Research Article
BibTex RIS Cite

Estimation of Unemployment Rates through Machine Learning: An Application for Türkiye

Year 2025, Volume: 14 Issue: 2, 869 - 886, 30.06.2025
https://doi.org/10.15869/itobiad.1629420

Abstract

This research compares and analyzes traditional statistical methods and machine learning techniques for forecasting unemployment rates in Türkiye. Unemployment rates are affected by macroeconomic variables such as economic growth, inflation, population growth, migration movements and education expenditures. Therefore, unemployment rates are estimated using machine learning algorithms such as Random Forests (RF), Gradient Boosting (GB) and Multilayer Perceptron (MLP) based on TurkStat data and the performances of the models are compared. In the research, among the machine learning models, the MLP model showed the best forecasting performance (MAE: 1,945; RMSE: 2,235) with the lowest error rates. Although the RF and GB models achieved a certain level of accuracy, their error rates were higher compared to the MLP model. The findings suggest that machine learning techniques are more successful in unemployment forecasting than traditional statistical models. In particular, the MLP model provides more accurate forecasts than other models thanks to its capacity to learn nonlinear relationships. Moreover, correlation analyses reveal that unemployment rates are significantly correlated with inflation, economic growth and migration flows. While the negative effect of economic growth on unemployment is clearly observed, migration movements are found to increase unemployment rates. In particular, the negative correlation between inflation and education expenditures suggests that education investments decrease during periods of economic instability. In this research, unemployment rates for the years 2025, 2026 and 2027 are estimated using machine learning techniques. As a result of the analysis, the unemployment rate is expected to vary between 9.2% and 11.5% in 2025, while this rate is expected to be between 8.8% and 11.0% in 2026. According to the 2027 forecasts, the unemployment rate is expected to decline to between 8.5% and 10.7%. The results of the analysis show that the MLP model provides the closest forecasts to the TurkStat data. The RF and GB models, on the other hand, have a wider margin of error, predicting unemployment rates in the range of 9-14%. These forecasts are an important guide for economic policy makers and labor market analysts and provide predictions about the future course of unemployment rates.

References

  • Ahmad, M., Khan, Y. A., Jiang, C., Kazmi, S. J. H., & Abbas, S. Z. (2023). The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe. International Journal of Finance & Economics, 28(1), 528-543.
  • Aliyev, P. (2023). İşsizlik oranı öngörülerinde makine öğrenimi yaklaşımları: Türkiye üzerine bir uygulama. Igdir University Journal of Faculty of Economics and Administrative Sciences, 11, 1-15.
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
  • Celbiş, M. G. (2023). Unemployment in rural Europe: A machine learning perspective. Applied Spatial Analysis and Policy, 16(3), 1071-1095.
  • Chakraborty, T., Chakraborty, A. K., Biswas, M., Banerjee, S., & Bhattacharya, S. (2021). Unemployment rate forecasting: A hybrid approach. Computational Economics, 57(1), 183-201.
  • Çiftçi, C. (2016). Forecasting of unemployment rate for Turkey: Markov chains approach. Eurasian Academy of Sciences Eurasian Business & Economics Journal, S2, 657-665. http://dx.doi.org/10.17740/eas.econ.2016-MSEMP-140
  • Davidescu, A. A., Apostu, S.-A., & Marin, A. (2021). Forecasting the Romanian unemployment rate in time of health crisis—a univariate vs. multivariate time series approach. International Journal of Environmental Research and Public Health, 18(21), 11165.
  • Gil-Alana, L. A., Özdemir, Z. A., & Tansel, A. (2019). Long memory in Turkish unemployment rates. Emerging Markets Finance and Trade, 55(1), 201-217.
  • Güler, M., Kabakçı, A., Koç, Ö., Eraslan, E., Derin, K. H., Güler, M., Ünlü, R., Türkan, Y. S., & Namlı, E. (2024). Forecasting of the unemployment rate in Turkey: Comparison of the machine learning models. Sustainability, 16(15), 6509. https://doi.org/10.3390/su16156509
  • Karahan, M., & Çetintaş, F. (2022). Forecasting of Turkey's unemployment rate for future periods with artificial neural networks. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 62, 163-184.
  • Katris, C. (2020). Prediction of unemployment rates with time series and machine learning techniques. Computational Economics, 55(2), 673-706.
  • Kızılkaya, O. (2017). Türkiye’nin enflasyon ve işsizlik oranının yapay sinir ağları ve Box-Jenkins yöntemiyle tahmini. Social Sciences Studies Journal, 3(12), 2197-2207.
  • Kütük, Y., & Güloğlu, B. (2019). Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: A comparative study. İktisat Araştırmaları Dergisi, 3(1), 58–75. https://doi.org/10.24954/jore.2019.29
  • Lai, H., Khan, Y. A., Thaljaoui, A., Chammam, W., & Abbas, S. Z. (2023). Retracted article: COVID-19 pandemic and unemployment rate: A hybrid unemployment rate prediction approach for developed and developing countries of Asia. Soft Computing, 27(1), 615-615.
  • Maigur, A. A. (2024). Machine learning algorithms for predicting unemployment duration in Russia. Russian Journal of Economics, 10(4), 365–384. https://doi.org/10.32609/j.ruje.10.128611
  • Mulaudzi, R., & Ajoodha, R. (2020). An exploration of machine learning models to forecast the unemployment rate of South Africa: A univariate approach. 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC).
  • Olmedo, E. (2014). Forecasting Spanish unemployment using near neighbour and neural net techniques. Computational Economics, 43, 183-197.
  • Öter, A. (2024). Automatic detection of epileptic seizures from EEG signals using artificial intelligence methods. Gazi University Journal of Science Part C: Design and Technology, 1, 257-266.
  • Öter, A., Ersöz, B., Berktaş, Z., Bülbül, H. İ., Orhan, E., & Sağıroğlu, Ş. (2024). An artificial intelligence model estimation for functionalized graphene quantum dot-based diode characteristics. Physica Scripta, 99(5), 056001. https://doi.org/10.1088/1402-4896/ad3515
  • Sen, M., Basu, S., Chatterjee, A., Banerjee, A., Pal, S., Mukhopadhyay, P. K., Dutta, S., & Tarafdar, A. (2022). Prediction of unemployment using machine learning approach. 2022 OITS International Conference on Information Technology (OCIT).
  • Sezer, S., Öter, A., Ersöz, B., Topcuoğlu, C., Bülbül, H. İ., Sağıroğlu, Ş., Akın, M., & Yılmaz, G. (2024). Explainable artificial intelligence for LDL cholesterol prediction and classification. Clinical Biochemistry, 110791. https://doi.org/10.1016/j.clinbiochem.2024.110791
  • Simionescu, M., & Cifuentes-Faura, J. (2022). Forecasting national and regional youth unemployment in Spain using Google Trends. Social Indicators Research, 164(3), 1187-1216.
  • TÜİK. İstihdam, işsizlik, ücret. https://data.tuik.gov.tr/Kategori/GetKategori?p=istihdam-issizlik-ve-ucret-108&dil=1
  • Tüzemen, D., & Yıldız, H. (2017). İşsizlik oranlarının tahmininde zaman serisi analizleri: Türkiye örneği. İktisat ve Finans Dergisi, 32(4), 89-112.
  • Wei, Y., Rao, X., Fu, Y., Song, L., Chen, H., & Li, J. (2023). Machine learning prediction model based on enhanced bat algorithm and support vector machine for slow employment prediction. PLOS ONE, 18(11), e0294114. https://doi.org/10.1371/journal.pone.0294114
  • Yamaçlı, D. S., & Yamaçlı, S. (2023). Estimation of the unemployment rate in Turkey: A comparison of the ARIMA and machine learning models including Covid-19 pandemic periods. Heliyon, 9(1), e12796. https://doi.org/10.1016/j.heliyon.2023.e12796
  • Yıldırım, H., & Başeğmez, H. (2017). Analysis and forecast of Turkey unemployment rate. Global Journal of Mathematical Analysis, 1(1), 11-15. https://doi.org/10.14419/gjma.v5i1.6841
  • Yıldız, İ. (2022). Veri madenciliği: Makine öğrenme algoritmaları ile Türkiye’nin işsizlik oranı tahminini etkileyen faktörlerin tespit edilmesi. International Journal of Management Information Systems and Computer Science, 6(2), 78-91. https://doi.org/10.33461/uybisbbd.1129013
  • Yolcu, U., & Baş, E. (2016). The forecasting of labour force participation and the unemployment rate in Poland and Turkey using fuzzy time series methods. Comparative Economic Research, 19(2), 5–25. https://doi.org/10.1515/cer-2016-0010
  • Yurtsever, M. (2023). Unemployment rate forecasting: LSTM-GRU hybrid approach. Journal for Labour Market Research, 57(1), 18.
  • Zhao, L. F. (2020). Data-driven approach for predicting and explaining the risk of long-term unemployment. E3S Web of Conferences, 214, 01023. https://doi.org/10.1051/e3sconf/202021401023

Makina Öğrenmesi Yoluyla İşsizlik Oranlarının Tahmini: Türkiye İçin Bir Uygulama

Year 2025, Volume: 14 Issue: 2, 869 - 886, 30.06.2025
https://doi.org/10.15869/itobiad.1629420

Abstract

Bu çalışma, Türkiye’de işsizlik oranlarının tahmini için geleneksel istatistiksel yöntemler ile makine öğrenmesi tekniklerini karşılaştırarak analiz etmektedir. İşsizlik oranları; ekonomik büyüme, enflasyon, nüfus artışı, göç hareketleri ve eğitim harcamaları gibi makroekonomik değişkenlerden etkilenmektedir. Bu nedenle, TÜİK verilerine dayalı olarak Rastgele Ormanlar (RF), Gradyan Artırma (GB) ve Çok Katmanlı Algılayıcı (MLP) gibi makine öğrenmesi algoritmaları kullanılarak işsizlik oranları tahmin edilmiş ve modellerin performansları karşılaştırılmıştır. Çalışmada, makine öğrenmesi modelleri arasından MLP modeli en düşük hata oranları ile en iyi tahmin performansını (MAE: 1,945, RMSE: 2,235) göstermiştir. RF ve GB modelleri belirli bir doğruluk seviyesine ulaşsa da, hata oranları MLP modeline kıyasla daha yüksek çıkmıştır. Bulgular, makine öğrenmesi tekniklerinin işsizlik tahmininde geleneksel istatistiksel modellere göre daha başarılı olduğunu göstermektedir. Özellikle MLP modeli, doğrusal olmayan ilişkileri öğrenebilme kapasitesi sayesinde diğer modellere göre daha hassas tahminler sunmuştur. Ayrıca, yapılan korelasyon analizleri, işsizlik oranlarının enflasyon, ekonomik büyüme ve göç hareketleri ile anlamlı ilişkiler içinde olduğunu ortaya koymuştur. Ekonomik büyümenin işsizlik üzerindeki negatif etkisi belirgin şekilde gözlemlenirken, göç hareketlerinin işsizlik oranlarını artırabileceği tespit edilmiştir. Özellikle enflasyon ve eğitim harcamaları arasındaki negatif korelasyon, ekonomik istikrarsızlık dönemlerinde eğitim yatırımlarının azaldığını göstermektedir. Bu çalışmada, makine öğrenmesi teknikleri kullanılarak 2025, 2026 ve 2027 yıllarına ait işsizlik oranları tahmin edilmiştir. Yapılan analizler sonucunda, 2025 yılında işsizlik oranının %9,2 ile %11,5 arasında değişmesi beklenirken, 2026 yılında bu oranın %8,8 ile %11,0 seviyelerinde olacağı öngörülmüştür. 2027 yılı tahminlerine göre ise işsizlik oranının %8,5 ile %10,7 seviyelerine gerileyeceği hesaplanmıştır. Analiz sonuçları, MLP modelinin TÜİK verilerine en yakın tahminleri sunduğunu göstermektedir. RF ve GB modelleri ise işsizlik oranlarını %9-14 aralığında tahmin ederek daha geniş bir hata payına sahip olmuştur. Bu tahminler, ekonomik politika yapıcıları ve işgücü piyasası analistleri için önemli bir rehber niteliğinde olup, işsizlik oranlarının gelecekteki seyri hakkında öngörüler sunmaktadır.

References

  • Ahmad, M., Khan, Y. A., Jiang, C., Kazmi, S. J. H., & Abbas, S. Z. (2023). The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe. International Journal of Finance & Economics, 28(1), 528-543.
  • Aliyev, P. (2023). İşsizlik oranı öngörülerinde makine öğrenimi yaklaşımları: Türkiye üzerine bir uygulama. Igdir University Journal of Faculty of Economics and Administrative Sciences, 11, 1-15.
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
  • Celbiş, M. G. (2023). Unemployment in rural Europe: A machine learning perspective. Applied Spatial Analysis and Policy, 16(3), 1071-1095.
  • Chakraborty, T., Chakraborty, A. K., Biswas, M., Banerjee, S., & Bhattacharya, S. (2021). Unemployment rate forecasting: A hybrid approach. Computational Economics, 57(1), 183-201.
  • Çiftçi, C. (2016). Forecasting of unemployment rate for Turkey: Markov chains approach. Eurasian Academy of Sciences Eurasian Business & Economics Journal, S2, 657-665. http://dx.doi.org/10.17740/eas.econ.2016-MSEMP-140
  • Davidescu, A. A., Apostu, S.-A., & Marin, A. (2021). Forecasting the Romanian unemployment rate in time of health crisis—a univariate vs. multivariate time series approach. International Journal of Environmental Research and Public Health, 18(21), 11165.
  • Gil-Alana, L. A., Özdemir, Z. A., & Tansel, A. (2019). Long memory in Turkish unemployment rates. Emerging Markets Finance and Trade, 55(1), 201-217.
  • Güler, M., Kabakçı, A., Koç, Ö., Eraslan, E., Derin, K. H., Güler, M., Ünlü, R., Türkan, Y. S., & Namlı, E. (2024). Forecasting of the unemployment rate in Turkey: Comparison of the machine learning models. Sustainability, 16(15), 6509. https://doi.org/10.3390/su16156509
  • Karahan, M., & Çetintaş, F. (2022). Forecasting of Turkey's unemployment rate for future periods with artificial neural networks. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 62, 163-184.
  • Katris, C. (2020). Prediction of unemployment rates with time series and machine learning techniques. Computational Economics, 55(2), 673-706.
  • Kızılkaya, O. (2017). Türkiye’nin enflasyon ve işsizlik oranının yapay sinir ağları ve Box-Jenkins yöntemiyle tahmini. Social Sciences Studies Journal, 3(12), 2197-2207.
  • Kütük, Y., & Güloğlu, B. (2019). Prediction of transition probabilities from unemployment to employment for Turkey via machine learning and econometrics: A comparative study. İktisat Araştırmaları Dergisi, 3(1), 58–75. https://doi.org/10.24954/jore.2019.29
  • Lai, H., Khan, Y. A., Thaljaoui, A., Chammam, W., & Abbas, S. Z. (2023). Retracted article: COVID-19 pandemic and unemployment rate: A hybrid unemployment rate prediction approach for developed and developing countries of Asia. Soft Computing, 27(1), 615-615.
  • Maigur, A. A. (2024). Machine learning algorithms for predicting unemployment duration in Russia. Russian Journal of Economics, 10(4), 365–384. https://doi.org/10.32609/j.ruje.10.128611
  • Mulaudzi, R., & Ajoodha, R. (2020). An exploration of machine learning models to forecast the unemployment rate of South Africa: A univariate approach. 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC).
  • Olmedo, E. (2014). Forecasting Spanish unemployment using near neighbour and neural net techniques. Computational Economics, 43, 183-197.
  • Öter, A. (2024). Automatic detection of epileptic seizures from EEG signals using artificial intelligence methods. Gazi University Journal of Science Part C: Design and Technology, 1, 257-266.
  • Öter, A., Ersöz, B., Berktaş, Z., Bülbül, H. İ., Orhan, E., & Sağıroğlu, Ş. (2024). An artificial intelligence model estimation for functionalized graphene quantum dot-based diode characteristics. Physica Scripta, 99(5), 056001. https://doi.org/10.1088/1402-4896/ad3515
  • Sen, M., Basu, S., Chatterjee, A., Banerjee, A., Pal, S., Mukhopadhyay, P. K., Dutta, S., & Tarafdar, A. (2022). Prediction of unemployment using machine learning approach. 2022 OITS International Conference on Information Technology (OCIT).
  • Sezer, S., Öter, A., Ersöz, B., Topcuoğlu, C., Bülbül, H. İ., Sağıroğlu, Ş., Akın, M., & Yılmaz, G. (2024). Explainable artificial intelligence for LDL cholesterol prediction and classification. Clinical Biochemistry, 110791. https://doi.org/10.1016/j.clinbiochem.2024.110791
  • Simionescu, M., & Cifuentes-Faura, J. (2022). Forecasting national and regional youth unemployment in Spain using Google Trends. Social Indicators Research, 164(3), 1187-1216.
  • TÜİK. İstihdam, işsizlik, ücret. https://data.tuik.gov.tr/Kategori/GetKategori?p=istihdam-issizlik-ve-ucret-108&dil=1
  • Tüzemen, D., & Yıldız, H. (2017). İşsizlik oranlarının tahmininde zaman serisi analizleri: Türkiye örneği. İktisat ve Finans Dergisi, 32(4), 89-112.
  • Wei, Y., Rao, X., Fu, Y., Song, L., Chen, H., & Li, J. (2023). Machine learning prediction model based on enhanced bat algorithm and support vector machine for slow employment prediction. PLOS ONE, 18(11), e0294114. https://doi.org/10.1371/journal.pone.0294114
  • Yamaçlı, D. S., & Yamaçlı, S. (2023). Estimation of the unemployment rate in Turkey: A comparison of the ARIMA and machine learning models including Covid-19 pandemic periods. Heliyon, 9(1), e12796. https://doi.org/10.1016/j.heliyon.2023.e12796
  • Yıldırım, H., & Başeğmez, H. (2017). Analysis and forecast of Turkey unemployment rate. Global Journal of Mathematical Analysis, 1(1), 11-15. https://doi.org/10.14419/gjma.v5i1.6841
  • Yıldız, İ. (2022). Veri madenciliği: Makine öğrenme algoritmaları ile Türkiye’nin işsizlik oranı tahminini etkileyen faktörlerin tespit edilmesi. International Journal of Management Information Systems and Computer Science, 6(2), 78-91. https://doi.org/10.33461/uybisbbd.1129013
  • Yolcu, U., & Baş, E. (2016). The forecasting of labour force participation and the unemployment rate in Poland and Turkey using fuzzy time series methods. Comparative Economic Research, 19(2), 5–25. https://doi.org/10.1515/cer-2016-0010
  • Yurtsever, M. (2023). Unemployment rate forecasting: LSTM-GRU hybrid approach. Journal for Labour Market Research, 57(1), 18.
  • Zhao, L. F. (2020). Data-driven approach for predicting and explaining the risk of long-term unemployment. E3S Web of Conferences, 214, 01023. https://doi.org/10.1051/e3sconf/202021401023
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Macroeconomics (Other)
Journal Section Articles
Authors

Gülferah Ertürkmen 0000-0003-2239-0241

Ali Öter 0000-0002-9546-0602

Early Pub Date June 15, 2025
Publication Date June 30, 2025
Submission Date January 29, 2025
Acceptance Date June 3, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Ertürkmen, G., & Öter, A. (2025). Makina Öğrenmesi Yoluyla İşsizlik Oranlarının Tahmini: Türkiye İçin Bir Uygulama. İnsan Ve Toplum Bilimleri Araştırmaları Dergisi, 14(2), 869-886. https://doi.org/10.15869/itobiad.1629420

Journal of the Human and Social Science Researches is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).