihajlović, J., Ćojbašić, Ž., Madić, M., & Marinković, D. (2019). Comparison of three fuzzy MCDM methods for solving the supplier selection problem. Facta Universitatis, Series: Mechanical Engineering, 17(3), 455–469. https://doi.org/10.22190/FUME190420039P
  • Perçin, S. (2019). An integrated fuzzy SWARA and fuzzy AD approach for outsourcing provider selection. Journal of Manufacturing Technology Management, 30(2), 531–552. https://doi.org/10.1108/JMTM-08-2018-0247
  • Pongrácz, E., & Pohjola, V. J. (2004). Re-defining waste, the concept of ownership and the role of waste management. Resources, Conservation and Recycling, 40(2), 141–153. https://doi.org/10.1016/S0921-3449(03)00057-0
  • Rafiee, A., Yaghmaeian, K., Hoseini, M., Parmy, S., Mahvi, A., Yunesian, M., ... & Nabizadeh, R. (2016). Assessment and selection of the best treatment alternative for infectious waste by modified Sustainability Assessment of Technologies methodology. Journal of Environmental Health Science and Engineering, 14(1), 1-14 https://doi.org/10.1186/s40201-016-0251-1
  • Rekik, S., Mensah, J. H. R., & Khaleel, M. (2024). Sustainable waste management in developing countries: Applying MCDM to waste-to-energy in Tunisia. ResearchGate. Retrieved from https://www.researchgate.net/publication/390756398
  • Tamkoç, H., Çelik, A., Akar, E., & Yıldız, R. (2024). Sıfır Atık Projesi ile öğrencilerde oluşan atık yönetimi ve geri dönüşüm farkındalığının değerlendirilmesi. International Journal of Social Sciences (IJSS), 8(33), 497-510.
  • Tudor, T. L., Barr, S. W., & Gilg, A. W. (2007). Linking intended behaviour and actions: A case study of healthcare waste management in the Cornwall NHS. Resources, Conservation and Recycling, 51(1), 1-23. https://doi.org/10.1016/j.resconrec.2006.06.009
  • Van, G. N., & Nham, T. N. T. (2024). Proposing solutions to improve the effectiveness of domestic solid waste management in Ba Be district, Bac Kan province, Vietnam, International Journal of Management and Organizational Research, 3(6), 44-49.
  • Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Đorđević, M., & Ponjavić, M. (2021). Ranking road sections based on MCDM model: New improved fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92, 1-23, https://doi.org/10.3390/axioms10020092
  • Voudrias, E. A. (2016). Technology selection for infectious medical waste treatment using the analytic hierarchy process. Journal of the Air & Waste management Association, 66(7), 663-672. https://doi.org/10.1080/10962247.2016.1162226
  • Wu, Z., Xu, J., Jiang, X., & Zhong, L. (2019). Two MAGDM models based on hesitant fuzzy linguistic term sets with possibility distributions: VIKOR and TOPSIS. Information Sciences, 473, 101–120. https://doi.org/10.1016/j.ins.2018.09.054
  • Yildiz, A., Ayyildiz, E., Taskin Gumus, A., & Ozkan, C. (2021). A framework to prioritize the public expectations from water treatment plants based on trapezoidal type-2 fuzzy AHP method. Environmental Management, 67(3), 439–448. https://doi.org/10.1007/s00267-020-01407-2
  • Xu, H., Rangra, N., & Woo, C. D. (2025). The role of ınternational policies in regulating and managing waste trade for sustainability. Journal of International Crisis And Risk Communication Research, 8(2), 13-30

Analysis of the Evaluation Criteria for Sustainable Waste Management in Healthcare Organizations

Year 2025, Volume: 24 Issue: 53, 421 - 447, 29.09.2025
https://doi.org/10.46928/iticusbe.1665685

Abstract

Improper disposal of such waste can lead to adverse effects on human health, environmental degradation, and an increase in infectious diseases. This study was conducted using data collected from experts in decision-making positions at 19 hospitals with a bed capacity of over 100 in Istanbul. For the purpose of selecting sustainable medical waste disposal methods, evaluations were conducted by professionals including Hospital Administrators, Medical Waste Managers, Hospitality and Support Services Managers, and Technical Services Managers. 6 main criteria and 31 sub-criteria were assessed, and the weighting of these criteria was performed using the IMF-SWARA method. Based on expert evaluations from the 19 hospitals, the analysis revealed that the most significant main criteria were environmental and emission-related factors, while the least significant was the social criterion. During the calculation of the global weights of the criteria, the 5 most important sub-criteria among the 31 were identified as: occupational risks, human toxicity, odor, terrestrial ecotoxicity, and noise, respectively. The findings of this study offer important insights into sustainable medical waste disposal methods. Furthermore, the relatively high number of expert participants compared to similar studies in the literature is considered a notable contribution to the field.

References

  • Adar, T., & Delice, E. K. (2019). New integrated approaches based on MC-HFLTS for healthcare waste treatment technology selection. Journal of Enterprise Information Management, 32(4), 688–711. https://doi.org/10.1108/JEIM-01-2019-0007
  • Adu, T. F., Mensah, L. D., Rockson, M. A. D., & Kemausuor, F. (2025). Decision support systems for waste-to-energy technologies: A systematic literature review of methods and future directions for sustainable implementation in Ghana. Heliyon, 11(3),1-21. https://doi.org/10.1016/j.heliyon.2025.e42353
  • Akpınar, M. E. (2022). Machine selection application in a hard chrome plating industry using fuzzy SWARA and fuzzy ARAS methods. Yönetim ve Ekonomi Dergisi, 29(1), 107–119. https://doi.org/10.18657/yonveek.848811
  • Alamu, S. O., Wemida, A., Tsegaye, T., & Oguntimein, G. (2021). Sustainability assessment of municipal solid waste in Baltimore USA. Sustainability, 13(4), 1915. https://doi.org/10.3390/su13041915
  • Ansari, Z. N., Kant, R., & Shankar, R. (2020). Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. International Journal of Sustainable Engineering, 13(6), 473–494. https://doi.org/10.1080/19397038.2020.1758973
  • Amos, O. O., Abiodun, O. A., Olalekan, O. E., Opeodu, O. T., & Ademola, A. (2024). Evaluating urban service delivery in Lagos State Nigeria: A bid to enhance sustainable waste management. Discovery, 60, e7d1405. https://doi.org/10.54905/disssi.v60i334.e7d1405
  • Arıkan, E., Şimşit-Kalender, Z. T., & Vayvay, Ö. (2017). Solid waste disposal methodology selection using multi-criteria decision making methods and an application in Turkey. Journal of Cleaner Production, 142, 403–412. https://doi.org/10.1016/j.jclepro.2016.07.142
  • Askarian, M., Heidarpoor, P., & Assadian, O. (2010). A total quality management approach to healthcare waste management in Namazi Hospital, Iran. Waste Management, 30(11), 2321–2326. https://doi.org/10.1016/j.wasman.2010.06.020
  • Aung, T. S., Luan, S., & Xu, Q. (2019). Application of multi-criteria-decision approach for the analysis of medical waste management systems in Myanmar. Journal of Cleaner Production, 222, 733–745. https://doi.org/10.1016/j.jclepro.2019.03.049
  • Aydın, N. (2021). A comprehensive waste management simulation model for the assessment of waste segregation in the health sector. Environmental Engineering and Management Journal, 20(11), 1731–1738. http://www.eemj.icpm.tuiasi.ro/pdfs/vol20/no11/Full/3_86_Aydın_21.pdf
  • Badi, I., & Kridish, M. (2020). Landfill site selection using a novel FUCOM-CODAS model: A case study in Libya. Scientific African, 9, e00537, 1–10. https://doi.org/10.1016/j.sciaf.2020.e00537
  • Bakkaloğlu, E. B. (2022). Yaşam döngüsü analizi ile sürdürülebilir katı atık yönetimi: Kocaeli ili örneği (Tez No. 726774) [Yüksek lisans tezi, Sakarya Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Barbero, S., & Pallaro, A. (2017). Systemic design for sustainable healthcare. The Design Journal, 20, 2475-2484. https://doi.org/10.1080/14606925.2017.1352762
  • Bucătaru, C., Săvescu, D., Repanovici, A., Blaga, L., Coman, E., & Cocuz, M. E. (2021). The implications and effects of medical waste on development of sustainable society—A brief review of the literature. Sustainability, 13(6), 3300. https://doi.org/10.3390/su13063300
  • Büyüközkan, G., & Gocer, F. (2017). An intuitionistic fuzzy MCDM approach for effective hazardous waste management. Intelligence systems in environmental management: Theory and applications (s. 21–40) içinde. Springer, Cham. https://doi.org/10.1007/978-3-319-42993-9_2
  • Ciplak, N., & Barton, J. R. (2012). A system dynamics approach for healthcare waste management: A case study in Istanbul Metropolitan City, Turkey. Waste Management & Research, 30(6), 576–586. https://doi.org/10.1177/0734242X12443405
  • Chang, C., & Utama, D. N. (2020). Advanced fuzzy eco-DSM for medical waste treatment. ICIC Express Lett., 14, 1139-1146. http://dx.doi.org/10.24507/icicel.14.12.1139
  • Chang, H. W., Lin, Y. L., & Wey, W. M. (2024). Advancing sustainability: Development of an ESG evaluation framework for Taiwan's science parks. Challenges in Sustainability, 12(4), 255–272. https://doi.org/10.12924/cis2024.12040255
  • Çavmak, Ş., Çavmak, D., & Yaşa, E. (2024). Sağlık hizmetlerinde sürdürülebilirlik düzeyini belirleyen faktörlerin önceliklendirilmesi. Verimlilik Dergisi, 58(2), 263–282. https://doi.org/10.51551/verimlilik.1386655
  • Çıkmak, S. (2025). Sustainable 3PL Service Provider Selection in the Pharmaceutical Industry Using Fuzzy-Based SWARA and MAIRCA Methods. Abant Sosyal Bilimler Dergisi, 25(1), 306-333. https://doi.org/10.11616/asbi.1585792
  • Ertaş, H., & Güden, M. A. (2019). Hastanelerde tıbbi atık yönetimi. Sosyal Araştırmalar ve Yönetim Dergisi (1), 53–67. https://doi.org/10.35375/sayod.541876
  • Ghasemi, P., Mehdiabadi, A., Spulbar, C., & Birau, R. (2021). Ranking of sustainable medical tourism destinations in Iran: An integrated approach using fuzzy SWARA-PROMETHEE. Sustainability, 13(2), 683. https://doi.org/10.3390/su13020683
  • Gutierrez-Lopez, J., McGarvey, R. G., Costello, C., & Hall, D. M. (2023). Decision support frameworks in solid waste management: A systematic review of multi-criteria decision-making with sustainability and social indicators. Sustainability, 15(18), 13316. https://doi.org/10.3390/su151813316
  • Hasan, M. M., & Rahman, M. H. (2018). Assessment of healthcare waste management paradigms and its suitable treatment alternative: A case study. Journal of Environmental and Public Health, https://doi.org/10.1155/2018/6879751
  • Hashemkhani Zolfani, S., & Bahrami, M. (2014). Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technological and Economic Development of Economy, 20(3), 534-553. https://doi.org/10.3846/20294913.2014.881435
  • Hashemkhani Zolfani, S. H., Görçün, Ö. F., & Küçükönder, H. (2021). Evaluating logistics villages in Turkey using hybrid improved fuzzy SWARA (IMF SWARA) and fuzzy MABAC techniques. Technological and Economic Development of Economy, 27(6), 1359-1380. https://doi.org/10.3846/tede.2021.16004
  • Jiang, C., Ren, Z., Tian, Y., & Wang, K. (2012). Application of best available technologies on medical wastes disposal/treatment in China (with case study). Procedia Environmental Sciences, 16, 257–265. https://doi.org/10.1016/j.proenv.2012.10.036
  • Karabasevic, D., Zavadskas, E. K., Turskis, Z., & Stanujkic, D. (2016). The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica, 27(1), 49–65. https://doi.org/10.15388/Informatica.2016.76
  • Kargar, S., Paydar, M. M., & Safaei, A. S. (2020). A reverse supply chain for medical waste: A case study in Babol healthcare sector. Waste Management, 113, 197–209. https://doi.org/10.1016/j.wasman.2020.05.041
  • Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258.
  • Khatri, S., Shah, G. K., Bhandari, P., Koirala, S., Neupane, K., Bhattarai, N., ... & Neupane, D. (2025). Musculoskeletal disorders and other occupational health outcomes among sanitation workers in Nepal: A community-based cross-sectional survey exploring the risk factors, knowledge, and practices. BMC Public Health, 25(1), 1273. https://doi.org/10.1186/s12889-025-02236-0
  • Liu, H., Li, J., Zhang, Z., Cao, X., Zhu, J., & Chen, W. (2020). Establishing an interval-valued fuzzy decision-making method for sustainable selection of healthcare waste treatment technologies in the emerging economies. Journal of Material Cycles and Waste Management, 22, 501–514. https://doi.org/10.1007/s10163-019-00938-5
  • Liu, M., Cao, J., Liang, J., & Chen, M. (2020). Basic concept of epidemic-logistics. M. Liu, J. Cao, J. Liang, & M. Chen (Ed.), Epidemic-logistics modeling: A new perspective on operations research (s. 1–12) içinde. Springer. https://doi.org/10.1007/978-981-15-7990-0_1
  • Makan, A., & Fadili, A. (2020). Sustainability assessment of large-scale composting technologies using PROMETHEE method. Journal of Cleaner Production, 261, 121244. https://doi.org/10.1016/j.jclepro.2020.121244
  • Mardani, A., Nilashi, M., Zakuan, N., Loganathan, N., Soheilirad, S., Saman, M. Z. M., & Ibrahim, O. (2017). A systematic review and meta-analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Applied Soft Computing, 57, 265–292. https://doi.org/10.1016/j.asoc.2017.03.045
  • Manupati, V. K., Ramkumar, M., Baba, V., & Agarwal, A. (2021). Selection of the best healthcare waste disposal techniques during and post COVID-19 pandemic era. Journal of Cleaner Production, 281, 125175. https://doi.org/10.1016/j.jclepro.2020.125175
  • Mi, X., Tian, Y., & Kang, B. (2021). A hybrid multi-criteria decision making approach for assessing healthcare waste management technologies based on soft likelihood function and D-numbers. Applied Intelligence, 51, 1–20. https://doi.org/10.1007/s10489-021-02356-7
  • Nižetić, S., Djilali, N., Papadopoulos, A., & Rodrigues, J. J. (2019). Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. Journal of Cleaner Production, 231, 565–591. https://doi.org/10.1016/j.jclepro.2019.05.282
  • Olaifa, A., Govender, R. D., & Ross, A. J. (2018). Knowledge, attitudes and practices of healthcare workers about healthcare waste management at a district hospital in KwaZulu-Natal. South African Family Practice, 60(5), 137–145. https://doi.org/10.4102/safp.v60i5.4569
  • Qiu, Y. J., Bouraima, M. B., Badi, I., Stević, Ž., & Simic, V. (2024). A decision-making model for prioritizing low-carbon policies in climate change mitigation. Challanges in Sustainability, 12(1), 1-17. http://dx.doi.org/10.56578/cis120101
  • Oyewale, J. A., Tartibu, L. K., & Okokpujie, I. P. (2024). Decision analysis approaches on the collection methods of polyethylene terephthalate waste. Recycling, 9(6), 124. https://doi.org/10.3390/recycling9060124
  • Petrović, G., Mihajlović, J., Ćojbašić, Ž., Madić, M., & Marinković, D. (2019). Comparison of three fuzzy MCDM methods for solving the supplier selection problem. Facta Universitatis, Series: Mechanical Engineering, 17(3), 455–469. https://doi.org/10.22190/FUME190420039P
  • Perçin, S. (2019). An integrated fuzzy SWARA and fuzzy AD approach for outsourcing provider selection. Journal of Manufacturing Technology Management, 30(2), 531–552. https://doi.org/10.1108/JMTM-08-2018-0247
  • Pongrácz, E., & Pohjola, V. J. (2004). Re-defining waste, the concept of ownership and the role of waste management. Resources, Conservation and Recycling, 40(2), 141–153. https://doi.org/10.1016/S0921-3449(03)00057-0
  • Rafiee, A., Yaghmaeian, K., Hoseini, M., Parmy, S., Mahvi, A., Yunesian, M., ... & Nabizadeh, R. (2016). Assessment and selection of the best treatment alternative for infectious waste by modified Sustainability Assessment of Technologies methodology. Journal of Environmental Health Science and Engineering, 14(1), 1-14 https://doi.org/10.1186/s40201-016-0251-1
  • Rekik, S., Mensah, J. H. R., & Khaleel, M. (2024). Sustainable waste management in developing countries: Applying MCDM to waste-to-energy in Tunisia. ResearchGate. Retrieved from https://www.researchgate.net/publication/390756398
  • Tamkoç, H., Çelik, A., Akar, E., & Yıldız, R. (2024). Sıfır Atık Projesi ile öğrencilerde oluşan atık yönetimi ve geri dönüşüm farkındalığının değerlendirilmesi. International Journal of Social Sciences (IJSS), 8(33), 497-510.
  • Tudor, T. L., Barr, S. W., & Gilg, A. W. (2007). Linking intended behaviour and actions: A case study of healthcare waste management in the Cornwall NHS. Resources, Conservation and Recycling, 51(1), 1-23. https://doi.org/10.1016/j.resconrec.2006.06.009
  • Van, G. N., & Nham, T. N. T. (2024). Proposing solutions to improve the effectiveness of domestic solid waste management in Ba Be district, Bac Kan province, Vietnam, International Journal of Management and Organizational Research, 3(6), 44-49.
  • Vrtagić, S., Softić, E., Subotić, M., Stević, Ž., Đorđević, M., & Ponjavić, M. (2021). Ranking road sections based on MCDM model: New improved fuzzy SWARA (IMF SWARA). Axioms, 10(2), 92, 1-23, https://doi.org/10.3390/axioms10020092
  • Voudrias, E. A. (2016). Technology selection for infectious medical waste treatment using the analytic hierarchy process. Journal of the Air & Waste management Association, 66(7), 663-672. https://doi.org/10.1080/10962247.2016.1162226
  • Wu, Z., Xu, J., Jiang, X., & Zhong, L. (2019). Two MAGDM models based on hesitant fuzzy linguistic term sets with possibility distributions: VIKOR and TOPSIS. Information Sciences, 473, 101–120. https://doi.org/10.1016/j.ins.2018.09.054
  • Yildiz, A., Ayyildiz, E., Taskin Gumus, A., & Ozkan, C. (2021). A framework to prioritize the public expectations from water treatment plants based on trapezoidal type-2 fuzzy AHP method. Environmental Management, 67(3), 439–448. https://doi.org/10.1007/s00267-020-01407-2
  • Xu, H., Rangra, N., & Woo, C. D. (2025). The role of ınternational policies in regulating and managing waste trade for sustainability. Journal of International Crisis And Risk Communication Research, 8(2), 13-30
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Research Article
Authors

Elit Dörtkardeş 0000-0002-3961-5139

Ali Görener 0000-0001-6000-5143

Publication Date September 29, 2025
Submission Date March 25, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 24 Issue: 53

Cite

APA Dörtkardeş, E., & Görener, A. (2025). Sağlık Kuruluşlarında Sürdürülebilir Atık Yönetimine İlişkin Değerlendirme Kriterlerinin Analizi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 24(53), 421-447. https://doi.org/10.46928/iticusbe.1665685