Arıtılmış Atıksuların Çevresel Akış için İkame Amaçlı Kullanımı: Tampon Bölge olarak Yapay Sulak Alanların Rolü
Yıl 2024,
Cilt: 25 Sayı: 1, 15 - 22, 09.07.2024
Mahmut Ekrem Karpuzcu
,
Fatma Nihan Doğan
,
İzzet Öztürk
Öz
Uzun süren kuraklıklar, artan nüfus, iklim değişikliğinin muhtemel etkileri nedeniyle özellikle son yıllarda arıtılmış atıksuların çevresel akışı ikame amaçlı kullanımı önem kazanmıştır. Bu etkenler tüm dünyada akarsuların kalitesi ve miktarını artırmaya yönelik tedbirleri zorunlu hale getirmiştir. Atıksuların zirai ve peyzaj sulama amaçlı kullanımı giderek yaygınlaşmakla birlikte nehir ekosistemlerinde çevresel akış veya ekolojik ihtiyaç debisi olarak atıksuyun yeniden kullanımına dair örnekler de artmaktadır. Arıtılmış atıksuların yeniden kullanımı konusunda dikkat edilmesi gerekli en önemli iki husus atıksuyun nehir ekosistemini tehdit eden kirleticilerden arındırılmış olması ve nehrin doğal habitatının korunmasıdır. Bu amaçla, yapay sulak alanlar iyi bir nihai arıtım seçeneği olmaktadır. Bu çalışma ile arıtılmış atıksuların akarsulara deşarjının güvenli bir şekilde yapılabilmesi için deşarj öncesi bir tampon arıtma bölgesi olarak yapay sulak alanların etkinliği incelenmiştir. Saha çalışmaları, yapay sulak alanların kalıcı organik madde gideriminde etkinliğini göstermektedir. Nehir ekosistemlerinde bulunması muhtemel endokrin bozucular, pestisitler, mikro-plastikler gibi öncelikli kirleticilerle ilgili çalışmaların daha yaygınlaşması gerekmektedir. Önümüzdeki 50 ila 100 yıl boyunca, nüfus artışı, ekonomik kalkınma ve iklim değişikliğinin akarsuları özellikle kurak ve yarı kurak bölgelerde daha da fazla baskı altına alacağı düşünüldüğünde, arıtılmış atıksuların çevresel akışı ikame amaçlı kullanılmasının kaçınılmaz hale geleceği düşünülmektedir.
Kaynakça
- Alcon, F., Martin-Ortega, J., Berbel, J., & de Miguel, M. D. (2011). Environmental benefits of reclaimed water: An economic assessment in the context of the Water Framework Directive. Water Policy, 14(1), 148-159. https://doi.org/10.2166/wp.2011.001
- Balbay, Ü. C. (2011). Hidroelektrik Santral Projelerinde Ekosistem Su İhtiyacının Belirlenmesi ve Türkiye’deki Uygulamalar [Doktora tezi, İstanbul Teknik Üniversitesi].
- Bischel, H. N., Lawrence, J. E., Halaburka, B. J., Plumlee, M. H., Bawazir, A. S., King, J. P., ... Luthy, R. G. (2013). Renewing urban streams with recycled water for streamflow augmentation: Hydrologic, water quality, and ecosystem services management. Environmental Engineering Science, 30(8), 455-479. https://doi.org/10.1089/ees.2012.0201
- Bonada, N., & Resh, V. (2013). Mediterranean-climate streams and rivers: Geographically separated but ecologically comparable freshwater systems. Hydrobiologia, 719. https://doi.org/10.1007/s10750-013-1634-2
- Brooks, B. W., Riley, T. M., & Taylor, R. D. (2006). Water quality of effluent-dominated ecosystems: Ecotoxicological, hydrological, and management considerations. Hydrobiologia, 556(1), 365-379. https://doi.org/10.1007/s10750-004-0189-7
- Carey, R. O., & Migliaccio, K. W. (2009). Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. Environmental Management, 44(2), 205-217. https://doi.org/10.1007/s00267-009-9309-5
- Chen, B., Nam, S-N., Westerhoff, P. K., Krasner, S. W., & Amy, G. (2009). Fate of effluent organic matter and DBP precursors in an effluent-dominated river: A case study of wastewater impact on downstream water quality. Water Research, 43(6), 1755-1765. https://doi.org/10.1016/j.watres.2009.01.020
- Deng, H. (2020). A review on the application of ozonation to NF/RO concentrate for municipal wastewater reclamation. Journal of Hazardous Materials, 391. https://doi.org/10.1016/j.jhazmat.2020.122071
- Gafny, S., Goren, M., & Gasith, A. (2000). Habitat condition and fish assemblage structure in a coastal Mediterranean stream (Yarqon, Israel) receiving domestic effluent. Hydrobiologia, 422/423, 319-330. https://doi.org/10.1023/A:1017040017238
- Gallego-Schmid, A., & Tarpani, R. R. Z. (2019). Life cycle assessment of wastewater treatment in developing countries: A review. Water Research, 153, 63-79. https://doi.org/10.1016/j.watres.2019.01.010
- Garcia, X., & Pargament, D. (2015). Rehabilitating rivers and enhancing ecosystem services in a water-scarcity context: The Yarqon River. International Journal of Water Resources Development, 31(1), 73-87. https://doi.org/10.1080/07900627.2014.911147
- Gopal, B. (2013). Methodologies for the assessment of environmental flows. In Environmental Flows: An Introduction for Water Resources Managers (pp. 129-172). National Institute of Ecology, India.
- Gorito, A. M., Ribeiro, A. R., Gomes, C. R., Almeida, C. M. R., & Silva, A. M. T. (2018). Constructed wetland microcosms for the removal of organic micropollutants from freshwater aquaculture effluents. Science of The Total Environment, 644, 1171-1180. https://doi.org/10.1016/j.scitotenv.2018.06.371
- Graaf, I. E. M. de, Gleeson, T., van Beek, L. P. H. R., Sutanudjaja, E. H., & Bierkens, M. F. P. (2019). Environmental flow limits to global groundwater pumping. Nature, 574(7776), 90-94. https://doi.org/10.1038/s41586-019-1594-4
- Grabičová, K., Grabič, R., Bláha, M., Kumar, V., Cerveny, D., Fedorova, G., ... Randák, T. (2015). Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Research, 72, 145-153. https://doi.org/10.1016/j.watres.2014.09.018
- Gunes, K., Masi, F., Ayaz, S., Tuncsiper, B., & Besiktas, M. (2021). Domestic wastewater and surface runoff treatment implementations by constructed wetlands for Turkey: 25 years of experience. Ecological Engineering, 170, 106369. https://doi.org/10.1016/j.ecoleng.2021.106369
- Haddis, A., Van Der Bruggen, B., & Smets, I. (2020). Constructed wetlands as nature based solutions in removing organic pollutants from wastewater under irregular flow conditions in a tropical climate. Ecohydrology & Hydrobiology, 20(1), 38-47. https://doi.org/10.1016/j.ecohyd.2019.03.001
- Halaburka, B. J., Lawrence, J. E., Bischel, H. N., Hsiao, J., Plumlee, M. H., Resh, V. H., ... Luthy, R. G. (2013). Economic and ecological costs and benefits of streamflow augmentation using recycled water in a California coastal stream. Environmental Science & Technology, 47(19), 10735-10743. https://doi.org/10.1021/es305011z
- Hamdhani, H., Eppehimer, D. E., & Bogan, M. T. (2020). Release of treated effluent into streams: A global review of ecological impacts with a consideration of its potential use for environmental flows. Freshwater Biology, 65(9), 1657-1670. https://doi.org/10.1111/fwb.13519.
- Hijosa-Valsero, M., Matamoros, V., Martín-Villacorta, J., Bécares, E., & Bayona, J. M. (2010). Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Research, 44(5), 1429-1439. https://doi.org/10.1016/j.watres.2009.10.032.
- Hur, J., Schlautman, M. A., Karanfil, T., Smink, J., Song, H., Klaine, S. J., & Hayes, J. C. (2007). Influence of drought and municipal sewage effluents on the baseflow water chemistry of an upper Piedmont river. Environmental Monitoring and Assessment, 132(1), 171-187. https://doi.org/10.1007/s10661-006-9513-1.
- Jasper, J. T., Nguyen, M. T., Jones, Z. L., Ismail, N. S., Sedlak, D. L., Sharp, J. O., Luthy, R. G., Horne, A. J., & Nelson, K. L. (2013). Unit process wetlands for removal of trace organic contaminants and pathogens from municipal wastewater effluents. Environmental Engineering Science, 30(8), 421-436. https://doi.org/10.1089/ees.2012.0239.
- Jasper, J. T., & Sedlak, D. L. (2013). Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands. Environmental Science & Technology, 47(19), 10781-10790. https://doi.org/10.1021/es304334w.
- Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. CRC Press.
- Köle, M. M. (2015). Boğazköy Baraj Ve Hes’inden Akışaşağıya Bırakilması Gereken Asgari Su Miktarının Bulunmasına Yönelik Bir Değerlendirme: Tennant Ve Akim Süreklilik Yöntemleri. Marmara Coğrafya Dergisi, 0(32), 326. https://doi.org/10.14781/mcd.64692.
- Li, X., Li, Y., Lv, D., Li, Y., & Wu, J. (2020). Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. Science of The Total Environment, 709, 136235. https://doi.org/10.1016/j.scitotenv.2019.136235.
- Llorens, E., Matamoros, V., Domingo, V., Bayona, J. M., & García, J. (2009). Water quality improvement in a full-scale tertiary constructed wetland: Effects on conventional and specific organic contaminants. Science of The Total Environment, 407(8), 2517-2524. https://doi.org/10.1016/j.scitotenv.2008.12.042.
- Luthy, R. G., Sedlak, D. L., Plumlee, M. H., Austin, D., & Resh, V. H. (2015a). Wastewater-effluent-dominated streams as ecosystem-management tools in a drier climate. Frontiers in Ecology and the Environment, 13(9), 477-485. https://doi.org/10.1890/150038.
- Luthy, R. G., Sedlak, D. L., Plumlee, M. H., Austin, D., & Resh, V. H. (2015b). Wastewater-effluent-dominated streams as ecosystem-management tools in a drier climate. Frontiers in Ecology and the Environment, 13(9), 477-485.
- Mansas, C., Mendret, J., Brosillon, S., & Ayral, A. (2020). Coupling catalytic ozonation and membrane separation: A review. Separation and Purification Technology, 236, 116221. https://doi.org/10.1016/j.seppur.2019.116221.
- Matamoros, V., & Rodríguez, Y. (2017). Influence of seasonality and vegetation on the attenuation of emerging contaminants in wastewater effluent-dominated streams. A preliminary study. Chemosphere, 186, 269-277. https://doi.org/10.1016/j.chemosphere.2017.07.157.
- Murgolo, S., Franz, S., Arab, H., Bestetti, M., Falletta, E., & Mascolo, G. (2019). Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes. Water Research, 164, 114920. https://doi.org/10.1016/j.watres.2019.114920.
- Operacz, A., Wałęga, A., Cupak, A., & Tomaszewska, B. (2018). The comparison of environmental flow assessment - The barrier for investment in Poland or river protection? Journal of Cleaner Production, 193, 575-592. https://doi.org/10.1016/j.jclepro.2018.05.098.
- Plumlee, M. H., Gurr, C. J., & Reinhard, M. (2012). Recycled water for stream flow augmentation: Benefits, challenges, and the presence of wastewater-derived organic compounds. Science of The Total Environment, 438, 541-548. https://doi.org/10.1016/j.scitotenv.2012.08.062.
- Schultz, M. M., Furlong, E. T., Kolpin, D. W., Werner, S. L., Schoenfuss, H. L., Barber, L. B., Blazer, V. S., Norris, D. O., & Vajda, A. M. (2010). Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environmental Science & Technology, 44(6), 1918-1925. https://doi.org/10.1021/es9022706.
- Tarım ve Orman Bakanlığı. (2019). Elektrik Piyasasında Üretim Faaliyetinde Bulunmak Üzere Su Kullanım Hakkı Anlaşması İmzalanmasına İlişkin Usul Ve Esaslar Hakkında Yönetmelik.
- TÜBİTAK, MAM ÇEVRE ENSTİTÜSÜ. (2013). Havza Koruma Eylem Planlarının Hazırlanması – Büyük Menderes Havzası.
- Violin, C. R., Cada, P., Sudduth, E. B., Hassett, B. A., Penrose, D. L., & Bernhardt, E. S. (2011). Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecological Applications, 21(6), 1932-1949. https://doi.org/10.1890/10-1551.1.
- Walsh, C. J., Fletcher, T. D., & Ladson, A. R. (2005). Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. Journal of the North American Benthological Society, 24(3), 690-705. https://doi.org/10.1899/04-020.1.
- WateReuse California. (2019). California WateReuse Action Plan. Erişim tarihi (Aralık 2023) https://watereuse.org/.
- Williams, J. G., Moyle, P. B., Webb, A., & Kondolf, G. M. (2019). Environmental flow assessment: Methods and applications. Hoboken, NJ: John Wiley & Sons, Inc.
- Wolfand, J. M., Taniguchi-Quan, K. T., Abdi, R., Gallo, E., Irving, K., Philippus, D., Rogers, J. B., Stein, E. D., & Hogue, T. S. (2022). Balancing water reuse and ecological support goals in an effluent-dominated river. Journal of Hydrology X, 15, 100124. https://doi.org/10.1016/j.hydroa.2022.100124.
- Wu, W.-Y., Lo, M.-H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J.-F., Ducharne, A., & Yang, Z.-L. (2020). Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 11(1), 3710. https://doi.org/10.1038/s41467-020-17581-y.
- Yan, J., Hu, X., Chen, M., Zhang, J., Guo, F., Vymazal, J., & Chen, Y. (2022). Meta-analysis of the removal of trace organic contaminants from constructed wetlands: Conditions, parameters, and mechanisms. Ecological Engineering, 178, 106596. https://doi.org/10.1016/j.ecoleng.2022.106596.