Review
BibTex RIS Cite
Year 2022, Volume: 23 Issue: 1, 91 - 98, 31.05.2022

Abstract

References

  • Arslan, I., I. Akmehmet Balcioglu, and T.Tuhkanen (1999), Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton's reagent, Chemosphere, 39(15), 2767-2783, https://doi.org/10.1016/S0045-6535(99)00211-8.
  • Arslan-Alaton, I., G. Tureli, and T. Olmez-Hanci (2009), Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology, J. Photochem. Photobiol. A Chem., 202(2-3), 142-153, https://doi.org/10.1016/j.jphotochem.2008.11.019.
  • Beltrán, F.J., F.J. Rivas, and R. Montero-de-Espinosa (2002), Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor, Appl. Catal. B Environ., 39(3), 221-231, https://doi.org/10.1016/S0926-3373(02)00102-9.
  • Bolton, J. R. (2001), Ultraviolet Applications Handbook. Bolton Photosciences Inc., Edmonton.
  • Calgon Carbon Oxidation Technologies (1996), The AOP Handbook. CCOT, Ontario.
  • Cater, S.R., M.I. Stefan, J.R. Bolton, and A. Safarzadeh-Amiri (2000), UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters, Environ. Sci. Technol., 34(4), 659-662, https://doi.org/10.1021/es9905750.
  • Changotra, R., H. Rajput, and A. Dhir (2019), Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. J. Photochem. Photobiol. A Chem., 376, 175-184, https://doi.org/10.1016/j.jphotochem.2019.02.029.
  • Fatta-Kassinos, D., C. Manaia, T.U. Berendonk, E. Cytryn, J. Bayona, B. Chefetz, and L. Lundy (2015), COST Action ES1403: New and emerging challenges and opportunities in wastewater reuse (NEREUS), Environ. Sci. Pollut. Res., 22(9), 7183-7186. doi: 10.1007/s11356-015-4278-0.
  • Glaze, W.H., J.-W. Kang, D.H. Chapin (1987), The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Oz. Sci. Eng., 9(4), 335-352, https://doi.org/10.1080/01919518708552148.
  • Ledakowicz, S., M. Michniewicz, A. Jagiella, J. Stufka-Olczyk, and M. Martynelis (2006), Elimination of resin acids by advanced oxidation processes and their impact on subsequent biodegradation, Water Res., 40(18), 3439-3446, https://doi.org/10.1016/j.watres.2006.06.038.
  • Lodha, B. and S. Chaudhari, (2007), Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions, J. Hazard. Mater., 148(1-2), 459-466. https://doi.org/10.1016/j.jhazmat.2007.02.061.
  • Lucas, M.S., A.A. Dias, A. Sampaio, C. Amaral, and J. Peres (2007), Degradation of a textile reactive azo dye by a combined chemical-biological process: Fenton’s reagent-yeast, Water Res., 4(5), 1103-1109, https://doi.org/10.1016/j.watres.2006.12.013.
  • Malato, S., J. Blanco, M.I. Maldonado, I. Oller, W. Gernjak, L. Pérez-Estrada (2007), Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant, J. Hazard. Mater., 146(3), 440-446, https://doi.org/10.1016/j.jhazmat.2007.04.084.
  • Ollis, D.F. (2001), On the need for engineering models of integrated chemical and biological oxidation of wastewaters, Wat. Sci. Technol., 44(5), 117-123, https://doi.org/10. 2166/wst.2001.0265.
  • Pariente, M.I., J.A. Siles, R. Molina, J.A. Botas, J.A. Melero, and F. Martinez (2013), Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors, Chem. Eng. J., 226, 409-415, https://doi.org/10.1016/j.cej.2013.04.081.
  • Parsons, S. (Ed.) (2004). Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, London.
  • Paździor, K., L. Bilińska, and S. Ledakowicz (2019), A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J., 376, 120597, https://doi.org/10.1016/j.cej.2018.12.057.
  • Pelaez, M., N.T. Nolan, S.C.Pillai, M. Seery, P. Falaras, A.G.Kontosi, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, and D.D. Dionysiou (2012), A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ., 125, 331-349, https://doi.org/10.1016/j.apcatb.2012.05.036.
  • Pera-Titus, M., V. Garcı́a-Molina, M.A. Baños, J. Giménez, and S. Esplugas (2004), Degradation of chlorophenols by means of advanced oxidation processes: A general review, Appl. Catal. B Environ., 47(4), 219-256, https://doi.org/10.1016/j.apcatb.2003.09.010.
  • Peyton, G. R. (1993), The free-radical chemistry of persulfate-based total organic carbon analyzers, Marine Chemistry, 41(1-3), 91-103, https://doi.org/10.1016/0304-4203(93)90108-Z.
  • Pignatello, J. J., E. Oliveros, and A. MacKay (2006), Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol., 36(1), 1-84, doi: 10.1080/10643380500326564.
  • Rincon, A.G. and C. Pulgarin (2004), Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection, Appl. Catal. B Environ., 51(4), 283-302, https://doi.org/10.1016/j.apcatb.2004.03.007.
  • Ribeiro, A. R. L., N. F. Moreira, G. Li Puma, and A.M. Silva (2019), Impact of water matrix on the removal of micropollutants by advanced oxidation technologies, Chem. Eng. J., 363(5), 155-173, https://doi.org/10.1016/j.cej.2019.01.080.
  • Safarzadeh-Amiri, A., J.R. Bolton, and S.R. Cater (1996), The use of iron in advanced oxidation processes, J.AOT., 1(1), 105-111, https://doi.org/10.1515/jaots-1996-0105.
  • Schneider, J., M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann (2014), Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114(19), 9919-9986, https://doi.org/10.1021/cr5001892.
  • Wang, Y., S. Shia, C. Wang, and S. Fanga (2018), Degradation of pulp mill wastewater by a heterogeneous Fenton-like catalyst Fe/Mn supported on zeolite, Environ. Prot. Eng., 44(2), 131-145, doi:10.5277/epe180209.
  • URL-1 (UNEP, 2022), https://www.mercuryconvention.org/en/meetings/cop4

İleri Kimyasal Oksidasyon Teknolojileri ile Endüstriyel Kirletici Giderimine Genel Bakış

Year 2022, Volume: 23 Issue: 1, 91 - 98, 31.05.2022

Abstract

Yoğun bir nüfus ve endüstriyel aktiviteler sonucunda gün geçtikçe artan su tüketimi; bilinçsiz tüketimin doğurduğu yerel su sıkıntıları ve küresel iklim değişikliği, doğal kaynaklarımızı korumamızın ve dikkatli kullanmamızın önemini vurgulamaktadır. Su kaynaklarımızın sürdürülebilir yönetimi için ileri arıtma, suyun yeniden kullanımı, kaynağında su kirliliği kontrolü gibi önlemlerin alınması gündeme gelmiştir. Öte yandan, su ve atıksulardaki konsantrasyonları giderek artan karmaşık, inert ve/veya toksik ve daha ziyade endüstriyel kaynaklı kirleticilerin varlığı, söz konusu önlemlerin alınmasını zorlaştırmaktadır. Günümüzde atıksuların kaynaklandığı endüstriyel prosesleri daha iyi tanımak, daha kapsamlı çevresel karakterizasyon çalışmaları yapmak, proseslerde bilinçli su tüketimini pekiştirmek ve proses kimyasallarını daha ekolojik olanları ile değiştirmek dışında etkili ve sürdürülebilir bir arıtma, su kirliliği ve kontrolünün en önemli ihtiyacı haline gelmiştir. Son yıllarda, konvansiyonel arıtma yöntemlerinin yerini daha spesifik bir kirletici grubunun giderimini hedefleyen, kirleticilerin faz transferinden ziyade tamamen veya kısmen parçalanıp daha zararsız ve/veya daha biyoayrışabilir bileşiklere dönüştürme yöntemleri almıştır. Bunların arasında, örneğin “İleri Oksidasyon Prosesleri-İOP” olarak tanınan birtakım özel arıtma prosesleri geliştirilmiştir. Oksidanların (peroksitler, ozon, vb.) fotokimyasal, kimyasal, termal veya (foto)katalitik yollarla aktifleştirildiği, reaktif oksitleyici bileşiklerin reaksiyon çözeltisinde üretilmesine dayanan İOP, toksik ve/veya biyolojik olarak zor ayrışan veya inert, karmaşık yapılı kirleticilerin gideriminde başarılı bir şekilde uygulanmaktadır. İOP bilinçli kullanıldığında endüstriyel kirleticilerin arıtımında çok etkili olmakla birlikte, yüksek elektrik enerjisi tüketimleri de azalmaktadır. Bundan dolayı uygulama şekline, yöntemine, zamanına ve yerine çok dikkatli karar vermek gerekmektedir. Bu makalede bir rehber yaklaşımı ile İOP’nin temel prensipleri, uygulama alanları ve potansiyelleri, İOP’nin avantaj ve dezavantajları (uygulama sırasında karşılaşılan başlıca sorunlar), prosesin “püf noktaları”, arıtma performansına etki eden başlıca çevresel faktörler ve dikkatle optimize edilmesi gereken en kritik proses parametrelerinin arıtma verimine etkileri sunulmuştur.

References

  • Arslan, I., I. Akmehmet Balcioglu, and T.Tuhkanen (1999), Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton's reagent, Chemosphere, 39(15), 2767-2783, https://doi.org/10.1016/S0045-6535(99)00211-8.
  • Arslan-Alaton, I., G. Tureli, and T. Olmez-Hanci (2009), Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology, J. Photochem. Photobiol. A Chem., 202(2-3), 142-153, https://doi.org/10.1016/j.jphotochem.2008.11.019.
  • Beltrán, F.J., F.J. Rivas, and R. Montero-de-Espinosa (2002), Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor, Appl. Catal. B Environ., 39(3), 221-231, https://doi.org/10.1016/S0926-3373(02)00102-9.
  • Bolton, J. R. (2001), Ultraviolet Applications Handbook. Bolton Photosciences Inc., Edmonton.
  • Calgon Carbon Oxidation Technologies (1996), The AOP Handbook. CCOT, Ontario.
  • Cater, S.R., M.I. Stefan, J.R. Bolton, and A. Safarzadeh-Amiri (2000), UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters, Environ. Sci. Technol., 34(4), 659-662, https://doi.org/10.1021/es9905750.
  • Changotra, R., H. Rajput, and A. Dhir (2019), Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. J. Photochem. Photobiol. A Chem., 376, 175-184, https://doi.org/10.1016/j.jphotochem.2019.02.029.
  • Fatta-Kassinos, D., C. Manaia, T.U. Berendonk, E. Cytryn, J. Bayona, B. Chefetz, and L. Lundy (2015), COST Action ES1403: New and emerging challenges and opportunities in wastewater reuse (NEREUS), Environ. Sci. Pollut. Res., 22(9), 7183-7186. doi: 10.1007/s11356-015-4278-0.
  • Glaze, W.H., J.-W. Kang, D.H. Chapin (1987), The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Oz. Sci. Eng., 9(4), 335-352, https://doi.org/10.1080/01919518708552148.
  • Ledakowicz, S., M. Michniewicz, A. Jagiella, J. Stufka-Olczyk, and M. Martynelis (2006), Elimination of resin acids by advanced oxidation processes and their impact on subsequent biodegradation, Water Res., 40(18), 3439-3446, https://doi.org/10.1016/j.watres.2006.06.038.
  • Lodha, B. and S. Chaudhari, (2007), Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions, J. Hazard. Mater., 148(1-2), 459-466. https://doi.org/10.1016/j.jhazmat.2007.02.061.
  • Lucas, M.S., A.A. Dias, A. Sampaio, C. Amaral, and J. Peres (2007), Degradation of a textile reactive azo dye by a combined chemical-biological process: Fenton’s reagent-yeast, Water Res., 4(5), 1103-1109, https://doi.org/10.1016/j.watres.2006.12.013.
  • Malato, S., J. Blanco, M.I. Maldonado, I. Oller, W. Gernjak, L. Pérez-Estrada (2007), Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant, J. Hazard. Mater., 146(3), 440-446, https://doi.org/10.1016/j.jhazmat.2007.04.084.
  • Ollis, D.F. (2001), On the need for engineering models of integrated chemical and biological oxidation of wastewaters, Wat. Sci. Technol., 44(5), 117-123, https://doi.org/10. 2166/wst.2001.0265.
  • Pariente, M.I., J.A. Siles, R. Molina, J.A. Botas, J.A. Melero, and F. Martinez (2013), Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors, Chem. Eng. J., 226, 409-415, https://doi.org/10.1016/j.cej.2013.04.081.
  • Parsons, S. (Ed.) (2004). Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, London.
  • Paździor, K., L. Bilińska, and S. Ledakowicz (2019), A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J., 376, 120597, https://doi.org/10.1016/j.cej.2018.12.057.
  • Pelaez, M., N.T. Nolan, S.C.Pillai, M. Seery, P. Falaras, A.G.Kontosi, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, and D.D. Dionysiou (2012), A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ., 125, 331-349, https://doi.org/10.1016/j.apcatb.2012.05.036.
  • Pera-Titus, M., V. Garcı́a-Molina, M.A. Baños, J. Giménez, and S. Esplugas (2004), Degradation of chlorophenols by means of advanced oxidation processes: A general review, Appl. Catal. B Environ., 47(4), 219-256, https://doi.org/10.1016/j.apcatb.2003.09.010.
  • Peyton, G. R. (1993), The free-radical chemistry of persulfate-based total organic carbon analyzers, Marine Chemistry, 41(1-3), 91-103, https://doi.org/10.1016/0304-4203(93)90108-Z.
  • Pignatello, J. J., E. Oliveros, and A. MacKay (2006), Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol., 36(1), 1-84, doi: 10.1080/10643380500326564.
  • Rincon, A.G. and C. Pulgarin (2004), Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection, Appl. Catal. B Environ., 51(4), 283-302, https://doi.org/10.1016/j.apcatb.2004.03.007.
  • Ribeiro, A. R. L., N. F. Moreira, G. Li Puma, and A.M. Silva (2019), Impact of water matrix on the removal of micropollutants by advanced oxidation technologies, Chem. Eng. J., 363(5), 155-173, https://doi.org/10.1016/j.cej.2019.01.080.
  • Safarzadeh-Amiri, A., J.R. Bolton, and S.R. Cater (1996), The use of iron in advanced oxidation processes, J.AOT., 1(1), 105-111, https://doi.org/10.1515/jaots-1996-0105.
  • Schneider, J., M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann (2014), Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114(19), 9919-9986, https://doi.org/10.1021/cr5001892.
  • Wang, Y., S. Shia, C. Wang, and S. Fanga (2018), Degradation of pulp mill wastewater by a heterogeneous Fenton-like catalyst Fe/Mn supported on zeolite, Environ. Prot. Eng., 44(2), 131-145, doi:10.5277/epe180209.
  • URL-1 (UNEP, 2022), https://www.mercuryconvention.org/en/meetings/cop4
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Derlemeler
Authors

İdil Arslan Alaton 0000-0003-4241-5100

Publication Date May 31, 2022
Submission Date March 13, 2022
Published in Issue Year 2022 Volume: 23 Issue: 1

Cite

APA Arslan Alaton, İ. (2022). İleri Kimyasal Oksidasyon Teknolojileri ile Endüstriyel Kirletici Giderimine Genel Bakış. Çevre İklim Ve Sürdürülebilirlik, 23(1), 91-98.