Derleme
BibTex RIS Kaynak Göster

Gri Suyun Arıtılması ve Yeniden Kullanımı: Faydaları ve Riskleri

Yıl 2024, Cilt: 25 Sayı: 2, 59 - 74

Öz

Bu derleme makalesinde, dünya genelinde içme suyu kaynaklarının azalmasına yönelik olarak gri suyun yeniden kullanım potansiyeli ele alınmakta ve çeşitli teknik çözümler sunularak gri suyun su yönetimi stratejilerinde merkezi bir rol oynaması gerektiği savunulmaktadır. Artan nüfus, kentleşme ve iklim değişikliği ile su stresi de artmakta ve atıksu arıtımı daha önemli hale gelmektedir. Gri su, evsel atıksuyun bir bileşeni olarak, tuvalet atıksuyu hariç diğer evsel faaliyetlerden kaynaklanan atıksu olarak tanımlanmaktadır. Gri su kendi içinde su kalitesine göre açık ve koyu gri su olarak 2 sınıfa ayrılmaktadır. Bu makalede gri suyun karakterizasyonu, arıtma yöntemleri ve çeşitli kullanım alanları incelenmekte, gri suyun yeniden kullanımının kentsel ve kırsal su yönetimi için stratejik faydaları ortaya konulmaktadır. Fiziksel, kimyasal ve biyolojik arıtma yöntemleri ile avantajları ve sınırlılıkları detaylandırılmaktadır. Gri suyun arıtılması ve yeniden kullanımının su tasarrufu, ekonomik ve çevresel yararları, farklı ülkelerdeki yasal düzenlemeler ve uygulama örnekleri değerlendirilmektedir. Ayrıca, gri suyun yeniden kullanımı ile ilişkili riskler ve yönetim stratejileri üzerinde durularak, bu alandaki araştırmaların ve politikaların önemi vurgulanmaktadır. Kapsamlı literatür araştırması sonucu gri suyun sulamada ve tuvalet sifonlarında kullanımının en yaygın yeniden kullanım yolları olduğu görülmektedir. Ayrıca gri su arıtımında membran biyoreaktörler az alan kaplaması ve yüksek kalitede arıtılmış su eldesi sağlaması gibi avantajlarıyla ön plana çıkmaktadır. Gri su arıtma yöntemi belirlenirken, gri suyun oluştuğu kaynağa, gri suyun miktarına ve karakterizasyonuna bakılmalı ve yeniden kullanım amacına uygun arıtma yöntemi seçilmelidir.

Kaynakça

  • Abbasi, T., and Abbasi, S. A. (2011). Sources of pollution in rooftop rainwater harvesting systems and their control. Critical Reviews in Environmental Science and Technology, 41(23), 2097-2167.
  • Abdalla, H., Rahmat-Ullah, Z., Abdallah, M., Alsmadi, S., & Elashwah, N. (2021). Eco-efficiency analysis of integrated grey and black water management systems. Resources, Conservation and Recycling, 172, 105681. https://doi.org/10.1016/j.resconrec.2021.105681
  • Abdelkader, A. (2021). Comparative Study between Membrane Bioreactor MBR and Rotating Biological Contactors RBC for Greywater Treatment. International Journal of Environmental Science and Development, 12, 1326. https://doi.org/10.18178/ijesd.2021.12.4.1326
  • Abunaser, S. G., & Abdelhay, A. (2020). Performance of a novel vertical flow constructed wetland for greywater treatment in rural areas in Jordan. Envıronmental Technology. https://doi.org/10.1080/09593330.2020.1841832
  • Albalawneh, A., Chang, T.-K., & Chou, C.-S. (2016). Impacts on soil quality from long-term irrigation with treated greywater. Paddy And Water Envıronment (Vol. 14, Issue 2, pp. 289–297). https://doi.org/10.1007/s10333-015-0499-6
  • Alfiya, Y., Gross, A., Sklarz, M., & Friedler, E. (2013). Reliability of on-site greywater treatment systems in Mediterranean and arid environments–a case study. Water Science and Technology, 67(6), 1389-1395.
  • Al-Gheethi, A. A. S., Noman, E. A., Radin Mohamed, R. M. S., Talip, B. A., Abdullah, A. H., & Mohd Kassim, A. H. (2019). Reuse of Greywater for Irrigation Purpose. In R. M. S. Radin Mohamed, A. A. S. Al-Gheethi, & A. H. Mohd Kassim (Eds.), Management of Greywater in Developing Countries: Alternative Practices, Treatment and Potential for Reuse and Recycling (pp. 73–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-90269-2_4
  • Al-Ismaili, A. M., Ahmed, M., Al-Busaidi, A., Al-Adawi, S., Tandlich, R., & Al-Amri, M. (2017). Extended use of grey water for irrigating home gardens in an arid environment. Environmental Science and Pollution Research, 24, 13650-13658.
  • Al-Jasser, A. O. (2011). Greywater reuse in Saudi Arabia: Current situation and future potential. 159–169. https://doi.org/10.2495/WS110151
  • Alresheedi, M.T., Albuaymi, A.M., AlSaleem, S.S., Haider, H., Shafiquzzaman, Md., AlHarbi, A., & Ahsan, A. (2023). Low-cost ceramic filter bioreactor for treatment and reuse of residential septic tank effluent: A decentralized approach for small communities. Environmental Technology & Innovation, 31, 103213. https://doi.org/10.1016/j.eti.2023.103213
  • Alsulaili, A. D., Hamoda, M. F., Al-Jarallah, R., & Alrukaibi, D. (2017). Treatment and potential reuse of greywater from schools: A pilot study. Water Scıence And Technology (Vol. 75, Issue 9, pp. 2119–2129). https://doi.org/10.2166/wst.2017.088
  • Al-Zu’bi, Y., Ammari, T. G., Al-Balawneh, A., Al-Dabbas, M., Ta’any, R., & Abu-Harb, R. (2015). Ablution greywater treatment with the modified re-circulated vertical flow bioreactor for landscape irrigation. Desalınatıon And Water Treatment (Vol. 54, Issue 1, pp. 59–68). https://doi.org/10.1080/19443994.2013.876673
  • Amaris, G., Dawson, R., Gironas, J., Hess, S., & Ortuzar, J. de D. (2020). Understanding the preferences for different types of urban greywater uses and the impact of qualitative attributes. Water Research (Vol. 184). https://doi.org/10.1016/j.watres.2020.116007
  • Ammari, T. G., Al-Zu’bi, Y., Al-Balawneh, A., Tahhan, R., Al-Dabbas, M., Ta’any, R. A., & Abu-Harb, R. (2014). An evaluation of the re-circulated vertical flow bioreactor to recycle rural greywater for irrigation under arid Mediterranean bioclimate. Ecologıcal Engıneerıng (Vol. 70, pp. 16–24). https://doi.org/10.1016/j.ecoleng.2014.03.009
  • Antonopoulou, G., Kirkou, A., & Stasinakis, A. S. (2013). Quantitative and qualitative greywater characterization in Greek households and investigation of their treatment using physicochemical methods. Science of The Total Environment, 454–455, 426–432. https://doi.org/10.1016/j.scitotenv.2013.03.045
  • Asl, S. K., Cushing, K., O’Malley, R., Dahl, A., Rouhani, A., Bryan, S., & Burks, J. (2023). A field assessment of residential laundry to landscape greywater quality in the San Francisco Bay area. Water Polıcy. https://doi.org/10.2166/wp.2023.101
  • Atanasova, N., Dalmau, M., Comas, J., Poch, M., Rodriguez-Roda, I., & Buttiglieri, G. (2017). Optimized MBR for greywater reuse systems in hotel facilities. Journal of Environmental Management, 193, 503–511. https://doi.org/10.1016/j.jenvman.2017.02.041
  • Atasoy, E., Murat, S., Baban, A., & Tiris, M. (2007). Membrane Bioreactor (MBR) Treatment of Segregated Household Wastewater for Reuse. CLEAN – Soil, Air, Water, 35(5), 465–472. https://doi.org/10.1002/clen.200720006
  • Awasthi, A., Gandhi, K., & Rayalu, S. (2024). Greywater treatment technologies: A comprehensive review. International Journal of Environmental Science and Technology, 21(1), 1053–1082. https://doi.org/10.1007/s13762-023-04940-7
  • Babaei, F., Ehrampoush, M. H., Eslami, H., Ghaneian, M. T., Fallahzadeh, H., Talebi, P., Fard, R. F., & Ebrahimi, A. A. (2019). Removal of linear alkylbenzene sulfonate and turbidity from greywater by a hybrid multi-layer slow sand filter microfiltration ultrafiltration system. Journal of Cleaner Production, 211, 922–931. https://doi.org/10.1016/j.jclepro.2018.11.255
  • Bahrami, M., Amiri, M. J., & Mahmoudi, M. R. (2020). Clustering the Adsorbents of Horizontal Series Filtration in Greywater Treatment. SUSTAINABILITY (Vol. 12, Issue 8). https://doi.org/10.3390/su12083194
  • Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Rasool Qtaishat, M., & Alkasrawi, M. (2015). On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science, 476, 40–49. https://doi.org/10.1016/j.memsci.2014.11.010
  • Barışçı, S., & Turkay, O. (2016). Domestic greywater treatment by electrocoagulation using hybrid electrode combinations. Journal of Water Process Engineering, 10, 56–66. https://doi.org/10.1016/j.jwpe.2016.01.015 Birleşmiş Milletler (2022). The Sustainable Development Goals Report.
  • Byrne, J., Dallas, S., Anda, M., & Ho, G. (2020). Quantifying the Benefits of Residential Greywater Reuse. Water, 12(8), Article 8. https://doi.org/10.3390/w12082310
  • Caetano, M. O., Silva, I. D., Carvalho, É. C. D., & Gomes, L. P. (2022). Efficiency of electrocoagulation in the treatment of laundromat greywater. Engenharia Sanitaria e Ambiental, 27(1), 91-101.
  • Canada Health (2010) Canadian guidelines for domestic reclaimed water for use in toilet and urinal flushing. Ontario, Ottawa
  • Cardoso, C. C. A., & Bodnar, I. (2022). Modelling Treated Laundry Greywater Reuse for Irrigation Using an Affordable Treatment Method and Seed Germination Test. SUSTAINABILITY (Vol. 14, Issue 3). https://doi.org/10.3390/su14031314
  • Cecconet, D., Callegari, A., Hlavinek, P., & Capodaglio, A. G. (2019). Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technologıes And Envıronmental Polıcy (Vol. 21, Issue 4, pp. 745–762). https://doi.org/10.1007/s10098-019-01679-z
  • Chaillou, K., Gerente, C., Andres, Y., & Wolbert, D. (2011). Bathroom Greywater Characterization and Potential Treatments for Reuse. WATER AIR AND SOIL POLLUTION (Vol. 215, Issues 1–4, pp. 31–42). https://doi.org/10.1007/s11270-010-0454-5
  • Charchalac Ochoa, S. I., Ushijima, K., Hijikata, N., & Funamizu, N. (2014). Treatment of domestic greywater by geotextile filter and intermittent sand filtration bioreactor. Journal of Water Reuse and Desalination, 5(1), 39–49. https://doi.org/10.2166/wrd.2014.042
  • Chen, C., Guo, L., Yang, Y., Oguma, K., & Hou, L. (2021). Comparative effectiveness of membrane technologies and disinfection methods for virus elimination in water: A review. Science of The Total Environment, 801, 149678. https://doi.org/10.1016/j.scitotenv.2021.149678
  • Chen, X., Wang, Y., Bai, Z., Ma, L., Strokal, M., Kroeze, C., Chen, X., Zhang, F., & Shi, X. (2022). Mitigating phosphorus pollution from detergents in the surface waters of China. Science of The Total Environment, 804, 150125. https://doi.org/10.1016/j.scitotenv.2021.150125
  • Chowdhury, R. K. (2015). Greywater reuse through a bioretention system prototype in the arid region. In WATER SCIENCE AND TECHNOLOGY (Vol. 72, Issue 12, pp. 2201–2211). https://doi.org/10.2166/wst.2015.442
  • Chrispim, M. C., & Nolasco, M. A. (2017). Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil. Journal Of Cleaner Productıon (Vol. 142, Issues 1, SI, pp. 290–296). https://doi.org/10.1016/j.jclepro.2016.07.162
  • Compaore, C. O. T., Maiga, Y., Nikiema, M., Mien, O., Nagalo, I., Panandtigri, H. T., Mihelcic, J. R., & Ouattara, A. S. (2023). Constructed wetland technology for the treatment and reuse of urban household greywater under conditions of Africa’s Sahel region. Water Supply (Vol. 23, Issue 6, pp. 2505–2516). https://doi.org/10.2166/ws.2023.121
  • Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2013). Bioreactors: Rotating Biological Contactors. Encyclopedia of Industrial Biotechnology (pp. 1013–1030). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470054581.eib650
  • Dalahmeh, S. S., Lalander, C., Pell, M., Vinneras, B., & Jonsson, H. (2016). Quality of greywater treated in biochar filter and risk assessment of gastroenteritis due to household exposure during maintenance and irrigation. Journal Of Applied Mıcrobıology (Vol. 121, Issue 5, pp. 1427–1443). https://doi.org/10.1111/jam.13273
  • Daniel, M., Ahammed, M. M., & Shaikh, I. N. (2023). Selection of Greywater Reuse Options Using Multi-criteria Decision-making Techniques. Water Conservation Science and Engineering, 8(1), 2. https://doi.org/10.1007/s41101-023-00181-4
  • De Gisi, S., Casella, P., Notarnicola, M., & Farina, R. (2016). Grey water in buildings: A mini-review of guidelines, technologies and case studies. Civil Engineering and Environmental Systems, 33(1), 35–54. https://doi.org/10.1080/10286608.2015.1124868
  • Disha, A. S., Al Harun, M. A. Y., Akter, S., Billah, S. M., & Abdullah-Al-Noman, M. (2020). Reusing greywater for cultivation of Capsicum frutescens and Calendula officinalis. Journal Of Envıronmental Management (Vol. 272). https://doi.org/10.1016/j.jenvman.2020.111088
  • Dos Santos, A. J., Barazorda-Ccahuana, H. L., Caballero-Manrique, G., Chérémond, Y., Espinoza-Montero, P. J., González-Rodríguez, J. R., Jáuregui-Haza, U. J., Lanza, M. R. V., Nájera, A., Oporto, C., Pérez Parada, A., Pérez, T., Quezada, V. D., Rojas, V., Sosa, V., Thiam, A., Torres-Palma, R. A., Vargas, R., & Garcia-Segura, S. (2023). Accelerating innovative water treatment in Latin America. Nature Sustainability, 6(4), 349–351. https://doi.org/10.1038/s41893-022-01042-z
  • Elhegazy, H., & Eid, M. M. M. (2020). A state-of-the-art-review on grey water management: A survey from 2000 to 2020s. Water Science and Technology, 82(12), 2786–2797. https://doi.org/10.2166/wst.2020.549
  • Eriksson, E., & Donner, E. (2009). Metals in greywater: Sources, presence and removal efficiencies. DESALINATION (Vol. 248, Issues 1–3, pp. 271–278). https://doi.org/10.1016/j.desal.2008.05.065
  • Eriksson, E., Auffarth, K., Eilersen, A.-M., Henze, M., & Ledin, A. (2003). Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water, 29(2), Article 2. https://doi.org/10.4314/wsa.v29i2.4848
  • Filali, H., Barsan, N., Hoermann, G., Nedeff, V., Irimia, O., Nedeff, F., & Hachicha, M. (2023). Greywater Vertical Treatment and Possibility of Reuse in the Fields from Peri-Urban Area. AGRONOMY-BASEL (Vol. 13, Issue 3). https://doi.org/10.3390/agronomy13030940
  • Fırat, B., Sericik, S., Çakmak, Y., Uğuzlu, S. (2024). Atıksuların Yeniden Kullanımına Genel Bir Bakış. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 12(2), 612-630. https://doi.org/10.29130/dubited.1207875
  • Fountoulakis, M. S., Markakis, N., Petousi, I., & Manios, T. (2016). Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing. Science of The Total Environment, 551–552, 706–711. https://doi.org/10.1016/j.scitotenv.2016.02.057
  • Friedler, E., & Hadari, M. (2006). Economic feasibility of on-site greywater reuse in multi-storey buildings. Desalination, 190(1), 221–234. https://doi.org/10.1016/j.desal.2005.10.007
  • Garcia, M. T., Campos, E., Sánchez-Leal, J., & Ribosa, I. (2006). Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge. Water Research, 40(15), 2958–2964. https://doi.org/10.1016/j.watres.2006.05.033
  • Gavala, H. N., & Ahring, B. K. (2002). Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates. Biodegradation, 13(3), 201–209. https://doi.org/10.1023/A:1020860027176
  • Ghaitidak, D. M., & Yadav, K. D. (2016). Greywater treatment for reuse: Comparison of reuse options using analytic hierarchy process. Journal Of Water Reuse And Desalination (Vol. 6, Issue 1, pp. 108–124). https://doi.org/10.2166/wrd.2015.177
  • Ghisi, E., & Ferreira, D. F. (2007). Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil. Building and Environment, 42(7), 2512–2522. https://doi.org/10.1016/j.buildenv.2006.07.019
  • Goncalves, R. F., Vaz, L. de O., Peres, M., & Merlo, S. S. (2021). Microbiological risk from non-potable reuse of greywater treated by anaerobic filters associated to vertical constructed wetlands. JOURNAL OF WATER PROCESS ENGINEERING (Vol. 39). https://doi.org/10.1016/j.jwpe.2020.101751
  • Gorgich, M., Mata, T. M., Martins, A., Caetano, N. S., & Formigo, N. (2020a). Application of domestic greywater for irrigating agricultural products: A brief study. Energy Reports, 6, 811–817. https://doi.org/10.1016/j.egyr.2019.11.007
  • Gorgich, M., Mata, T. M., Martins, A., Caetano, N. S., & Formigo, N. (2020b). Application of domestic greywater for irrigating agricultural products: A brief study. Energy Reports (Vol. 6, Issue 1, pp. 811–817). https://doi.org/10.1016/j.egyr.2019.11.007
  • Hajlaoui, H., Akrimi, R., Sayehi, S., & Hachicha, S. (2022). Usage of treated greywater as an alternative irrigation source for tomatoes cultivation. WATER AND ENVIRONMENT JOURNAL (Vol. 36, Issue 3, pp. 484–493). https://doi.org/10.1111/wej.12780
  • Halalsheh, M., Ghunmi, L. A., Al-Alami, N., & Fayyad, M. (2008). Fate of Pathogens In Tomato Plants and Soil Irrigated With Secondary Treated Wastewater. In I. A. Baz, R. Otterpohl, & C. Wendland (Eds.), Efficient Management of Wastewater (pp. 81–89). Springer. https://doi.org/10.1007/978-3-540-74492-4_7
  • Hamidi, M.N., Hamidi, N., Işık, O., Güven, H., Özgün, H. ve Erşahin, M.E. (2023), Sürdürülebilir Yağmur Suyu Hasadı, İTÜ Çevre, İklim ve Sürdürülebilirlik, 24(2), 97-110.
  • Hao, X. D., Li, J., van Loosdrecht, M. C. M., & Li, T. Y. (2018). A sustainability-based evaluation of membrane bioreactors over conventional activated sludge processes. Journal of Environmental Chemical Engineering, 6(2), 2597–2605. https://doi.org/10.1016/j.jece.2018.03.050
  • Haque, S. E. (2021). How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? Sustainability, 13(12), Article 12. https://doi.org/10.3390/su13126565
  • He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., & Bryan, B. A. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12(1), 4667. https://doi.org/10.1038/s41467-021-25026-3
  • He, Z., Li, Y., & Qi, B. (2022). Recent insights into greywater treatment: A comprehensive review on characteristics, treatment technologies, and pollutant removal mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (Vol. 29, Issue 36, pp. 54025–54044). https://doi.org/10.1007/s11356-022-21070-8
  • Health Canada. (2017, May 10). Canadian Guidelines for Domestic Reclaimed Water for Use in Toilet and Urinal Flushing [Navigation page]. https://www.canada.ca/en/health-canada/services/publications/healthy-living/canadian-guidelines-domestic-reclaimed-water-use-toilet-urinal-flushing.html
  • Henderson, M., Ergas, S. J., Ghebremichael, K., Gross, A., & Ronen, Z. (2022). Occurrence of Antibiotic-Resistant Genes and Bacteria in Household Greywater Treated in Constructed Wetlands. WATER (Vol. 14, Issue 5). https://doi.org/10.3390/w14050758
  • Henkel, J., Lemac, M., Wagner, M., & Cornel, P. (2009). Oxygen transfer in membrane bioreactors treating synthetic greywater. Water Research, 43(6), 1711–1719. https://doi.org/10.1016/j.watres.2009.01.011
  • Hocaoglu, S. M., Atasoy, E., Baban, A., & Orhon, D. (2013). Modeling biodegradation characteristics of grey water in membrane bioreactor. Journal of Membrane Science, 429, 139–146. https://doi.org/10.1016/j.memsci.2012.11.012
  • Huelgas, A., & Funamizu, N. (2010). Flat-plate submerged membrane bioreactor for the treatment of higher-load graywater. Desalination, 250(1), 162–166. https://doi.org/10.1016/j.desal.2009.05.007
  • Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2016). Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. Membranes, 6(2), Article 2. https://doi.org/10.3390/membranes6020033
  • Jabornig, S., & Favero, E. (2013). Single household greywater treatment with a moving bed biofilm membrane reactor (MBBMR). Journal of Membrane Science, 446, 277–285. https://doi.org/10.1016/j.memsci.2013.06.049
  • Jeppesen, B. (1996). Domestic greywater re-use: Australia’s challenge for the future. Desalination, 106(1), 311–315. https://doi.org/10.1016/S0011-9164(96)00124-5
  • Jong, J., Lee, J., Kim, J., Hyun, K., Hwang, T., Park, J., & Choung, Y. (2010). The study of pathogenic microbial communities in graywater using membrane bioreactor. Desalination, 250(2), 568–572. https://doi.org/10.1016/j.desal.2009.09.025
  • Karagözoğlu, M. B., & Yılmaz, Z. (2023). Gri Su Arıtımında Teknolojik Yaklaşımlar ve Yeniden Kullanımı. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 12(1), 1-14.
  • Karahan, B. N., Akdag, Y., Fakioglu, M., Korkut, S., Guven, H., Ersahin, M. E., & Ozgun, H. (2023). Coupling ozonation with hydrogen peroxide and chemically enhanced primary treatment for advanced treatment of grey water. Journal of Environmental Chemical Engineering, 11(3), 110116. https://doi.org/10.1016/j.jece.2023.110116
  • Khajvand, M., Mostafazadeh, A. K., Drogui, P., Tyagi, R. D., & Brien, E. (2022). Greywater characteristics, impacts, treatment, and reclamation using adsorption processes towards the circular economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (Vol. 29, Issue 8, pp. 10966–11003). https://doi.org/10.1007/s11356-021-16480-z
  • Khalil, M., & Liu, Y. (2021). Greywater biodegradability and biological treatment technologies: A critical review. International Biodeterioration & Biodegradation, 161, 105211. https://doi.org/10.1016/j.ibiod.2021.105211
  • Khanam, K., & Patidar, S. K. (2022). Greywater characteristics in developed and developing countries. Materials Today: Proceedings, 57, 1494–1499. https://doi.org/10.1016/j.matpr.2021.12.022
  • Kobayashi, Y., Ashbolt, N. J., Davies, E. G. R., & Liu, Y. (2020). Life cycle assessment of decentralized greywater treatment systems with reuse at different scales in cold regions. ENVIRONMENT INTERNATIONAL (Vol. 134). https://doi.org/10.1016/j.envint.2019.105215
  • Kogawa, A. C., Cernic, B. G., do Couto, L. G. D., & Salgado, H. R. N. (2017). Synthetic detergents: 100 years of history. Saudi Pharmaceutical Journal, 25(6), 934–938. https://doi.org/10.1016/j.jsps.2017.02.006
  • Köse Mutlu, B. (2021). Çok Katlı Binalarda Gri Suyun Yerinde Arıtılması ile Yeniden Kullanılmasının Fizibilitesi: İstanbul’da Bir Kentsel Dönüşüm Projesi Örneği. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(67), 81-91. https://doi.org/10.21205/deufmd.2021236707
  • Krishnan, V., Ahmad, D., & Jeru, J. B. (2008). Influence of COD:;N:P ratio on dark greywater treatment using a sequencing batch reactor. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (Vol. 83, Issue 5, pp. 756–762). https://doi.org/10.1002/jctb.1842
  • Kurniawan, S., Novarini, Yuliwati, E., Ariyanto, E., Morsin, M., Sanudin, R., & Nafisah, S. (2023). Greywater treatment technologies for aquaculture safety: Review. Journal of King Saud University - Engineering Sciences, 35(5), 327–334. https://doi.org/10.1016/j.jksues.2021.03.014
  • Laaffat, J., Aziz, F., Ouazzani, N., & Mandi, L. (2019). Biotechnological approach of greywater treatment and reuse for landscape irrigation in small. SAUDI JOURNAL OF BIOLOGICAL SCIENCES (Vol. 26, Issue 1, pp. 83–90). https://doi.org/10.1016/j.sjbs.2017.01.006
  • Lam, C.-M., Leng, L., Chen, P.-C., Lee, P.-H., & Hsu, S.-C. (2017). Eco-efficiency analysis of non-potable water systems in domestic buildings. Applied Energy, 202, 293–307. https://doi.org/10.1016/j.apenergy.2017.05.095
  • Lamine, M., Samaali, D., & Ghrabi, A. (2012). Greywater treatment in a submerged membrane bioreactor with gravitational filtration. Desalination and Water Treatment, 46(1–3), 182–187. https://doi.org/10.1080/19443994.2012.677553
  • Lanchipa-Ale, T., Cruz-Baltuano, A., Molero-Yañez, N., Chucuya, S., Vera-Barrios, B., & Pino-Vargas, E. (2024). Assessment of Greywater Reuse in a University Building in a Hyper-Arid Region: Quantity, Quality, and Social Acceptance. Sustainability, 16(7), Article 7. https://doi.org/10.3390/su16073088
  • Leiva, E., Rodríguez, C., Sánchez, R., & Serrano, J. (2021). Light or Dark Greywater for Water Reuse? Economic Assessment of On-Site Greywater Treatment Systems in Rural Areas. Water, 13(24), Article 24. https://doi.org/10.3390/w13243637
  • Leong, J. Y. C., Chong, M. N., & Poh, P. E. (2018). Assessment of greywater quality and performance of a pilot-scale decentralised hybrid rainwater-greywater system. JOURNAL OF CLEANER PRODUCTION (Vol. 172, pp. 81–91). https://doi.org/10.1016/j.jclepro.2017.10.172
  • Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of The Total Environment, 407(11), 3439–3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
  • Li, K., Ren, W., Wang, Q., Xu, L., Shi, X., Bai, X., Jin, X., Wang, X. C., & Jin, P. (2023). Onsite treatment of decentralized rural greywater by ecological seepage well (ESW). JOURNAL OF CLEANER PRODUCTION (Vol. 393). https://doi.org/10.1016/j.jclepro.2023.136180
  • Lin, C. J., Lo, S. L., Kuo, C. Y., & Wu, C. H. (2005). Pilot-scale electrocoagulation with bipolar aluminum electrodes for on-site domestic greywater reuse. Journal of environmental engineering, 131(3), 491-495.
  • Lousada-Ferreira, M., Geilvoet, S., Moreau, A., Atasoy, E., Krzeminski, P., van Nieuwenhuijzen, A., & van der Graaf, J. (2010). MLSS concentration: Still a poorly understood parameter in MBR filterability. Desalination, 250(2), 618–622. https://doi.org/10.1016/j.desal.2009.09.036
  • Maeda, M., Nakada, K., Kawamoto, K., & Ikeda, M. (1996). Area-wide use of reclaimed water in Tokyo, Japan. Water Science and Technology, 33(10), 51–57. https://doi.org/10.1016/0273-1223(96)00406-4
  • Mahmoudi, A., Mousavi, S. A., & Darvishi, P. (2021). Greywater as a sustainable source for development of green roofs: Characteristics, treatment technologies, reuse, case studies and future developments. JOURNAL OF ENVIRONMENTAL MANAGEMENT (Vol. 295). https://doi.org/10.1016/j.jenvman.2021.112991
  • Maimon, A., Friedler, E., & Gross, A. (2014). Parameters affecting greywater quality and its safety for reuse. Science of the Total Environment, 487, 20-25.
  • Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: Applicability in developing countries. Journal of Environmental Management, 90(1), 652–659. https://doi.org/10.1016/j.jenvman.2008.07.001
  • Matos, C., Pereira, S., Amorim, E. V., Bentes, I., & Briga-Sa, A. (2014). Wastewater and greywater reuse on irrigation in centralized and decentralized systems—An integrated approach on water quality, energy consumption and CO2 emissions. Science of the Total Environment (Vol. 493, pp. 463–471). https://doi.org/10.1016/j.scitotenv.2014.05.129
  • Morandi, C., Schreiner, G., Moosmann, P., & Steinmetz, H. (2021). Elevated Vertical-Flow Constructed Wetlands for Light Greywater Treatment. Water (Vol. 13, Issue 18). https://doi.org/10.3390/w13182510
  • Mourad, K. A., Berndtsson, J. C., & Berndtsson, R. (2011). Potential fresh water saving using greywater in toilet flushing in Syria. Journal of Environmental Management, 92(10), 2447–2453. https://doi.org/10.1016/j.jenvman.2011.05.004
  • Mousazadeh, M., Khademi, N., Kabdaşlı, I., Rezaei, S., Hajalifard, Z., Moosakhani, Z., & Hashim, K. (2023). Domestic greywater treatment using electrocoagulation-electrooxidation process: Optimisation and experimental approaches. Scientific Reports, 13(1), 15852. https://doi.org/10.1038/s41598-023-42831-6
  • Nasr, M., Ateia, M., & Hassan, K. (2016). Artificial intelligence for greywater treatment using electrocoagulation process. Separation Science and Technology, 51(1), 96-105.
  • Ndiaye, A., Andrianisa, H. A., Saapi, S. S. Y., Changotade, O. A., Adugna, A. T., Konate, Y., & Maiga, A. H. (2020). Assessment on overall efficiency of urban greywater treatment by vermifiltration in hot climate: Enhanced pollutants removal. Environmental Technology (Vol. 41, Issue 17, pp. 2219–2228). https://doi.org/10.1080/09593330.2018.1561755
  • Nguyen, H. T., Blazejewski, R., & Spychala, M. (2020). Greywater treatment in Lamella settler and combined filters. Desalination and Water Treatment (Vol. 203, pp. 202–210). https://doi.org/10.5004/dwt.2020.26201
  • Nicolaidis, C., & Vyrides, I. (2014). Closing the water cycle for industrial laundries: An operational performance and techno-economic evaluation of a full-scale membrane bioreactor system. Resources, Conservation and Recycling, 92, 128–135. https://doi.org/10.1016/j.resconrec.2014.09.001
  • Nie, Y., Chen, R., Tian, X., & Li, Y.-Y. (2019). Characterization of the effect of surfactant on biomass adaptation and microbial community in sewage treatment by anaerobic membrane bioreactor. Journal of Industrial and Engineering Chemistry, 76, 268–276. https://doi.org/10.1016/j.jiec.2019.03.051
  • Nolde, E. (2000). Greywater reuse systems for toilet flushing in multi-storey buildings – over ten years experience in Berlin. Urban Water, 1(4), 275–284. https://doi.org/10.1016/S1462-0758(00)00023-6
  • Nolde, E. (2005). Greywater recycling systems in Germany—Results, experiences and guidelines. Water Science and Technology (Vol. 51, Issue 10, pp. 203–210). https://doi.org/10.2166/wst.2005.0368
  • Noutsopoulos, C., Andreadakis, A., Kouris, N., Charchousi, D., Mendrinou, P., Galani, A., Mantziaras, I., & Koumaki, E. (2018). Greywater characterization and loadings—Physicochemical treatment to promote onsite reuse. Journal of Environmental Management (Vol. 216, Issue SI, pp. 337–346). https://doi.org/10.1016/j.jenvman.2017.05.094
  • Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., & Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, 100112. https://doi.org/10.1016/j.nexus.2022.100112
  • Oron, G., Adel, M., Agmon, V., Friedler, E., Halperin, R., Leshem, E., & Weinberg, D. (2014). Greywater use in Israel and worldwide: Standards and prospects. Water Research (Vol. 58, pp. 92–101). https://doi.org/10.1016/j.watres.2014.03.032
  • Oteng-Peprah, M., de Vries, N. K., & Acheampong, M. A. (2018). Greywater characterization and generation rates in a pen urban municipality of a developing country. Journal of Environmental Management (Vol. 206, pp. 498–506). https://doi.org/10.1016/j.jenvman.2017.10.068
  • Ottoson, J., & Stenström, T. (2003). Faecal contamination of greywater and associated microbial risks. WATER RESEARCH (Vol. 37, Issue 3, pp. 645–655). https://doi.org/10.1016/S0043-1354(02)00352-4
  • Öztekin, E. (2024). Sürdürülebilir kentsel gelişim bağlamında eko şehirlerde su ve atık yönetimi. Karaelmas Fen ve Mühendislik Dergisi, 14(1), 92-100. https://doi.org/10.7212/karaelmasfen.1383715
  • Palmer, M., & Hatley, H. (2018). The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review. Water Research, 147, 60–72. https://doi.org/10.1016/j.watres.2018.09.039
  • Penn, R., Hadari, M., & Friedler, E. (2012). Evaluation of the effects of greywater reuse on domestic wastewater quality and quantity. Urban Water Journal (Vol. 9, Issue 3, pp. 137–148). https://doi.org/10.1080/1573062X.2011.652132
  • Petkova, B., Tcholakova, S., Chenkova, M., Golemanov, K., Denkov, N., Thorley, D., & Stoyanov, S. (2020). Foamability of aqueous solutions: Role of surfactant type and concentration. Advances in Colloid and Interface Science, 276, 102084. https://doi.org/10.1016/j.cis.2019.102084
  • Porob, S., Craddock, H. A., Motro, Y., Sagi, O., Gdalevich, M., Ezery, Z., Davidovitch, N., Ronen, Z., & Moran-Gilad, J. (2020). Quantification and Characterization of Antimicrobial Resistance in Greywater Discharged to the Environment. Water, 12(5), Article 5. https://doi.org/10.3390/w12051460
  • Potivichayanon, S., Sittitoon, N., & Vinneras, B. (2021). Exposure assessment of treated greywater reused for irrigation. Water Supply (Vol. 21, Issue 8, pp. 4404–4417). https://doi.org/10.2166/ws.2021.191
  • Prathapar, S. A., Jamrah, A., Ahmed, M., Al Adawi, S., Al Sidairi, S., & Al Harassi, A. (2005). Overcoming constraints in treated greywater reuse in Oman. Desalination, 186(1), 177–186. https://doi.org/10.1016/j.desal.2005.01.018
  • Priyanka, K., Remya, N., & Behera, M. (2022). Sequential biological and solar photocatalytic treatment system for greywater treatment. Water Science and Technology, 86(3), 584–595. https://doi.org/10.2166/wst.2022.229
  • Rahman, K. Z., Al Saadi, S., Al Rawahi, M., Knappe, J., van Afferden, M., Moeller, L., Bernhard, K., & Mueller, R. A. (2023). A multi-functional nature-based solution (NBS) for greywater treatment and reuse at the same plot. Ecological Engineering (Vol. 191). https://doi.org/10.1016/j.ecoleng.2023.106952
  • Rodrigues, A. M., Formiga, K. T. M., & Milograna, J. (2023). Integrated systems for rainwater harvesting and greywater reuse: A systematic review of urban water management strategies. Water Supply, 23(10), 4112–4125. https://doi.org/10.2166/ws.2023.240
  • Rodriguez, C., Carrasco, F., Sanchez, R., Rebolledo, N., Schneider, N., Serrano, J., & Leiva, E. (2022). Performance and treatment assessment of a pilot-scale decentralized greywater reuse system in rural schools of north-central Chile. Ecological Engineering (Vol. 174). https://doi.org/10.1016/j.ecoleng.2021.106460
  • Rodriguez, C., Sanchez, R., Rebolledo, N., Schneider, N., Serrano, J., & Leiva, E. (2020). Cost-Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water (Vol. 12, Issue 12). https://doi.org/10.3390/w12123468
  • Samayamanthula, D. R., Sabarathinam, C., & Bhandary, H. (2019). Treatment and effective utilization of greywater. Applied Water Science, 9(4), 90. https://doi.org/10.1007/s13201-019-0966-0
  • Scheumann, R., Masi, F., El Hamouri, B., & Kraume, M. (2009). Greywater treatment as an option for effective wastewater management in small communities. Desalination and Water Treatment, 4, 33–39. https://doi.org/10.5004/dwt.2009.352
  • Shaikh, I. N., & Ahammed, M. M. (2020). Quantity and quality characteristics of greywater: A review. In JOURNAL OF ENVIRONMENTAL MANAGEMENT (Vol. 261). https://doi.org/10.1016/j.jenvman.2020.110266
  • Sharaf, A., & Liu, Y. (2021). Mechanisms and kinetics of greywater treatment using biologically active granular activated carbon. Chemosphere, 263, 128113. https://doi.org/10.1016/j.chemosphere.2020.128113
  • Siggins, A., Burton, V., Ross, C., Lowe, H., & Horswell, J. (2016). Effects of long-term greywater disposal on soil: A case study. Science of The Total Environment (Vol. 557, pp. 627–635). https://doi.org/10.1016/j.scitotenv.2016.03.084
  • Smith, E., & Bani-Melhem, K. (2012). Grey water characterization and treatment for reuse in an arid environment. Water Science and Technology, 66(1), 72–78. https://doi.org/10.2166/wst.2012.167
  • Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü, GRİ SUYUN KULLANIMI / 2022 Rehber Dokümanı
  • Teodoro, A., Júnior, A. M., Boncz, M. Á., & Paulo, P. L. (2018). Alternative use of Pseudomonas aeruginosa as indicator for greywater disinfection. Water Science and Technology, 78(6), 1361-1369.
  • Thaher, R. A., Mahmoud, N., Al-Khatib, I. A., & Hung, Y.-T. (2020). Reasons of Acceptance and Barriers of House Onsite Greywater Treatment and Reuse in Palestinian Rural Areas. WATER (Vol. 12, Issue 6). https://doi.org/10.3390/w12061679
  • Turner, R. D. R., Warne, M. St. J., Dawes, L. A., Thompson, K., & Will, G. D. (2019). Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Science of The Total Environment (Vol. 669, pp. 570–578). https://doi.org/10.1016/j.scitotenv.2019.03.073
  • Ucevli, O., & Kaya, Y. (2021). A comparative study of membrane filtration, electrocoagulation, chemical coagulation and their hybrid processes for greywater treatment. Journal of Environmental Chemical Engineering (Vol. 9, Issue 1). https://doi.org/10.1016/j.jece.2020.104946
  • Ungureanu, N., Vlăduț, V., & Voicu, G. (2020). Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability, 12(21), Article 21. https://doi.org/10.3390/su12219055 United Nations. (2022). The Sustainable Development Goals Report.
  • Vakil, K. A., Sharma, M. K., Bhatia, A., Kazmi, A. A., & Sarkar, S. (2014). Characterization of greywater in an Indian middle-class household and investigation of physicochemical treatment using electrocoagulation. Separation and Purification Technology, 130, 160–166. https://doi.org/10.1016/j.seppur.2014.04.018
  • Van de Walle, A., Kim, M., Alam, M. K., Wang, X., Wu, D., Dash, S. R., Rabaey, K., & Kim, J. (2023). Greywater reuse as a key enabler for improving urban wastewater management. Environmental Science and Ecotechnology (Vol. 16). https://doi.org/10.1016/j.ese.2023.100277
  • van Puijenbroek, P. J. T. M., Beusen, A. H. W., & Bouwman, A. F. (2018). Datasets of the phosphorus content in laundry and dishwasher detergents. Data in Brief, 21, 2284–2289. https://doi.org/10.1016/j.dib.2018.11.081
  • WHO/UNICEF. 2021 Joint Monitoring Program for Water Supply, Sanitation and Hygiene (JMP) – Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020.
  • Yu, Z. L. T., Rahardianto, A., DeShazo, J. r., Stenstrom, M. K., & Cohen, Y. (2013). Critical Review: Regulatory Incentives and Impediments for Onsite Graywater Reuse in the United States. Water Environment Research, 85(7), 650–662. https://doi.org/10.2175/106143013X13698672321580
  • Zadeh, S. M., Hunt, D. V. L., Lombardi, D. R., & Rogers, C. D. F. (2013). Shared Urban Greywater Recycling Systems: Water Resource Savings and Economic Investment. Sustainability, 5(7), Article 7. https://doi.org/10.3390/su5072887
  • Zhu, Z., & Dou, J. (2018). Current status of reclaimed water in China: An overview. Journal of Water Reuse and Desalination, 8(3), 293–307. https://doi.org/10.2166/wrd.2018.070
  • Ziemba, C., Larivé, O., Reynaert, E., & Morgenroth, E. (2018). Chemical composition, nutrient-balancing and biological treatment of hand washing greywater. Water Research, 144, 752–762. https://doi.org/10.1016/j.watres.2018.07.005
Toplam 143 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Derlemeler
Yazarlar

Muhammed Nimet Hamidi 0000-0002-6609-9977

Nizamettin Hamidi 0000-0003-0244-0264

Yayımlanma Tarihi
Gönderilme Tarihi 28 Haziran 2024
Kabul Tarihi 7 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 2

Kaynak Göster

APA Hamidi, M. N., & Hamidi, N. (t.y.). Gri Suyun Arıtılması ve Yeniden Kullanımı: Faydaları ve Riskleri. Çevre İklim Ve Sürdürülebilirlik, 25(2), 59-74.