Research Article
BibTex RIS Cite

Synthesis of (Cr,V)xCy-T MXene Materials from (Cr,V)2AlC MAX Phase Produced via Powder Metallurgy Methods

Year 2024, Volume: 1 Issue: 1, 16 - 21, 26.07.2024

Abstract

MAX (Mn+1AXn) phases represent a class of ternary metallic ceramics distinguished by their remarkable properties, rendering them highly sought after across various applications. Among these, their role as precursors for the production of 2D MXene materials stands out prominently in the realm of advanced ceramics. MXenes are obtained through the selective etching of the A-element layers from MAX phases, resulting in ultrathin layers with unique characteristics. The predominant method for MXene synthesis involves wet chemical processes, typically employing HF etching. These layered structures exhibit exceptionally high surface areas, positioning them as frontrunners for electronic applications. In this study, (Cr,V)2AlC precursor was produced by pressureless sintering of mechanically milled pure metallic powder mixtures. Subsequently, the MAX phase precursor was subjected to HF etching to obtain (Cr,V)-C-based MXenes. Both MAX and MXenes were analysed with XRD, SEM-EDS methods, and micro-hardness measurements. According to the results, the Optimal morphology which revealed a layered MXene structure for wet chemical etching of produced MAX phase materials was obtained after 4 hours of high-energy ball-milled Cr, V, Al, and C starting powder mixtures. Furthermore, the surface terminations (-T) which are an inevitable consequence of the regular chemical etching process, were identified following the analysis of the etched MXenes. In conclusion, this study accentuates the importance of optimizing synthesis methods for MAX phases to obtain tailored MXene materials, crucial for advancing applications in advanced ceramics.

Thanks

We would like to thank Res. Assist. Mertcan Kaba and Prof. Dr. Hüseyin Çimenoğlu for SEM-EDS analysis of MXene materials and Dr. Doğa Bilican and Assist. Prof. Dr. Nuri Solak for SEM-EDS analysis of MAX phase materials.

References

  • Abderrahim, F. Z., Faraoun, H. I., & Ouahrani, T. (2012). Structure, bonding and stability of semi-carbides M2C and sub-carbides M4C (M=V, Cr, Nb, Mo, Ta, W): A first-principles investigation. Physica B: Condensed Matter, 407(18), 3833-3838. https://doi.org/10.1016/j.physb.2012.05.070
  • Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J., & Zhang, C. (John). (2021). Perspectives on solution processing of two-dimensional MXenes. Materials Today, 48, 214-240. https://doi.org/10.1016/j.mattod.2021.02.010
  • Ali, G., Iqbal, M. Z., & Iftikhar, F. J. (2021). MXene. In Advances in Supercapacitor and Supercapattery (pp. 255-269). Elsevier. https://doi.org/10.1016/B978-0-12-819897-1.00005-7
  • Ali, I., Faraz Ud Din, M., & Gu, Z.-G. (2022). MXenes Thin Films: From Fabrication to Their Applications. Molecules, 27(15), 4925. https://doi.org/10.3390/molecules27154925
  • Biswas, A., Natu, V., & Puthirath, A. B. (2021). Thin-film growth of MAX phases as functional materials. Oxford Open Materials Science, 1(1), itab020. https://doi.org/10.1093/oxfmat/itab020
  • Champagne, A., Shi, L., Ouisse, T., Hackens, B., & Charlier, J.-C. (2018). Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Physical Review B, 97(11), 115439. https://doi.org/10.1103/PhysRevB.97.115439
  • Chong, X., Jiang, Y., Zhou, R., & Feng, J. (2014). Electronic structures mechanical and thermal properties of V–C binary compounds. RSC Adv., 4(85), 44959-44971. https://doi.org/10.1039/C4RA07543A
  • Khalid, M., Grace, A. N., Arulraj, A., & Numan, A. (Eds.). (2022). Fundamental aspects and perspectives of MXenes. Springer.
  • Gkountaras, A., Kim, Y., Coraux, J., Bouchiat, V., Lisi, S., Barsoum, M. W., & Ouisse, T. (2020). Mechanical Exfoliation of Select MAX Phases and Mo4Ce4Al7C3 Single Crystals to Produce MAXenes. Small, 16(4), 1905784. https://doi.org/10.1002/smll.201905784
  • Gogotsi, Y., & Anasori, B. (2019). The Rise of MXenes. ACS Nano, 13(8), 8491-8494. https://doi.org/10.1021/acsnano.9b06394
  • Ibrahim, I. A. M., Abdel-Azeim, S., El-Nahas, A. M., Kühn, O., Chung, C.-Y., El-Zatahry, A., & Shibl, M. F. (2022). In Silico Band-Gap Engineering of Cr2C MXenes as Efficient Photocatalysts for Water-Splitting Reactions. The Journal of Physical Chemistry C, 126(35), 14886-14896. https://doi.org/10.1021/acs.jpcc.2c03622
  • Kanoun, M. B., Goumri-Said, S., & Abdullah, K. (2012). 8—Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases. İçinde I. M. Low (Ed.), Advances in Science and Technology of Mn+1AXn Phases (pp. 177-196). Woodhead Publishing. https://doi.org/10.1533/9780857096012.177
  • Kedambaimoole, V., Harsh, K., Rajanna, K., Sen, P., Nayak, M. M., & Kumar, S. (2022). MXene wearables: Properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 3(9), 3784-3808. https://doi.org/10.1039/D1MA01170G
  • Martins, V. L., Neves, H. R., Monje, I. E., Leite, M. M., Oliveira, P. F. M. D., Antoniassi, R. M., Chauque, S., Morais, W. G., Melo, E. C., Obana, T. T., Souza, B. L., & Torresi, R. M. (2020). An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira de Ciências, 92. https://doi.org/10.1590/0001-3765202020200796
  • MAX Phases and MXenes Synthesis. (2022, Nisan 15). A.J. Drexel Nanomaterials Institute. https://nano.materials.drexel.edu/max-phases-and-mxenes-synthesis/
  • Qin, R., Shan, G., Hu, M., & Huang, W. (2021). Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Materials Today Physics, 21, 100527. https://doi.org/10.1016/j.mtphys.2021.100527
  • Salim, O., Mahmoud, K. A., Pant, K. K., & Joshi, R. K. (2019). Introduction to MXenes: Synthesis and characteristics. Materials Today Chemistry, 14, 100191. https://doi.org/10.1016/j.mtchem.2019.08.010
  • Suzuki, Y., Hino, H., Hawai, T., Saito, K., Kotsugi, M., & Ono, K. (2020). Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Scientific Reports, 10(1), 21790. https://doi.org/10.1038/s41598-020-77474-4
  • Völker, B., Stelzer, B., Mráz, S., Rueß, H., Sahu, R., Kirchlechner, C., Dehm, G., & Schneider, J. M. (2021). On the fracture behavior of Cr2AlC coatings. Materials & Design, 206, 109757. https://doi.org/10.1016/j.matdes.2021.109757
  • Werner, P.-E. (1964). Trial-and-error computer methods for the indexing of unknown powder patterns. Zeitschrift für Kristallographie - Crystalline Materials, 120(1-6), 375-387. https://doi.org/10.1524/zkri.1964.120.16.375
  • Xu, J., Peng, T., Qin, X., Zhang, Q., Liu, T., Dai, W., Chen, B., Yu, H., & Shi, S. (2021). Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices. Journal of Materials Chemistry A, 9(25), 14147-14171. https://doi.org/10.1039/D1TA03070A
  • Zhang, Z., Duan, X., Jia, D., Zhou, Y., & van der Zwaag, S. (2021). On the formation mechanisms and properties of MAX phases: A review. Journal of the European Ceramic Society, 41(7), 3851-3878. https://doi.org/10.1016/j.jeurceramsoc.2021.02.002
  • Zhou, A., Liu, Y., Li, S., Wang, X., Ying, G., Xia, Q., & Zhang, P. (2021). From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics, 10(6), 1194-1242. https://doi.org/10.1007/s40145-021-0535-5
Year 2024, Volume: 1 Issue: 1, 16 - 21, 26.07.2024

Abstract

References

  • Abderrahim, F. Z., Faraoun, H. I., & Ouahrani, T. (2012). Structure, bonding and stability of semi-carbides M2C and sub-carbides M4C (M=V, Cr, Nb, Mo, Ta, W): A first-principles investigation. Physica B: Condensed Matter, 407(18), 3833-3838. https://doi.org/10.1016/j.physb.2012.05.070
  • Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J., & Zhang, C. (John). (2021). Perspectives on solution processing of two-dimensional MXenes. Materials Today, 48, 214-240. https://doi.org/10.1016/j.mattod.2021.02.010
  • Ali, G., Iqbal, M. Z., & Iftikhar, F. J. (2021). MXene. In Advances in Supercapacitor and Supercapattery (pp. 255-269). Elsevier. https://doi.org/10.1016/B978-0-12-819897-1.00005-7
  • Ali, I., Faraz Ud Din, M., & Gu, Z.-G. (2022). MXenes Thin Films: From Fabrication to Their Applications. Molecules, 27(15), 4925. https://doi.org/10.3390/molecules27154925
  • Biswas, A., Natu, V., & Puthirath, A. B. (2021). Thin-film growth of MAX phases as functional materials. Oxford Open Materials Science, 1(1), itab020. https://doi.org/10.1093/oxfmat/itab020
  • Champagne, A., Shi, L., Ouisse, T., Hackens, B., & Charlier, J.-C. (2018). Electronic and vibrational properties of V2C-based MXenes: From experiments to first-principles modeling. Physical Review B, 97(11), 115439. https://doi.org/10.1103/PhysRevB.97.115439
  • Chong, X., Jiang, Y., Zhou, R., & Feng, J. (2014). Electronic structures mechanical and thermal properties of V–C binary compounds. RSC Adv., 4(85), 44959-44971. https://doi.org/10.1039/C4RA07543A
  • Khalid, M., Grace, A. N., Arulraj, A., & Numan, A. (Eds.). (2022). Fundamental aspects and perspectives of MXenes. Springer.
  • Gkountaras, A., Kim, Y., Coraux, J., Bouchiat, V., Lisi, S., Barsoum, M. W., & Ouisse, T. (2020). Mechanical Exfoliation of Select MAX Phases and Mo4Ce4Al7C3 Single Crystals to Produce MAXenes. Small, 16(4), 1905784. https://doi.org/10.1002/smll.201905784
  • Gogotsi, Y., & Anasori, B. (2019). The Rise of MXenes. ACS Nano, 13(8), 8491-8494. https://doi.org/10.1021/acsnano.9b06394
  • Ibrahim, I. A. M., Abdel-Azeim, S., El-Nahas, A. M., Kühn, O., Chung, C.-Y., El-Zatahry, A., & Shibl, M. F. (2022). In Silico Band-Gap Engineering of Cr2C MXenes as Efficient Photocatalysts for Water-Splitting Reactions. The Journal of Physical Chemistry C, 126(35), 14886-14896. https://doi.org/10.1021/acs.jpcc.2c03622
  • Kanoun, M. B., Goumri-Said, S., & Abdullah, K. (2012). 8—Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases. İçinde I. M. Low (Ed.), Advances in Science and Technology of Mn+1AXn Phases (pp. 177-196). Woodhead Publishing. https://doi.org/10.1533/9780857096012.177
  • Kedambaimoole, V., Harsh, K., Rajanna, K., Sen, P., Nayak, M. M., & Kumar, S. (2022). MXene wearables: Properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 3(9), 3784-3808. https://doi.org/10.1039/D1MA01170G
  • Martins, V. L., Neves, H. R., Monje, I. E., Leite, M. M., Oliveira, P. F. M. D., Antoniassi, R. M., Chauque, S., Morais, W. G., Melo, E. C., Obana, T. T., Souza, B. L., & Torresi, R. M. (2020). An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira de Ciências, 92. https://doi.org/10.1590/0001-3765202020200796
  • MAX Phases and MXenes Synthesis. (2022, Nisan 15). A.J. Drexel Nanomaterials Institute. https://nano.materials.drexel.edu/max-phases-and-mxenes-synthesis/
  • Qin, R., Shan, G., Hu, M., & Huang, W. (2021). Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Materials Today Physics, 21, 100527. https://doi.org/10.1016/j.mtphys.2021.100527
  • Salim, O., Mahmoud, K. A., Pant, K. K., & Joshi, R. K. (2019). Introduction to MXenes: Synthesis and characteristics. Materials Today Chemistry, 14, 100191. https://doi.org/10.1016/j.mtchem.2019.08.010
  • Suzuki, Y., Hino, H., Hawai, T., Saito, K., Kotsugi, M., & Ono, K. (2020). Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach. Scientific Reports, 10(1), 21790. https://doi.org/10.1038/s41598-020-77474-4
  • Völker, B., Stelzer, B., Mráz, S., Rueß, H., Sahu, R., Kirchlechner, C., Dehm, G., & Schneider, J. M. (2021). On the fracture behavior of Cr2AlC coatings. Materials & Design, 206, 109757. https://doi.org/10.1016/j.matdes.2021.109757
  • Werner, P.-E. (1964). Trial-and-error computer methods for the indexing of unknown powder patterns. Zeitschrift für Kristallographie - Crystalline Materials, 120(1-6), 375-387. https://doi.org/10.1524/zkri.1964.120.16.375
  • Xu, J., Peng, T., Qin, X., Zhang, Q., Liu, T., Dai, W., Chen, B., Yu, H., & Shi, S. (2021). Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices. Journal of Materials Chemistry A, 9(25), 14147-14171. https://doi.org/10.1039/D1TA03070A
  • Zhang, Z., Duan, X., Jia, D., Zhou, Y., & van der Zwaag, S. (2021). On the formation mechanisms and properties of MAX phases: A review. Journal of the European Ceramic Society, 41(7), 3851-3878. https://doi.org/10.1016/j.jeurceramsoc.2021.02.002
  • Zhou, A., Liu, Y., Li, S., Wang, X., Ying, G., Xia, Q., & Zhang, P. (2021). From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics, 10(6), 1194-1242. https://doi.org/10.1007/s40145-021-0535-5
There are 23 citations in total.

Details

Primary Language English
Subjects Powder Metallurgy, Materials Engineering (Other)
Journal Section Research Articles
Authors

Semih Ateş 0000-0003-1651-7576

İlayda Süzer 0000-0003-1825-7253

Ahmet Mirza Erol

Ahmed Emin Tok

Berkay Demircan

Hüseyin Kerim Yazıcı

Cevat Fahir Arısoy 0000-0003-3399-9271

Lütfi Öveçoğlu 0000-0002-1536-4961

Duygu Ağaoğulları 0000-0002-0623-5586

Publication Date July 26, 2024
Submission Date April 29, 2024
Acceptance Date July 24, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

APA Ateş, S., Süzer, İ., Erol, A. M., Tok, A. E., et al. (2024). Synthesis of (Cr,V)xCy-T MXene Materials from (Cr,V)2AlC MAX Phase Produced via Powder Metallurgy Methods. ITU Journal of Metallurgy and Materials Engineering, 1(1), 16-21.