Review
BibTex RIS Cite

Lityum-Sülfür Bataryalar: Hücre Reaksiyon Mekanizmaları, Kısıtlamalar ve Çözümler

Year 2025, Volume: 2 Issue: 2, 18 - 21, 30.07.2025

Abstract

Lityum-sülfür (Li-S) bataryalar, sahip oldukları yüksek teorik kapasite (1675 mAh/g), yüksek özgül enerji (2600 Wh/kg), kullanılan malzemelerin toksik olmaması, katot aktif malzemesi olarak kullanılan sülfürün doğada bolca bulunması ve ucuz olması gibi nedenlerle öne çıkmaktadır. Özellikle sahip oldukları yüksek özgül enerji sayesinde Li-S bataryaların gelecekte lityum-iyon bataryalara (LİB’ler) alternatif olabilecek en uygun sistemlerden biri olduğu düşünülmektedir. Ancak, sistemde kullanılan metalik Li anot ve yalıtkan sülfür katotun hücrenin çalışması sırasında yol açtığı problemlerden kaynaklı olarak hızlı kapasite kaybına uğraması nedeniyle Li-S bataryalar henüz ticarileşememiştir. Bu kısa derleme makalesinde Li-S bataryalar, ilgili reaksiyon mekanizmaları, sistemin uzun çevrimler boyunca başarılı bir şekilde çalışmasını engelleyen problemler ve bunlara dair literatürde önerilen çözüm yöntemleri tanımlanacak ve detaylandırılacaktır.

References

  • Arie, A. A., Kristianto, H., Cengiz, E. C., & Demir-Cakan, R. (2020). Preparation of salacca peel-based porous carbons by K2CO3 activation method as cathode materials for LiS battery. Carbon Letters, 30(2). https://doi.org/10.1007/s42823-019-00085-1
  • Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C. S., & Affinito, J. (2009). On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of The Electrochemical Society, 156(8). https://doi.org/10.1149/1.3148721
  • Baji, D. S., Kannan, S., Madambikattil, P. B., Thirumurugan, A., Sharma, M. K., Pai, R. K., Ramadoss, A., Nair, S., & Santhanagopalan, D. (2024). Overarching advancements in building practical Li-S batteries: A holistic review. Journal of Energy Storage, 100(A), 113412. https://doi.org/10.1016/j.est.2024.113412
  • Celik, K. B., Cengiz, E. C., Sar, T., Dursun, B., Ozturk, O., Akbas, M. Y., & Demir-Cakan, R. (2018). In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries. Journal of Colloid and Interface Science, 530. https://doi.org/10.1016/j.jcis.2018.06.054
  • Cengiz, E. C., Ansari Hamedani, A., Hayat Soytas, S., & Demir-Cakan, R. (2019). The adsorption effect of freestanding SiO x -decorated stabilized polyacrylonitrile interlayers in lithium–sulfur batteries. Dalton Transactions, 48(13), 4353–4361. https://doi.org/10.1039/C8DT04674C
  • Cengiz, E. C., & Demir-Cakan, R. (2020). TiO2 embedded hydrothermally synthesized carbon composite as interlayer for lithium-sulfur batteries. Journal of Solid State Electrochemistry, 24(10). https://doi.org/10.1007/s10008-020-04785-x
  • Cengiz, E. C., Ozturk, O., Hayat Soytas, S., & Demir-Cakan, R. (2019). Freestanding oxidized poly(acrylonitrile-co-vinylpyrrolidone)/SnCl2 nanofibers as interlayer for Lithium–Sulfur batteries. Journal of Power Sources, 412. https://doi.org/10.1016/j.jpowsour.2018.11.082
  • Cengiz, E. C., Salihoglu, O., Ozturk, O., Kocabas, C., & Demir-Cakan, R. (2019). Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries. Journal of Alloys and Compounds, 777. https://doi.org/10.1016/j.jallcom.2018.11.071
  • Demir-Cakan, R. (2015). Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium-sulphur batteries. Journal of Power Sources, 282. https://doi.org/10.1016/j.jpowsour.2015.02.066
  • Fan, Q., Si, Y., Zhu, F., Guo, W., & Fu, Y. (2023). Activation of Bulk Li2S as Cathode Material for Lithium-Sulfur Batteries through Organochalcogenide-Based Redox Mediation Chemistry. Angewandte Chemie - International Edition, 62(32). https://doi.org/10.1002/anie.202306705
  • Guo, J., & Liu, J. (2019). A binder-free electrode architecture design for lithium-sulfur batteries: A review. In Nanoscale Advances (Vol. 1, Issue 6). https://doi.org/10.1039/c9na00040b
  • He, J., Bhargav, A., & Manthiram, A. (2022). High-Performance Anode-Free Li-S Batteries with an Integrated Li2S-Electrocatalyst Cathode. ACS Energy Letters, 7(2). https://doi.org/10.1021/acsenergylett.1c02569
  • Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 8(6). https://doi.org/10.1038/nmat2460
  • Kolosnitsyn, V. S., & Karaseva, E. V. (2008). Lithium-sulfur batteries: Problems and solutions. Russian Journal of Electrochemistry, 44(5), 506–509. https://doi.org/10.1134/S1023193508050029
  • Kwon, S., Song, H., Çakmakçı, N., & Jeong, Y. (2021). A practical approach to design sulfur host material for lithium-sulfur batteries based on electrical conductivity and pore structure. Materials Today Communications, 27. https://doi.org/10.1016/j.mtcomm.2021.102309
  • Li, G., Li, Z., Zhang, B., & Lin, Z. (2015). Developments of electrolyte systems for lithium-sulfur batteries: A review. In Frontiers in Energy Research (Vol. 3, Issue FEB). https://doi.org/10.3389/fenrg.2015.00005
  • Li, Z., Luo, C., Zhang, S., Sun, G., Ma, J., Wang, X., He, Y. B., Kang, F., Yang, Q. H., & Lv, W. (2022). Co-recrystallization induced self-catalytic Li2S cathode fully interfaced with sulfide catalyst toward a high-performance lithium-free sulfur battery. InfoMat, 4(10). https://doi.org/10.1002/inf2.12361
  • Liu, Y. yan, Yan, L. jing, Zeng, X. qing, Li, Z. heng, Zhou, S. dong, Du, Q. kun, Meng, X. juan, Zeng, X. min, Ling, M., Sun, M. hao, Qian, C., & Liang, C. du. (2019). Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries. Journal of Central South University, 26(6). https://doi.org/10.1007/s11771-019-4098-3
  • Miao, L. X., Wang, W. K., Wang, A. B., Yuan, K. G., & Yang, Y. S. (2013). A high sulfur content composite with core-shell structure as cathode material for Li-S batteries. Journal of Materials Chemistry A, 1(38). https://doi.org/10.1039/c3ta12079a
  • Ovc-Okene, D., Shankar, L. S., Vizintin, A., & Kun, R. (2025). Revitalizing Li–S batteries: the power of electrolyte additives. RSC Advances, 15(7), 5381–5404. https://doi.org/10.1039/D4RA06245K
  • Park, J., Yu, S. H., & Sung, Y. E. (2018). Design of structural and functional nanomaterials for lithium-sulfur batteries. In Nano Today (Vol. 18). https://doi.org/10.1016/j.nantod.2017.12.010
  • Pei, F., Fu, A., Ye, W., Peng, J., Fang, X., Wang, M. S., & Zheng, N. (2019). Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries. ACS Nano, 13(7). https://doi.org/10.1021/acsnano.9b03784
  • Shimoda, Y., Matsui, Y., Tonoya, T., & Ishikawa, M. (2023). Potassium Bis(fluorosulfonyl)imide Is an Effective Additive for Improving Anode Cyclability in Sulfolane-Based Electrolytes for Li-S Batteries. ACS Applied Energy Materials, 6(17). https://doi.org/10.1021/acsaem.3c01513
  • Virta. (2025, July 3). EV market & trends The future of electromobility – IEA’s Global EV Outlook 2025. Https://Www.Virta.Global/Blog/the-Future-of-Electromobility-Ieas-Global-Ev-Outlook?Utm.
  • Wei, C., Wang, Y., Zhang, Y., Tan, L., Qian, Y., Tao, Y., Xiong, S., & Feng, J. (2021). Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 14(10). https://doi.org/10.1007/s12274-021-3433-9
  • Yu, M., Li, R., Tong, Y., Li, Y., Li, C., Hong, J. D., & Shi, G. (2015). A graphene wrapped hair-derived carbon/sulfur composite for lithium-sulfur batteries. Journal of Materials Chemistry A, 3(18). https://doi.org/10.1039/c5ta00651a
  • Zhang, J., Zhang, G., Chen, Z., Dai, H., Hu, Q., Liao, S., & Sun, S. (2020). Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. In Energy Storage Materials (Vol. 26). https://doi.org/10.1016/j.ensm.2019.11.025
  • Zhang, Y., Sun, K., Liang, Z., Wang, Y., & Ling, L. (2018). N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Applied Surface Science, 427. https://doi.org/10.1016/j.apsusc.2017.06.288
  • Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., & Cui, Y. (2011). Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Letters, 11(10). https://doi.org/10.1021/nl2027684

Lithium-Sulfur Batteries: Cell Reaction Mechanisms, Limitations and Solutions

Year 2025, Volume: 2 Issue: 2, 18 - 21, 30.07.2025

Abstract

Lithium-sulfur (Li-S) batteries are known for their high theoretical capacity (1675 mAh/g), high theoretical specific energy (2600 Wh/kg), non-toxicity, natural abundance and cheapness of the cathode active material sulfur. Especially because of the high specific energy, Li-S batteries are expected to be one of the best successors to be used as an alternative to lithium-ion batteries (LIBs) in the future. However, Li-S batteries are still not commercially available due to the rapid capacity fading stemming from intrinsic material-related issues — such as the use of lithium metal as the anode, the insulating nature of sulfur as the cathode and the discharge product (Li₂S), substantial volume expansion at the end of discharge. In this short review, Li-S batteries, their reaction mechanisms, limitations preventing the successful long-term operation and approaches suggested as solution in the literature will be introduced and mentioned.

References

  • Arie, A. A., Kristianto, H., Cengiz, E. C., & Demir-Cakan, R. (2020). Preparation of salacca peel-based porous carbons by K2CO3 activation method as cathode materials for LiS battery. Carbon Letters, 30(2). https://doi.org/10.1007/s42823-019-00085-1
  • Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C. S., & Affinito, J. (2009). On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of The Electrochemical Society, 156(8). https://doi.org/10.1149/1.3148721
  • Baji, D. S., Kannan, S., Madambikattil, P. B., Thirumurugan, A., Sharma, M. K., Pai, R. K., Ramadoss, A., Nair, S., & Santhanagopalan, D. (2024). Overarching advancements in building practical Li-S batteries: A holistic review. Journal of Energy Storage, 100(A), 113412. https://doi.org/10.1016/j.est.2024.113412
  • Celik, K. B., Cengiz, E. C., Sar, T., Dursun, B., Ozturk, O., Akbas, M. Y., & Demir-Cakan, R. (2018). In-situ wrapping of tin oxide nanoparticles by bacterial cellulose derived carbon nanofibers and its application as freestanding interlayer in lithium sulfide based lithium-sulfur batteries. Journal of Colloid and Interface Science, 530. https://doi.org/10.1016/j.jcis.2018.06.054
  • Cengiz, E. C., Ansari Hamedani, A., Hayat Soytas, S., & Demir-Cakan, R. (2019). The adsorption effect of freestanding SiO x -decorated stabilized polyacrylonitrile interlayers in lithium–sulfur batteries. Dalton Transactions, 48(13), 4353–4361. https://doi.org/10.1039/C8DT04674C
  • Cengiz, E. C., & Demir-Cakan, R. (2020). TiO2 embedded hydrothermally synthesized carbon composite as interlayer for lithium-sulfur batteries. Journal of Solid State Electrochemistry, 24(10). https://doi.org/10.1007/s10008-020-04785-x
  • Cengiz, E. C., Ozturk, O., Hayat Soytas, S., & Demir-Cakan, R. (2019). Freestanding oxidized poly(acrylonitrile-co-vinylpyrrolidone)/SnCl2 nanofibers as interlayer for Lithium–Sulfur batteries. Journal of Power Sources, 412. https://doi.org/10.1016/j.jpowsour.2018.11.082
  • Cengiz, E. C., Salihoglu, O., Ozturk, O., Kocabas, C., & Demir-Cakan, R. (2019). Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries. Journal of Alloys and Compounds, 777. https://doi.org/10.1016/j.jallcom.2018.11.071
  • Demir-Cakan, R. (2015). Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium-sulphur batteries. Journal of Power Sources, 282. https://doi.org/10.1016/j.jpowsour.2015.02.066
  • Fan, Q., Si, Y., Zhu, F., Guo, W., & Fu, Y. (2023). Activation of Bulk Li2S as Cathode Material for Lithium-Sulfur Batteries through Organochalcogenide-Based Redox Mediation Chemistry. Angewandte Chemie - International Edition, 62(32). https://doi.org/10.1002/anie.202306705
  • Guo, J., & Liu, J. (2019). A binder-free electrode architecture design for lithium-sulfur batteries: A review. In Nanoscale Advances (Vol. 1, Issue 6). https://doi.org/10.1039/c9na00040b
  • He, J., Bhargav, A., & Manthiram, A. (2022). High-Performance Anode-Free Li-S Batteries with an Integrated Li2S-Electrocatalyst Cathode. ACS Energy Letters, 7(2). https://doi.org/10.1021/acsenergylett.1c02569
  • Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 8(6). https://doi.org/10.1038/nmat2460
  • Kolosnitsyn, V. S., & Karaseva, E. V. (2008). Lithium-sulfur batteries: Problems and solutions. Russian Journal of Electrochemistry, 44(5), 506–509. https://doi.org/10.1134/S1023193508050029
  • Kwon, S., Song, H., Çakmakçı, N., & Jeong, Y. (2021). A practical approach to design sulfur host material for lithium-sulfur batteries based on electrical conductivity and pore structure. Materials Today Communications, 27. https://doi.org/10.1016/j.mtcomm.2021.102309
  • Li, G., Li, Z., Zhang, B., & Lin, Z. (2015). Developments of electrolyte systems for lithium-sulfur batteries: A review. In Frontiers in Energy Research (Vol. 3, Issue FEB). https://doi.org/10.3389/fenrg.2015.00005
  • Li, Z., Luo, C., Zhang, S., Sun, G., Ma, J., Wang, X., He, Y. B., Kang, F., Yang, Q. H., & Lv, W. (2022). Co-recrystallization induced self-catalytic Li2S cathode fully interfaced with sulfide catalyst toward a high-performance lithium-free sulfur battery. InfoMat, 4(10). https://doi.org/10.1002/inf2.12361
  • Liu, Y. yan, Yan, L. jing, Zeng, X. qing, Li, Z. heng, Zhou, S. dong, Du, Q. kun, Meng, X. juan, Zeng, X. min, Ling, M., Sun, M. hao, Qian, C., & Liang, C. du. (2019). Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries. Journal of Central South University, 26(6). https://doi.org/10.1007/s11771-019-4098-3
  • Miao, L. X., Wang, W. K., Wang, A. B., Yuan, K. G., & Yang, Y. S. (2013). A high sulfur content composite with core-shell structure as cathode material for Li-S batteries. Journal of Materials Chemistry A, 1(38). https://doi.org/10.1039/c3ta12079a
  • Ovc-Okene, D., Shankar, L. S., Vizintin, A., & Kun, R. (2025). Revitalizing Li–S batteries: the power of electrolyte additives. RSC Advances, 15(7), 5381–5404. https://doi.org/10.1039/D4RA06245K
  • Park, J., Yu, S. H., & Sung, Y. E. (2018). Design of structural and functional nanomaterials for lithium-sulfur batteries. In Nano Today (Vol. 18). https://doi.org/10.1016/j.nantod.2017.12.010
  • Pei, F., Fu, A., Ye, W., Peng, J., Fang, X., Wang, M. S., & Zheng, N. (2019). Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries. ACS Nano, 13(7). https://doi.org/10.1021/acsnano.9b03784
  • Shimoda, Y., Matsui, Y., Tonoya, T., & Ishikawa, M. (2023). Potassium Bis(fluorosulfonyl)imide Is an Effective Additive for Improving Anode Cyclability in Sulfolane-Based Electrolytes for Li-S Batteries. ACS Applied Energy Materials, 6(17). https://doi.org/10.1021/acsaem.3c01513
  • Virta. (2025, July 3). EV market & trends The future of electromobility – IEA’s Global EV Outlook 2025. Https://Www.Virta.Global/Blog/the-Future-of-Electromobility-Ieas-Global-Ev-Outlook?Utm.
  • Wei, C., Wang, Y., Zhang, Y., Tan, L., Qian, Y., Tao, Y., Xiong, S., & Feng, J. (2021). Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 14(10). https://doi.org/10.1007/s12274-021-3433-9
  • Yu, M., Li, R., Tong, Y., Li, Y., Li, C., Hong, J. D., & Shi, G. (2015). A graphene wrapped hair-derived carbon/sulfur composite for lithium-sulfur batteries. Journal of Materials Chemistry A, 3(18). https://doi.org/10.1039/c5ta00651a
  • Zhang, J., Zhang, G., Chen, Z., Dai, H., Hu, Q., Liao, S., & Sun, S. (2020). Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. In Energy Storage Materials (Vol. 26). https://doi.org/10.1016/j.ensm.2019.11.025
  • Zhang, Y., Sun, K., Liang, Z., Wang, Y., & Ling, L. (2018). N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Applied Surface Science, 427. https://doi.org/10.1016/j.apsusc.2017.06.288
  • Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., & Cui, Y. (2011). Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Letters, 11(10). https://doi.org/10.1021/nl2027684
There are 29 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Reviews
Authors

Elif Ceylan Cengiz

Publication Date July 30, 2025
Submission Date July 7, 2025
Acceptance Date July 11, 2025
Published in Issue Year 2025 Volume: 2 Issue: 2

Cite

APA Cengiz, E. C. (2025). Lithium-Sulfur Batteries: Cell Reaction Mechanisms, Limitations and Solutions. ITU Journal of Metallurgy and Materials Engineering, 2(2), 18-21.