Review
BibTex RIS Cite

Recent Metallurgical Applications of Electron Diffraction Techniques in TEM

Year 2025, Volume: 2 Issue: 1, 1 - 6, 22.04.2025

Abstract

A summary of the current efforts in the field of transmission electron microscopy (TEM) for the high spatial resolution characterisation needs of some of the metallurgical applications using electron diffraction techniques is presented. The aim is to highlight the improvement and the introduction of different methods in the TEM that made it possible to gain new insights in structural analyses of metals and alloys. Techniques like precession electron diffraction, electron diffraction tomography, and four-dimensional scanning transmission electron microscopy are shown to be capable of allowing an unprecedented amount of information to be studied about these materials with the help of improved detector technology. This review will showcase the benefits and some of the examples of the most recent electron diffraction applications for metals and alloys.

References

  • Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., & Polidori, G. (2015). Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography, 48(1), 306-309.
  • Duran, E., Kho, Z., Einsle, J. F., Azaceta, I., Cavill, S., Kerrigan, A., Lazarov, V., & Eggeman, A. (2023). Correlated electron diffraction and energy-dispersive X-ray for automated microstructure analysis. Computational Materials Science, 228, 112336.
  • Duran, E. C., & Eggeman, A. S. (2021). The structure of a new nano-phase of lanthanum-doped strontium titanate. Journal of Solid State Chemistry, 293, 121795.
  • Eggeman, A. S. (2019). Scanning transmission electron diffraction methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(4), 475-484.
  • Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S., & Abrahams, J. P. (2019). 3D electron diffraction: the nanocrystallography revolution. ACS central science, 5(8), 1315-1329.
  • Jeong, J., Cautaerts, N., Dehm, G., & Liebscher, C. H. (2021). Automated crystal orientation mapping by precession electron diffraction-assisted four-dimensional scanning transmission electron microscopy using a scintillator-based CMOS detector. Microscopy and Microanalysis, 27(5), 1102-1112.
  • Kalinin, S. V., Ophus, C., Voyles, P. M., Erni, R., Kepaptsoglou, D., Grillo, V., Lupini, A. R., Oxley, M. P., Schwenker, E., & Chan, M. K. (2022). Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers, 2(1), 11.
  • Klein, H., Bellavoine, M., & Znaj, D. (2022). Structure determination of intermetallic phases in bulk Al alloys by 3D electron diffraction tomography. Journal of Alloys and Compounds, 908, 164525.
  • Kolb, U., Krysiak, Y., & Plana-Ruiz, S. (2019). Automated electron diffraction tomography–development and applications. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(4), 463-474.
  • Kverneland, A., Hansen, V., Vincent, R., Gjønnes, K., & Gjønnes, J. (2006). Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example. Ultramicroscopy, 106(6), 492-502.
  • Li, G., Zhang, H., & Han, Y. (2022). 4D-STEM ptychography for electron-beam-sensitive materials. ACS central science, 8(12), 1579-1588.
  • MacLaren, I., Fraser, A. T., Lipsett, M. R., & Ophus, C. (2024). Digital Dark Field—Higher Contrast and Greater Specificity Dark Field Imaging Using a 4DSTEM Approach. Microscopy and Microanalysis, ozae104.
  • MacLaren, I., Frutos-Myro, E., McGrouther, D., McFadzean, S., Weiss, J. K., Cosart, D., Portillo, J., Robins, A., Nicolopoulos, S., & Del Busto, E. N. (2020). A comparison of a direct electron detector and a high-speed video camera for a scanning precession electron diffraction phase and orientation mapping. Microscopy and Microanalysis, 26(6), 1110-1116.
  • MacLaren, I., Frutos‐Myro, E., Zeltmann, S., & Ophus, C. (2024). A method for crystallographic mapping of an alpha‐beta titanium alloy with nanometre resolution using scanning precession electron diffraction and open‐source software libraries. Journal of Microscopy.
  • Mahr, C., Müller-Caspary, K., Grieb, T., Krause, F. F., Schowalter, M., & Rosenauer, A. (2021). Accurate measurement of strain at interfaces in 4D-STEM: A comparison of various methods. Ultramicroscopy, 221, 113196.
  • Midgley, P. A., & Eggeman, A. S. (2015). Precession electron diffraction–a topical review. IUCrJ, 2(1), 126-136. NanoMEGAS. (Retrieved 14 Jan 2025). Topspin. https://nanomegas.com/all-in-one-topspin-platform-for-precession-advanced-analytical/
  • Ophus, C. (2019). Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microscopy and Microanalysis, 25(3), 563-582. Palatinus, L. (Retrieved December 8, 2024). PETS. http://pets.fzu.cz/
  • Palatinus, L., & Chapuis, G. (2007). SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40(4), 786-790.
  • Rottmann, P. F., & Hemker, K. J. (2018). Nanoscale elastic strain mapping of polycrystalline materials. Materials Research Letters, 6(4), 249-254.
  • Shao, Y.-T., Chen, Z., Mei, A., Holtz, M., Padgett, E., Schlom, D., & Muller, D. A. (2019). Decoupling polarization, crystal tilt and symmetry in epitaxially-strained ferroelectric thin films using 4D-STEM. Microscopy and Microanalysis, 25(S2), 1938-1939.
  • Vincent, R., & Midgley, P. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53(3), 271-282.
  • Williams, D. B., & Carter, C. B. (2009). The transmission electron microscope. Springer.
  • Xiao, H., Wang, Z., Geng, J., Zhang, C., Li, Y., Yang, Q., Wang, M., Chen, D., Li, Z., & Wang, H. (2022). Precipitation and crystallographic relationships of nanosized η/η’precipitates at S-Al interface in Al-Zn-Mg-Cu alloy. Scripta Materialia, 214, 114643.

Metalurji Alanında Kullanılan Güncel Geçirimli Elektron Kırınımı Teknikleri

Year 2025, Volume: 2 Issue: 1, 1 - 6, 22.04.2025

Abstract

Metalurjik uygulamaların yüksek çözünürlüklü karakterizasyon ihtiyaçları için geçirimli elektron mikroskobunda (TEM) elektron kırınımı teknikleri kullanılarak gerçekleştirilen güncel çabaların bir özeti sunulmaktadır. TEM kullanılarak metalik malzemelerin ve alaşımların yapısal karakterizasyonlarında yeni içgörüler kazandırmak için geliştirilen farklı yöntemlerin vurgulanması amaçlanmıştır. Presesyon elektron kırınımı, elektron kırınım tomografisi ve dört boyutlu taramalı geçirimli elektron mikroskopisi gibi tekniklerin yeni dedektör teknolojilerinin yardımıyla bu malzemeler hakkında benzeri görülmemiş miktarda bilginin incelenmesine olanak sağladığı gösterilmiştir. Bu derlemede, metalik malzemeler ve alaşımlar için güncel elektron kırınımı uygulamaların avantajları ve bazı çalışma örnekleri sergilenecektir.

References

  • Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., & Polidori, G. (2015). Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography, 48(1), 306-309.
  • Duran, E., Kho, Z., Einsle, J. F., Azaceta, I., Cavill, S., Kerrigan, A., Lazarov, V., & Eggeman, A. (2023). Correlated electron diffraction and energy-dispersive X-ray for automated microstructure analysis. Computational Materials Science, 228, 112336.
  • Duran, E. C., & Eggeman, A. S. (2021). The structure of a new nano-phase of lanthanum-doped strontium titanate. Journal of Solid State Chemistry, 293, 121795.
  • Eggeman, A. S. (2019). Scanning transmission electron diffraction methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(4), 475-484.
  • Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S., & Abrahams, J. P. (2019). 3D electron diffraction: the nanocrystallography revolution. ACS central science, 5(8), 1315-1329.
  • Jeong, J., Cautaerts, N., Dehm, G., & Liebscher, C. H. (2021). Automated crystal orientation mapping by precession electron diffraction-assisted four-dimensional scanning transmission electron microscopy using a scintillator-based CMOS detector. Microscopy and Microanalysis, 27(5), 1102-1112.
  • Kalinin, S. V., Ophus, C., Voyles, P. M., Erni, R., Kepaptsoglou, D., Grillo, V., Lupini, A. R., Oxley, M. P., Schwenker, E., & Chan, M. K. (2022). Machine learning in scanning transmission electron microscopy. Nature Reviews Methods Primers, 2(1), 11.
  • Klein, H., Bellavoine, M., & Znaj, D. (2022). Structure determination of intermetallic phases in bulk Al alloys by 3D electron diffraction tomography. Journal of Alloys and Compounds, 908, 164525.
  • Kolb, U., Krysiak, Y., & Plana-Ruiz, S. (2019). Automated electron diffraction tomography–development and applications. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 75(4), 463-474.
  • Kverneland, A., Hansen, V., Vincent, R., Gjønnes, K., & Gjønnes, J. (2006). Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example. Ultramicroscopy, 106(6), 492-502.
  • Li, G., Zhang, H., & Han, Y. (2022). 4D-STEM ptychography for electron-beam-sensitive materials. ACS central science, 8(12), 1579-1588.
  • MacLaren, I., Fraser, A. T., Lipsett, M. R., & Ophus, C. (2024). Digital Dark Field—Higher Contrast and Greater Specificity Dark Field Imaging Using a 4DSTEM Approach. Microscopy and Microanalysis, ozae104.
  • MacLaren, I., Frutos-Myro, E., McGrouther, D., McFadzean, S., Weiss, J. K., Cosart, D., Portillo, J., Robins, A., Nicolopoulos, S., & Del Busto, E. N. (2020). A comparison of a direct electron detector and a high-speed video camera for a scanning precession electron diffraction phase and orientation mapping. Microscopy and Microanalysis, 26(6), 1110-1116.
  • MacLaren, I., Frutos‐Myro, E., Zeltmann, S., & Ophus, C. (2024). A method for crystallographic mapping of an alpha‐beta titanium alloy with nanometre resolution using scanning precession electron diffraction and open‐source software libraries. Journal of Microscopy.
  • Mahr, C., Müller-Caspary, K., Grieb, T., Krause, F. F., Schowalter, M., & Rosenauer, A. (2021). Accurate measurement of strain at interfaces in 4D-STEM: A comparison of various methods. Ultramicroscopy, 221, 113196.
  • Midgley, P. A., & Eggeman, A. S. (2015). Precession electron diffraction–a topical review. IUCrJ, 2(1), 126-136. NanoMEGAS. (Retrieved 14 Jan 2025). Topspin. https://nanomegas.com/all-in-one-topspin-platform-for-precession-advanced-analytical/
  • Ophus, C. (2019). Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microscopy and Microanalysis, 25(3), 563-582. Palatinus, L. (Retrieved December 8, 2024). PETS. http://pets.fzu.cz/
  • Palatinus, L., & Chapuis, G. (2007). SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40(4), 786-790.
  • Rottmann, P. F., & Hemker, K. J. (2018). Nanoscale elastic strain mapping of polycrystalline materials. Materials Research Letters, 6(4), 249-254.
  • Shao, Y.-T., Chen, Z., Mei, A., Holtz, M., Padgett, E., Schlom, D., & Muller, D. A. (2019). Decoupling polarization, crystal tilt and symmetry in epitaxially-strained ferroelectric thin films using 4D-STEM. Microscopy and Microanalysis, 25(S2), 1938-1939.
  • Vincent, R., & Midgley, P. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53(3), 271-282.
  • Williams, D. B., & Carter, C. B. (2009). The transmission electron microscope. Springer.
  • Xiao, H., Wang, Z., Geng, J., Zhang, C., Li, Y., Yang, Q., Wang, M., Chen, D., Li, Z., & Wang, H. (2022). Precipitation and crystallographic relationships of nanosized η/η’precipitates at S-Al interface in Al-Zn-Mg-Cu alloy. Scripta Materialia, 214, 114643.
There are 23 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Reviews
Authors

Erçin Çağan Duran 0000-0002-0674-3812

Publication Date April 22, 2025
Submission Date December 16, 2024
Acceptance Date January 22, 2025
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

APA Duran, E. Ç. (2025). Recent Metallurgical Applications of Electron Diffraction Techniques in TEM. ITU Journal of Metallurgy and Materials Engineering, 2(1), 1-6.