Review
BibTex RIS Cite

Per ve Poliflorlu Alkil Maddeler (PFAS): Tarihçesi, Düzenlemeler ve Arıtma Stratejileri

Year 2025, Volume: 2 Issue: 1, 19 - 28, 22.04.2025

Abstract

Per- ve polifloroalkil maddeler (PFAS), olağanüstü termal kararlılık, hidrofobiklik ve kimyasal dirence sahip, geniş bir sentetik kimyasal grubunu oluşturur. Ancak bu özellikler, PFAS’ın çevrede kalıcılığı ve geleneksel bozunma süreçlerine direnç göstermesi nedeniyle “sonsuz kimyasallar” olarak adlandırılmasına yol açmıştır. PFAS kirliliği, ciddi sağlık etkileri ve ekolojik bozulmalarla ilişkilendirilerek küresel ölçekte önemli bir sorun haline gelmiştir. Bu sorunun üstesinden gelmek, PFAS’ın benzersiz özelliklerine uygun gelişmiş arıtma stratejilerini gerektirir.
Bu inceleme, PFAS’ın tarihini, küresel kullanımına yönelik düzenlemeleri ve mevcut PFAS giderme ve yok etme teknolojilerini kapsamlı bir şekilde analiz ederek, bu yöntemlerin mekanizmalarını, verimliliklerini ve sınırlamalarını vurgulamaktadır. Granüler aktif karbon (GAC) ve iyon değişim reçineleri gibi adsorpsiyon teknikleri, uzun zincirli PFAS’ı etkili bir şekilde yakalayabilen en yerleşik yöntemler arasında yer alırken, kısa zincirli PFAS’a karşı yetersiz kalmakta ve yüksek yenileme maliyetleriyle mücadele etmektedir. Ters ozmoz (RO) ve nanofiltrasyon (NF) gibi membran filtrasyon süreçleri, yüksek uzaklaştırma oranlarına ulaşsa da yoğun tuzlu su atıkları üretmekte ve bu atıkların ek işlem görmesi gerekmektedir. Fotokimyasal ve elektrokimyasal yöntemleri içeren ileri oksidasyon süreçleri (AOP’ler), PFAS bozunmasında umut vaat etmekle birlikte genellikle yüksek enerji gereksinimi duymakta ve zararlı yan ürünler oluşturma riskine sahiptir. Yüksek sıcaklıkta yakma ve termal desorpsiyon gibi termal yok etme yöntemleri, PFAS’ın tamamen mineralize edilmesinde etkili olmakla birlikte, ikincil emisyonları azaltmak için sıkı kontroller gerektirir. Plazma bazlı arıtımlar, süperkritik su oksidasyonu ve yeni katalitik sistemler gibi yeni teknolojiler yenilikçi yaklaşımlar sunmakla birlikte, ölçeklenebilirlik ve maliyet etkinliği açısından sınırlı kalmaktadır. Birden fazla tekniği bir araya getiren hibrit sistemler, bireysel yöntemlerin sınırlamalarını aşmada potansiyel çözümler olarak giderek daha fazla tanınmaktadır.
Bu inceleme, PFAS arıtma teknolojilerinin ilerletilmesi gerekliliğini vurgulamakta ve temel araştırmaların pratik uygulamalarla birleştirilmesinin önemine dikkat çekmektedir. Mevcut ve gelişmekte olan stratejilerin sistematik bir şekilde değerlendirilmesiyle bu çalışma, PFAS kirliliğine karşı mücadelede etkinlik, sürdürülebilirlik ve uygulanabilirlik arasında denge kuran entegre çözümlerin geliştirilmesine rehberlik etmeyi amaçlamaktadır.

References

  • Ahrens, L., & Bundschuh, M. (2014). Fate and effects of poly‐ and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), 1921–1929. https://doi.org/10.1002/etc.2663
  • Altarawneh, M., Almatarneh, M. H., & Dlugogorski, B. Z. (2022). Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration. Chemosphere, 286, 131685. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131685
  • Appleman, T. D., Higgins, C. P., Quiñones, O., Vanderford, B. J., Kolstad, C., Zeigler-Holady, J. C., & Dickenson, E. R. V. (2014). Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research, 51, 246–255. https://doi.org/10.1016/J.WATRES.2013.10.067
  • Arkhangelsky, E., Levitsky, I., & Gitis, V. (2008). Electrostatic repulsion as a mechanism in fouling of ultrafiltration membranes. Water Science and Technology, 58(10), 1955–1961. https://doi.org/10.2166/wst.2008.757
  • Banks, D., Jun, B.-M., Heo, J., Her, N., Park, C. M., & Yoon, Y. (2020). Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: A review. Separation and Purification Technology, 231, 115929. https://doi.org/10.1016/j.seppur.2019.115929
  • Bryan Cave Leighton Paisner. (n.d.). PFAS in consumer products: State-by-state regulations. Retrieved February 4, 2025, from https://www.bclplaw.com/en-US/events-insights-news/pfas-in-consumer-products-state-by-state-regulations.html
  • Brendel, S., Fetter, É., Staude, C., Vierke, L., & Biegel-Engler, A. (2018). Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe, 30(1), 9. https://doi.org/10.1186/s12302-018-0134-4
  • Brennan, N. M., Evans, A. T., Fritz, M. K., Peak, S. A., & von Holst, H. E. (2021). Trends in the Regulation of Per- and Polyfluoroalkyl Substances (PFAS): A Scoping Review. International Journal of Environmental Research and Public Health, 18(20), 10900. https://doi.org/10.3390/ijerph182010900
  • Buck, R. C., Korzeniowski, S. H., Laganis, E., & Adamsky, F. (2021). Identification and classification of commercially relevant per‐ and poly‐fluoroalkyl substances (PFAS). Integrated Environmental Assessment and Management, 17(5), 1045–1055. https://doi.org/10.1002/ieam.4450
  • Calafat, A. M., Wong, L.-Y., Kuklenyik, Z., Reidy, J. A., & Needham, L. L. (2007). Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000. Environmental Health Perspectives, 115(11), 1596–1602. https://doi.org/10.1289/ehp.10598
  • Centers for Disease Control and Prevention. (2019). Fourth national report on human exposure to environmental chemicals, updated table.
  • Chen, M.-J., Lo, S.-L., Lee, Y.-C., & Huang, C.-C. (2015). Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. Journal of Hazardous Materials, 288, 168–175. https://doi.org/10.1016/j.jhazmat.2015.02.004
  • Das, S., & Ronen, A. (2022). A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes, 12(7), 662. https://doi.org/10.3390/membranes12070662
  • Dey, D., Shafi, T., Chowdhury, S., Dubey, B. K., & Sen, R. (2024). Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS). Chemosphere, 351, 141164. https://doi.org/10.1016/J.CHEMOSPHERE.2024.141164
  • Dixit, F., Dutta, R., Barbeau, B., Berube, P., & Mohseni, M. (2021). PFAS removal by ion exchange resins: A review. Chemosphere, 272, 129777. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129777
  • Ellis, A. C., Boyer, T. H., & Strathmann, T. J. (2025). Regeneration of conventional and emerging PFAS-selective anion exchange resins used to treat PFAS-contaminated waters. Separation and Purification Technology, 355, 129789. https://doi.org/10.1016/J.SEPPUR.2024.129789
  • Environment and Climate Change Canada. (2024). Revised risk management scope per polyfluoroalkyl substances. Retrieved February 4, 2025, from https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/revised-risk-management-scope-per-polyfluoroalkyl-substances.html
  • Environmental Protection Agency. (2018). Draft Human Health Toxicity Assessments for Hexafluoropropylene Oxide Dimer Acid and Its Ammonium Salt (GenX Chemicals) and for Perfluorobutane Sulfonic Acid (PFBS) and Related Compound Potassium Perfluorobutane Sulfonate.
  • European Chemicals Agency. (2024). ECHA and five European countries issue progress update on PFAS restriction. Retrieved February 4, 2025, from https://echa.europa.eu/-/echa-and-five-european-countries-issue-progress-update-on-pfas-restriction
  • European Chemicals Agency. (n.d.). Perfluoroalkyl chemicals (PFAS). Retrieved February 4, 2025, from https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas
  • EU Japan. (2025, January 10). Report: Chemical industry in Japan – Focus on PFAS. Retrieved February 4, 2025, from https://www.eu-japan.eu/publications/report-chemical-industry-japan-focus-pfas
  • Food Packaging Forum. (2020). Turkey updates food contact plastic regulations. Retrieved February 4, 2025, from https://foodpackagingforum.org/news/turkey-updates-food-contact-plastic-regulations
  • Franke, V., McCleaf, P., Lindegren, K., & Ahrens, L. (2019). Efficient removal of per- and polyfluoroalkyl substances (PFASs) in drinking water treatment: nanofiltration combined with active carbon or anion exchange.
  • Environmental Science: Water Research & Technology, 5(11), 1836–1843. https://doi.org/10.1039/C9EW00286C
  • Franke, V., Ullberg, M., McCleaf, P., Wålinder, M., Köhler, S. J., & Ahrens, L. (2021). The Price of Really Clean Water: Combining Nanofiltration with Granular Activated Carbon and Anion Exchange Resins for the Removal of Per- And Polyfluoralkyl Substances (PFASs) in Drinking Water Production. ACS ES&T Water, 1(4), 782–795. https://doi.org/10.1021/acsestwater.0c00141
  • Gao, P., Cui, J., & Deng, Y. (2021). Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption – regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA). Chemical Engineering Journal, 405, 126698. https://doi.org/10.1016/j.cej.2020.126698
  • Gar Alalm, M., & Boffito, D. C. (2022). Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review. Chemical Engineering Journal, 450, 138352. https://doi.org/10.1016/J.CEJ.2022.138352
  • Ghisi, R., Vamerali, T., & Manzetti, S. (2019). Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, 326–341. https://doi.org/10.1016/j.envres.2018.10.023 International Pollutants Elimination Network. (2019). PFAS Pollution Across the Middle East and Asia; International Pollutants .
  • Karbassiyazdi, E., Kasula, M., Modak, S., Pala, J., Kalantari, M., Altaee, A., Esfahani, M. R., & Razmjou, A. (2023). A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. Chemosphere, 311, 136933. https://doi.org/10.1016/j.chemosphere.2022.136933
  • Kotthoff, M., & Bücking, M. (2018). Four Chemical Trends Will Shape the Next Decade’s Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00103
  • Lewis, R., Johns, L., & Meeker, J. (2015). Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011–2012. International Journal of Environmental Research and Public Health, 12(6), 6098–6114. https://doi.org/10.3390/ijerph120606098
  • Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z., & Zhao, D. (2020a). Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506. https://doi.org/10.1016/j.cej.2019.122506
  • Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z., & Zhao, D. (2020b). Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506. https://doi.org/10.1016/j.cej.2019.122506
  • Li, R., Alomari, S., Islamoglu, T., Farha, O. K., Fernando, S., Thagard, S. M., Holsen, T. M., & Wriedt, M. (2021). Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal–Organic Frameworks. Environmental Science & Technology, 55(22), 15162–15171. https://doi.org/10.1021/acs.est.1c03974
  • Li, R., Alomari, S., Stanton, R., Wasson, M. C., Islamoglu, T., Farha, O. K., Holsen, T. M., Thagard, S. M., Trivedi, D. J., & Wriedt, M. (2021). Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 33(9), 3276–3285. https://doi.org/10.1021/acs.chemmater.1c00324
  • National Health and Medical Research Council. (n.d.). NHMRC Statement on PFAS. Retrieved February 4, 2025, from https://www.nhmrc.gov.au/health-advice/environmental-health/water/PFAS-review/NHMRC-statement-PFAS
  • Nzeribe, B. N., Crimi, M., Mededovic Thagard, S., & Holsen, T. M. (2019). Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A review. Critical Reviews in Environmental Science and Technology, 49(10), 866–915. https://doi.org/10.1080/10643389.2018.1542916
  • Olshansky, Y., Gomeniuc, A., Chorover, J., Abrell, L., Field, J. A., Hatton, J., & Sierra-Alvarez, R. (2021). Synthesis and Characterization of Customizable Polyaniline-Derived Polymers and Their Application for Perfluorooctanoic Acid Removal from Aqueous Solution. ACS ES&T Water, 1(6), 1438–1446. https://doi.org/10.1021/acsestwater.1c00019
  • Pala, J., Le, T., Kasula, M., & Rabbani Esfahani, M. (2023). Systematic investigation of PFOS adsorption from water by Metal Organic Frameworks, Activated Carbon, Metal Organic Framework@Activated Carbon, and functionalized Metal Organic Frameworks. Separation and Purification Technology, 309, 123025. https://doi.org/10.1016/J.SEPPUR.2022.123025
  • Palma, D., Richard, C., & Minella, M. (2022). State of the art and perspectives about non-thermal plasma applications for the removal of PFAS in water. Chemical Engineering Journal Advances, 10, 100253. https://doi.org/10.1016/J.CEJA.2022.100253
  • Radjenovic, J., Duinslaeger, N., Avval, S. S., & Chaplin, B. P. (2020). Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer? Environmental Science & Technology, 54(23), 14815–14829. https://doi.org/10.1021/acs.est.0c06212
  • Rhakho, N., Yadav, S., Jinagi, M., Altaee, A., Saxena, M., Jadhav, A. H., & Samal, A. K. (2024). Mitigating PFAS contaminants in water: A comprehensive survey of remediation strategies. Journal of Environmental Chemical Engineering, 12(5), 113425. https://doi.org/10.1016/j.jece.2024.113425
  • Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., S. Dasgupta, S., & Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation Journal, 28(2), 101–126. https://doi.org/10.1002/rem.21553
  • Saikat, S. , K. I. , D. B. , B. S. , K. R. (2013). The impact of PFOS on health in the general population: a review. Environmental Science: Processes & Impacts, 15(2), 329–335.
  • SGS. (2018, December). Safeguards 15718: Turkey regulates POP chemicals. Retrieved February 4, 2025, from https://www.sgs.com/en/news/2018/12/safeguards-15718-turkey-regulates-pop-chemicals
  • Simon, J. A., Abrams, S., Bradburne, T., Bryant, D., Burns, M., Cassidy, D., Cherry, J., Chiang, S. (Dora), Cox, D., Crimi, M., Denly, E., DiGuiseppi, B., Fenstermacher, J., Fiorenza, S., Guarnaccia, J., Hagelin, N., Hall, L., Hesemann, J., Houtz, E., … Wice, R. (2019). PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per‐ and polyfluoroalkyl substances (PFAS) contamination issues. Remediation Journal, 29(4), 31–48. https://doi.org/10.1002/rem.21624
  • Sørmo, E., Castro, G., Hubert, M., Licul-Kucera, V., Quintanilla, M., Asimakopoulos, A. G., Cornelissen, G., & Arp, H. P. H. (2023). The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. Journal of Hazardous Materials, 454, 131447. https://doi.org/10.1016/J.JHAZMAT.2023.131447
  • Stockholm Convention. (2019). COP and POPRC Decisions on PFOS, Its Salts and PFOSF.
  • Stockholm Convention. (2019). Ninth Meeting of the Conference of the Parties to the Stockholm Convention. Stoiber, T., Evans, S., & Naidenko, O. V. (2020). Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere, 260, 127659. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127659
  • Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology, 29(2), 131–147. https://doi.org/10.1038/s41370-018-0094-1
  • Tan, H.-M., Pan, C.-G., Yin, C., & Yu, K. (2023). Toward systematic understanding of adsorptive removal of legacy and emerging per-and polyfluoroalkyl substances (PFASs) by various activated carbons (ACs). Environmental Research, 233, 116495. https://doi.org/10.1016/j.envres.2023.116495
  • Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., & Leckie, J. O. (2006). Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environmental Science & Technology, 40(23), 7343–7349. https://doi.org/10.1021/es060831q
  • Tow, E. W., Ersan, M. S., Kum, S., Lee, T., Speth, T. F., Owen, C., Bellona, C., Nadagouda, M. N., Mikelonis, A. M., Westerhoff, P., Mysore, C., Frenkel, V. S., deSilva, V., Walker, W. S., Safulko, A. K., & Ladner, D. A. (2021). Managing and treating per‐ and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Science, 3(5). https://doi.org/10.1002/aws2.1233
  • Umar, M. (2021). Reductive and Oxidative UV Degradation of PFAS—Status, Needs and Future Perspectives. Water, 13(22), 3185. https://doi.org/10.3390/w13223185
  • U.S. Environmental Protection Agency. (2021). PFAS strategic roadmap: EPA's commitments to action 2021–2024. https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024
  • U.S. Environmental Protection Agency, (2024), Per- and Polyfluoroalkyl Substances (PFAS): Final PFAS National Primary Drinking Water Regulation https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas
  • U.S. Environmental Protection Agency, "Chemicals Under TSCA," accessed February 4, 2025, https://www.epa.gov/chemicals-under-tsca.
  • Wan, H., Fang, F., Shi, K., Yi, Z., Zeng, L., Bhattacharyya, D., Tang, K., & Xu, Z. (2024). Dual-functional adsorptive membranes for PFAS removal: Mechanism, CFD simulation, and selective enrichment. Chemical Engineering Journal, 500, 156095. https://doi.org/10.1016/J.CEJ.2024.156095
  • Zhang, H., Zhu, L., Zhang, Y., Héroux, P., Cai, L., & Liu, Y. (2024). Removal of per- and polyfluoroalkyl substances from water by plasma treatment: Insights into structural effects and underlying mechanisms. Water Research, 253, 121316. https://doi.org/10.1016/J.WATRES.2024.121316
  • Zhi, Y., Zhao, X., Shuai, A., Jia, Y., Cheng, X., Lin, S., Xiao, F., Han, L., Chai, H., He, Q., & Liu, C. (2025). Enhancing rejection of short-chain per- and polyfluoroalkyl substances by tailoring the surface charge of nanofiltration membranes. Water Research, 272, 122931. https://doi.org/10.1016/J.WATRES.2024.122931

Per- and Polyfluoroalkyl Substances (PFAS): History, Regulations and Strategies for the Removal

Year 2025, Volume: 2 Issue: 1, 19 - 28, 22.04.2025

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic compounds that are extensively employed due to their exceptional chemical resistance, hydrophobicity, and thermal stability. However, these same characteristics have resulted in their classification as "forever chemicals," as a result of their resistance to conventional degradation processes and their persistence in the environment. PFAS contamination has become a significant global concern, associated with ecological disruptions and adverse health effects. The problem necessitates sophisticated remediation strategies that are customized to their distinctive characteristics. This review offers a thorough examination of the history of PFAS, global regulations on its utilization, and current PFAS removal and destruction technologies, emphasizing their mechanisms, efficiencies, and limitations. Granular activated carbon (GAC) and ion exchange resins are two of the most well-established adsorption techniques. They are capable of effectively capturing long-chain PFAS, but they are challenged by high regeneration costs and short-chain variants. Membrane filtration processes, such as nanofiltration (NF) and reverse osmosis (RO), generate concentrated brines that require further treatment, despite their ability to achieve high removal rates. Advanced oxidation processes (AOPs), such as photochemical and electrochemical methods, have the potential to degrade PFAS; however, they frequently necessitate substantial energy input and may generate hazardous byproducts. Thermal destruction methods, including thermal desorption and high-temperature incineration, are effective for the complete mineralization of PFAS; however, they necessitate stringent controls to reduce secondary emissions. Innovative approaches are provided by emerging technologies, including plasma-based treatments, supercritical water oxidation, and novel catalytic systems; however, their scalability and cost-effectiveness are still restricted. Hybrid systems, which incorporate multiple techniques, are becoming more widely acknowledged as potential solutions to the constraints of standalone methods. This review emphasizes the necessity of advancing PFAS remediation technologies, underscoring the significance of integrating fundamental research with practical applications. The objective of this work is to facilitate the development of integrated solutions that effectively balance feasibility, sustainability, and effectiveness in the fight against PFAS contamination by conducting a systematic evaluation of current and emerging strategies.

References

  • Ahrens, L., & Bundschuh, M. (2014). Fate and effects of poly‐ and perfluoroalkyl substances in the aquatic environment: A review. Environmental Toxicology and Chemistry, 33(9), 1921–1929. https://doi.org/10.1002/etc.2663
  • Altarawneh, M., Almatarneh, M. H., & Dlugogorski, B. Z. (2022). Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration. Chemosphere, 286, 131685. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131685
  • Appleman, T. D., Higgins, C. P., Quiñones, O., Vanderford, B. J., Kolstad, C., Zeigler-Holady, J. C., & Dickenson, E. R. V. (2014). Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research, 51, 246–255. https://doi.org/10.1016/J.WATRES.2013.10.067
  • Arkhangelsky, E., Levitsky, I., & Gitis, V. (2008). Electrostatic repulsion as a mechanism in fouling of ultrafiltration membranes. Water Science and Technology, 58(10), 1955–1961. https://doi.org/10.2166/wst.2008.757
  • Banks, D., Jun, B.-M., Heo, J., Her, N., Park, C. M., & Yoon, Y. (2020). Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: A review. Separation and Purification Technology, 231, 115929. https://doi.org/10.1016/j.seppur.2019.115929
  • Bryan Cave Leighton Paisner. (n.d.). PFAS in consumer products: State-by-state regulations. Retrieved February 4, 2025, from https://www.bclplaw.com/en-US/events-insights-news/pfas-in-consumer-products-state-by-state-regulations.html
  • Brendel, S., Fetter, É., Staude, C., Vierke, L., & Biegel-Engler, A. (2018). Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe, 30(1), 9. https://doi.org/10.1186/s12302-018-0134-4
  • Brennan, N. M., Evans, A. T., Fritz, M. K., Peak, S. A., & von Holst, H. E. (2021). Trends in the Regulation of Per- and Polyfluoroalkyl Substances (PFAS): A Scoping Review. International Journal of Environmental Research and Public Health, 18(20), 10900. https://doi.org/10.3390/ijerph182010900
  • Buck, R. C., Korzeniowski, S. H., Laganis, E., & Adamsky, F. (2021). Identification and classification of commercially relevant per‐ and poly‐fluoroalkyl substances (PFAS). Integrated Environmental Assessment and Management, 17(5), 1045–1055. https://doi.org/10.1002/ieam.4450
  • Calafat, A. M., Wong, L.-Y., Kuklenyik, Z., Reidy, J. A., & Needham, L. L. (2007). Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000. Environmental Health Perspectives, 115(11), 1596–1602. https://doi.org/10.1289/ehp.10598
  • Centers for Disease Control and Prevention. (2019). Fourth national report on human exposure to environmental chemicals, updated table.
  • Chen, M.-J., Lo, S.-L., Lee, Y.-C., & Huang, C.-C. (2015). Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. Journal of Hazardous Materials, 288, 168–175. https://doi.org/10.1016/j.jhazmat.2015.02.004
  • Das, S., & Ronen, A. (2022). A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes, 12(7), 662. https://doi.org/10.3390/membranes12070662
  • Dey, D., Shafi, T., Chowdhury, S., Dubey, B. K., & Sen, R. (2024). Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS). Chemosphere, 351, 141164. https://doi.org/10.1016/J.CHEMOSPHERE.2024.141164
  • Dixit, F., Dutta, R., Barbeau, B., Berube, P., & Mohseni, M. (2021). PFAS removal by ion exchange resins: A review. Chemosphere, 272, 129777. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129777
  • Ellis, A. C., Boyer, T. H., & Strathmann, T. J. (2025). Regeneration of conventional and emerging PFAS-selective anion exchange resins used to treat PFAS-contaminated waters. Separation and Purification Technology, 355, 129789. https://doi.org/10.1016/J.SEPPUR.2024.129789
  • Environment and Climate Change Canada. (2024). Revised risk management scope per polyfluoroalkyl substances. Retrieved February 4, 2025, from https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/revised-risk-management-scope-per-polyfluoroalkyl-substances.html
  • Environmental Protection Agency. (2018). Draft Human Health Toxicity Assessments for Hexafluoropropylene Oxide Dimer Acid and Its Ammonium Salt (GenX Chemicals) and for Perfluorobutane Sulfonic Acid (PFBS) and Related Compound Potassium Perfluorobutane Sulfonate.
  • European Chemicals Agency. (2024). ECHA and five European countries issue progress update on PFAS restriction. Retrieved February 4, 2025, from https://echa.europa.eu/-/echa-and-five-european-countries-issue-progress-update-on-pfas-restriction
  • European Chemicals Agency. (n.d.). Perfluoroalkyl chemicals (PFAS). Retrieved February 4, 2025, from https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas
  • EU Japan. (2025, January 10). Report: Chemical industry in Japan – Focus on PFAS. Retrieved February 4, 2025, from https://www.eu-japan.eu/publications/report-chemical-industry-japan-focus-pfas
  • Food Packaging Forum. (2020). Turkey updates food contact plastic regulations. Retrieved February 4, 2025, from https://foodpackagingforum.org/news/turkey-updates-food-contact-plastic-regulations
  • Franke, V., McCleaf, P., Lindegren, K., & Ahrens, L. (2019). Efficient removal of per- and polyfluoroalkyl substances (PFASs) in drinking water treatment: nanofiltration combined with active carbon or anion exchange.
  • Environmental Science: Water Research & Technology, 5(11), 1836–1843. https://doi.org/10.1039/C9EW00286C
  • Franke, V., Ullberg, M., McCleaf, P., Wålinder, M., Köhler, S. J., & Ahrens, L. (2021). The Price of Really Clean Water: Combining Nanofiltration with Granular Activated Carbon and Anion Exchange Resins for the Removal of Per- And Polyfluoralkyl Substances (PFASs) in Drinking Water Production. ACS ES&T Water, 1(4), 782–795. https://doi.org/10.1021/acsestwater.0c00141
  • Gao, P., Cui, J., & Deng, Y. (2021). Direct regeneration of ion exchange resins with sulfate radical-based advanced oxidation for enabling a cyclic adsorption – regeneration treatment approach to aqueous perfluorooctanoic acid (PFOA). Chemical Engineering Journal, 405, 126698. https://doi.org/10.1016/j.cej.2020.126698
  • Gar Alalm, M., & Boffito, D. C. (2022). Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review. Chemical Engineering Journal, 450, 138352. https://doi.org/10.1016/J.CEJ.2022.138352
  • Ghisi, R., Vamerali, T., & Manzetti, S. (2019). Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environmental Research, 169, 326–341. https://doi.org/10.1016/j.envres.2018.10.023 International Pollutants Elimination Network. (2019). PFAS Pollution Across the Middle East and Asia; International Pollutants .
  • Karbassiyazdi, E., Kasula, M., Modak, S., Pala, J., Kalantari, M., Altaee, A., Esfahani, M. R., & Razmjou, A. (2023). A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. Chemosphere, 311, 136933. https://doi.org/10.1016/j.chemosphere.2022.136933
  • Kotthoff, M., & Bücking, M. (2018). Four Chemical Trends Will Shape the Next Decade’s Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00103
  • Lewis, R., Johns, L., & Meeker, J. (2015). Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011–2012. International Journal of Environmental Research and Public Health, 12(6), 6098–6114. https://doi.org/10.3390/ijerph120606098
  • Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z., & Zhao, D. (2020a). Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506. https://doi.org/10.1016/j.cej.2019.122506
  • Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z., & Zhao, D. (2020b). Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal, 380, 122506. https://doi.org/10.1016/j.cej.2019.122506
  • Li, R., Alomari, S., Islamoglu, T., Farha, O. K., Fernando, S., Thagard, S. M., Holsen, T. M., & Wriedt, M. (2021). Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal–Organic Frameworks. Environmental Science & Technology, 55(22), 15162–15171. https://doi.org/10.1021/acs.est.1c03974
  • Li, R., Alomari, S., Stanton, R., Wasson, M. C., Islamoglu, T., Farha, O. K., Holsen, T. M., Thagard, S. M., Trivedi, D. J., & Wriedt, M. (2021). Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 33(9), 3276–3285. https://doi.org/10.1021/acs.chemmater.1c00324
  • National Health and Medical Research Council. (n.d.). NHMRC Statement on PFAS. Retrieved February 4, 2025, from https://www.nhmrc.gov.au/health-advice/environmental-health/water/PFAS-review/NHMRC-statement-PFAS
  • Nzeribe, B. N., Crimi, M., Mededovic Thagard, S., & Holsen, T. M. (2019). Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A review. Critical Reviews in Environmental Science and Technology, 49(10), 866–915. https://doi.org/10.1080/10643389.2018.1542916
  • Olshansky, Y., Gomeniuc, A., Chorover, J., Abrell, L., Field, J. A., Hatton, J., & Sierra-Alvarez, R. (2021). Synthesis and Characterization of Customizable Polyaniline-Derived Polymers and Their Application for Perfluorooctanoic Acid Removal from Aqueous Solution. ACS ES&T Water, 1(6), 1438–1446. https://doi.org/10.1021/acsestwater.1c00019
  • Pala, J., Le, T., Kasula, M., & Rabbani Esfahani, M. (2023). Systematic investigation of PFOS adsorption from water by Metal Organic Frameworks, Activated Carbon, Metal Organic Framework@Activated Carbon, and functionalized Metal Organic Frameworks. Separation and Purification Technology, 309, 123025. https://doi.org/10.1016/J.SEPPUR.2022.123025
  • Palma, D., Richard, C., & Minella, M. (2022). State of the art and perspectives about non-thermal plasma applications for the removal of PFAS in water. Chemical Engineering Journal Advances, 10, 100253. https://doi.org/10.1016/J.CEJA.2022.100253
  • Radjenovic, J., Duinslaeger, N., Avval, S. S., & Chaplin, B. P. (2020). Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer? Environmental Science & Technology, 54(23), 14815–14829. https://doi.org/10.1021/acs.est.0c06212
  • Rhakho, N., Yadav, S., Jinagi, M., Altaee, A., Saxena, M., Jadhav, A. H., & Samal, A. K. (2024). Mitigating PFAS contaminants in water: A comprehensive survey of remediation strategies. Journal of Environmental Chemical Engineering, 12(5), 113425. https://doi.org/10.1016/j.jece.2024.113425
  • Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., S. Dasgupta, S., & Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation Journal, 28(2), 101–126. https://doi.org/10.1002/rem.21553
  • Saikat, S. , K. I. , D. B. , B. S. , K. R. (2013). The impact of PFOS on health in the general population: a review. Environmental Science: Processes & Impacts, 15(2), 329–335.
  • SGS. (2018, December). Safeguards 15718: Turkey regulates POP chemicals. Retrieved February 4, 2025, from https://www.sgs.com/en/news/2018/12/safeguards-15718-turkey-regulates-pop-chemicals
  • Simon, J. A., Abrams, S., Bradburne, T., Bryant, D., Burns, M., Cassidy, D., Cherry, J., Chiang, S. (Dora), Cox, D., Crimi, M., Denly, E., DiGuiseppi, B., Fenstermacher, J., Fiorenza, S., Guarnaccia, J., Hagelin, N., Hall, L., Hesemann, J., Houtz, E., … Wice, R. (2019). PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per‐ and polyfluoroalkyl substances (PFAS) contamination issues. Remediation Journal, 29(4), 31–48. https://doi.org/10.1002/rem.21624
  • Sørmo, E., Castro, G., Hubert, M., Licul-Kucera, V., Quintanilla, M., Asimakopoulos, A. G., Cornelissen, G., & Arp, H. P. H. (2023). The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. Journal of Hazardous Materials, 454, 131447. https://doi.org/10.1016/J.JHAZMAT.2023.131447
  • Stockholm Convention. (2019). COP and POPRC Decisions on PFOS, Its Salts and PFOSF.
  • Stockholm Convention. (2019). Ninth Meeting of the Conference of the Parties to the Stockholm Convention. Stoiber, T., Evans, S., & Naidenko, O. V. (2020). Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere, 260, 127659. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127659
  • Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology, 29(2), 131–147. https://doi.org/10.1038/s41370-018-0094-1
  • Tan, H.-M., Pan, C.-G., Yin, C., & Yu, K. (2023). Toward systematic understanding of adsorptive removal of legacy and emerging per-and polyfluoroalkyl substances (PFASs) by various activated carbons (ACs). Environmental Research, 233, 116495. https://doi.org/10.1016/j.envres.2023.116495
  • Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., & Leckie, J. O. (2006). Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environmental Science & Technology, 40(23), 7343–7349. https://doi.org/10.1021/es060831q
  • Tow, E. W., Ersan, M. S., Kum, S., Lee, T., Speth, T. F., Owen, C., Bellona, C., Nadagouda, M. N., Mikelonis, A. M., Westerhoff, P., Mysore, C., Frenkel, V. S., deSilva, V., Walker, W. S., Safulko, A. K., & Ladner, D. A. (2021). Managing and treating per‐ and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Science, 3(5). https://doi.org/10.1002/aws2.1233
  • Umar, M. (2021). Reductive and Oxidative UV Degradation of PFAS—Status, Needs and Future Perspectives. Water, 13(22), 3185. https://doi.org/10.3390/w13223185
  • U.S. Environmental Protection Agency. (2021). PFAS strategic roadmap: EPA's commitments to action 2021–2024. https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024
  • U.S. Environmental Protection Agency, (2024), Per- and Polyfluoroalkyl Substances (PFAS): Final PFAS National Primary Drinking Water Regulation https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas
  • U.S. Environmental Protection Agency, "Chemicals Under TSCA," accessed February 4, 2025, https://www.epa.gov/chemicals-under-tsca.
  • Wan, H., Fang, F., Shi, K., Yi, Z., Zeng, L., Bhattacharyya, D., Tang, K., & Xu, Z. (2024). Dual-functional adsorptive membranes for PFAS removal: Mechanism, CFD simulation, and selective enrichment. Chemical Engineering Journal, 500, 156095. https://doi.org/10.1016/J.CEJ.2024.156095
  • Zhang, H., Zhu, L., Zhang, Y., Héroux, P., Cai, L., & Liu, Y. (2024). Removal of per- and polyfluoroalkyl substances from water by plasma treatment: Insights into structural effects and underlying mechanisms. Water Research, 253, 121316. https://doi.org/10.1016/J.WATRES.2024.121316
  • Zhi, Y., Zhao, X., Shuai, A., Jia, Y., Cheng, X., Lin, S., Xiao, F., Han, L., Chai, H., He, Q., & Liu, C. (2025). Enhancing rejection of short-chain per- and polyfluoroalkyl substances by tailoring the surface charge of nanofiltration membranes. Water Research, 272, 122931. https://doi.org/10.1016/J.WATRES.2024.122931
There are 60 citations in total.

Details

Primary Language English
Subjects Polymer Technologies
Journal Section Reviews
Authors

Yonca Alkan Göksu 0000-0002-6699-8761

Publication Date April 22, 2025
Submission Date December 4, 2024
Acceptance Date February 27, 2025
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

APA Alkan Göksu, Y. (2025). Per- and Polyfluoroalkyl Substances (PFAS): History, Regulations and Strategies for the Removal. ITU Journal of Metallurgy and Materials Engineering, 2(1), 19-28.