Research Article
BibTex RIS Cite

Naif ve Aksiyomatik Küme Teorilerinin Felsefi Kökenleri Üzerine: Determinatio est Negatio

Year 2024, Issue: 61, 73 - 83, 31.12.2024
https://doi.org/10.26650/arcp.1559355

Abstract

Determinatio est negatio ilkesi—yani belirlemenin olumsuzlama yoluyla gerçekleştirildiği anlayışı—Platon ve Aristoteles’e kadar uzanan felsefi köklere sahiptir ve daha sonra Francisco Suárez ve Spinoza gibi erken modern düşünürleri etkilemiştir. Söz konusu ilkeyi analiz eden bu çalışmanın iki amacı vardır. İlki, olumsuzlama ilkesinin çeşitli felsefi sistemler boyunca kavramsal belirleme aracı olarak nasıl işlediğini göstermek; ikincisi ise ilkenin, naif ve aksiyomatik kümeler teorisi bağlamında Burali-Forti paradoksunun analizinde ve çözümünde önemli bir rol oynadığını ortaya koymaktır. İlk bölümde, analiz bu ilkenin antik felsefeden erken modern metafiziğe olan evrimine odaklanmakta ve Platon’un diyalektiği, Aristoteles’in metafiziksel ayrımları, Suárez’in skolastik teorileri ve Spinoza’nın monist metafiziği incelenmektedir. İkinci bölümde ise, determinatio est negatio ilkesinin özellikle Burali-Forti paradoksunu çözmedeki rolü vurgulanarak matematik alanına geçiş yapılmaktadır. Cantor’un çözümü ve tutarlı ve tutarsız kümeler arasındaki ayrımı determinatio est negatio bağlamında incelenerek, bu ilkenin özreferanssal paradokslardan kaçınmada oynadığı önemli rol gösterilmektedir. Zermelo ve von Neumann’ın Burali-Forti paradoksu için geliştirdikleri aksiyomatik çerçeveler, kümeler teorisinin felsefi temellerini daha da aydınlatmaktadır. Sonuç olarak, çalışma, metafizik ilkeler ile paradoksların matematiksel çözümü arasındaki derin bağlantıyı ortaya koyarak determinatio est negatio ilkesinin her iki alandaki devam eden önemini vurgulamaktadır.

References

  • Aristotle. The Metaphysics. Trans. Hugh Lawson-Tancred. London: Penguin Books, 1998. google scholar
  • Burali-Forti, Cesare Arzela. “Question on Transfinite Numbers”, in From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. ed. Jean van Heijenoort, 105-117. Cambridge and Massachusetts: Harvard University Press, 1897. google scholar
  • Bussotti, Paolo & Tapp, Christian. “The influence of Spinoza’s concept of infinity on Cantor’s set theory.” Studies in History and Philosophy of Science Part A. 40 (1) (2009), 25-35. google scholar
  • Cantor, Georg. “Mitteilungen zur Lehre vom Transfiniten”, in Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts. ed. E. Zermelo, 378-440. Berlin: Julius Springer, 1932. google scholar
  • Cantor, Georg. Briefe. Eds. Herbert Meschkowski & Winfried Nilson. Berlin: Springer Verlag, 1991. google scholar
  • Cantor, Georg. Foundations of a General Theory of Manifolds (Grundlagen einer Allgemeinen Mannigfaltigkeitslehre). trans. Uwe Parpart. New York: Campaigner Publications, 1976. google scholar
  • Copi, Irving M. “The Burali-Forti Paradox.” Philosophy of Science 25 (4) (1958): 281-286. google scholar
  • Friedman, Joel I. “Was Spinoza fooled by the ontological argument?.” Philosophia 11 (3-4) (1982): 307-344. google scholar
  • Halper, Edward C. One and Many in Aristotle’s Metaphysics. Las Vegas: Parmenides Publishing, 2009. google scholar
  • Hauser, Karl. “Cantor’s Concept of Set in the Light of Plato’s Philebus.” The Review of Metaphysics 63 (4) (2005): 783-805. google scholar
  • Heinemann, Friedrich Heinrich. “The Meaning of Negation.” Proceedings of the Aristotelian Society 44 (1943): 127-152. google scholar
  • Hellman, Geoffrey. “On the significance of the Burali-Forti paradox.” Analysis 71 (4) (2011): 631-637. google scholar
  • Jane, Ignacio. “The Role of the Absolute Infinite in Cantor’s Conception of Set.” Erkenntnis 42 (3) (1995): 375-402. google scholar
  • Menzel, Christopher. “CANTOR AND THE BURALI-FORTIPARADOX.” The Monist 67 (1) (1984): 92-107. google scholar
  • Mesquita, Antonio Pedro. “Plato’s Eleaticism in the Sophist: The Doctrine of Non-Being.” In Plato’s Sophist Revisited. Eds. Beatriz Bossi & Thomas M. Robinson, 175-187. Berlin: De Gruyter, 2013. google scholar
  • Newstead, Anne. “Cantor on Infinity in Nature, Number, and the Divine Mind.” American Catholic Philosophical Quarterly 83 (4) (2009): 533-553. google scholar
  • Plato. “Sophist.” In Theaetetus and Sophist. Ed. & trans. Christopher Rowe, 99-179. Cambridge: Cambridge University Press, 2015. google scholar
  • Plato. Philebus. Trans. C. B. Gosling. London: Oxford University Press, 1975. google scholar
  • Plotinus. The Enneads. Eds. Lloyd P. Gerson & et al., Cambridge: Cambridge University Press, 2018. google scholar
  • Proclus. Elements of Theology. Trans. E. R. Dodds. Oxford: Oxford University Press, 1971. google scholar
  • Rosser, Barkley. “The Burali-Forti Paradox.” The Journal of Symbolic Logic 7 (1) (1942): 1-17. google scholar
  • Spinoza, Baruch. “Ethics.” In Spinoza Complete Works. Ed. Michael L. Morgan, trans. Samuel Shirley, 213-283. Indianapolis: Hackett, 2002a. google scholar
  • Spinoza, Baruch. “Letters.” In Spinoza Complete Works. Ed. Michael L. Morgan, trans. Samuel Shirley, 755-961. Indianapolis: Hackett, 2002b. google scholar
  • Stauffer, Lester. “Spinoza, Cantor, and infinity.” Southern Philosophical Studies 15 (1993): 74-81. google scholar
  • Suarez, Francisco. Metaphysical Disputations III & IV. Trans. Shane Duarte. Washington: The Catholic University of America Press, 2023. google scholar
  • Tapp, Christian. “On Some Philosophical Aspects of the BackgroundtoGeorg Cantor’s Theory of Sets.” Philosophia Scientia 5 (2005): 157-173. Thomas-Bolduc, Alasdair R. “Cantor, God, and Inconsistent Multiplicities.” Studies in Logic, Grammar and Rhetoric 44 (57) (2016): 133-146. google scholar
  • Von Neumann, John. “An Axiomatization of Set Theory.” In From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Ed. I. Jean van Heijenoort, 393-414. Cambridge and Massachusetts: Harvard University Press, 1925. google scholar
  • Zermelo, Ernst. “Investigations in the foundations of Set Theory.” In From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Ed. I. Jean van Heijenoort, 183-189. Cambridge and Massachusetts: Harvard University Press, 1908. google scholar

On the Philosophical Roots of the Naïve and Axiomatic Set Theories: Determinatio est Negatio

Year 2024, Issue: 61, 73 - 83, 31.12.2024
https://doi.org/10.26650/arcp.1559355

Abstract

The principle determinatio est negatio—that determination is achieved through negation—has philosophical roots extending back to Plato and Aristotle, and it later influenced early modern thinkers such as Francisco Suárez and Spinoza. This paper has two aims. The first demonstrates how the principle of negation functions as a tool for conceptual determination across various philosophical frameworks, and the second demonstrates that the principle plays a key role in the analysis and resolution of the Burali-Forti paradox within the context of the naïve and axiomatic set theories. In the first section, the analysis focuses on the evolution of the principle from ancient philosophy to early modern metaphysics, examining Plato’s dialectics, Aristotle’s metaphysical distinctions, Suárez’s scholastic theories, and Spinoza’s monist metaphysics. The second section shifts to mathematics, where determinatio est negatio plays a key role in resolving set-theoretical paradoxes, particularly the Burali-Forti paradox. By exploring Cantor’s solution and its reliance on the distinction between consistent and inconsistent sets, this study demonstrates how this principle is essential for avoiding self-referential inconsistencies. The contributions of Zermelo and von Neumann, who developed axiomatic frameworks to address these paradoxes, further elaborate the philosophical foundations of set theory. Ultimately, the study reveals a deep connection between metaphysical principles and the mathematical treatment of paradoxes, emphasizing the ongoing relevance of determinatio est negatio in both domains.

References

  • Aristotle. The Metaphysics. Trans. Hugh Lawson-Tancred. London: Penguin Books, 1998. google scholar
  • Burali-Forti, Cesare Arzela. “Question on Transfinite Numbers”, in From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. ed. Jean van Heijenoort, 105-117. Cambridge and Massachusetts: Harvard University Press, 1897. google scholar
  • Bussotti, Paolo & Tapp, Christian. “The influence of Spinoza’s concept of infinity on Cantor’s set theory.” Studies in History and Philosophy of Science Part A. 40 (1) (2009), 25-35. google scholar
  • Cantor, Georg. “Mitteilungen zur Lehre vom Transfiniten”, in Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts. ed. E. Zermelo, 378-440. Berlin: Julius Springer, 1932. google scholar
  • Cantor, Georg. Briefe. Eds. Herbert Meschkowski & Winfried Nilson. Berlin: Springer Verlag, 1991. google scholar
  • Cantor, Georg. Foundations of a General Theory of Manifolds (Grundlagen einer Allgemeinen Mannigfaltigkeitslehre). trans. Uwe Parpart. New York: Campaigner Publications, 1976. google scholar
  • Copi, Irving M. “The Burali-Forti Paradox.” Philosophy of Science 25 (4) (1958): 281-286. google scholar
  • Friedman, Joel I. “Was Spinoza fooled by the ontological argument?.” Philosophia 11 (3-4) (1982): 307-344. google scholar
  • Halper, Edward C. One and Many in Aristotle’s Metaphysics. Las Vegas: Parmenides Publishing, 2009. google scholar
  • Hauser, Karl. “Cantor’s Concept of Set in the Light of Plato’s Philebus.” The Review of Metaphysics 63 (4) (2005): 783-805. google scholar
  • Heinemann, Friedrich Heinrich. “The Meaning of Negation.” Proceedings of the Aristotelian Society 44 (1943): 127-152. google scholar
  • Hellman, Geoffrey. “On the significance of the Burali-Forti paradox.” Analysis 71 (4) (2011): 631-637. google scholar
  • Jane, Ignacio. “The Role of the Absolute Infinite in Cantor’s Conception of Set.” Erkenntnis 42 (3) (1995): 375-402. google scholar
  • Menzel, Christopher. “CANTOR AND THE BURALI-FORTIPARADOX.” The Monist 67 (1) (1984): 92-107. google scholar
  • Mesquita, Antonio Pedro. “Plato’s Eleaticism in the Sophist: The Doctrine of Non-Being.” In Plato’s Sophist Revisited. Eds. Beatriz Bossi & Thomas M. Robinson, 175-187. Berlin: De Gruyter, 2013. google scholar
  • Newstead, Anne. “Cantor on Infinity in Nature, Number, and the Divine Mind.” American Catholic Philosophical Quarterly 83 (4) (2009): 533-553. google scholar
  • Plato. “Sophist.” In Theaetetus and Sophist. Ed. & trans. Christopher Rowe, 99-179. Cambridge: Cambridge University Press, 2015. google scholar
  • Plato. Philebus. Trans. C. B. Gosling. London: Oxford University Press, 1975. google scholar
  • Plotinus. The Enneads. Eds. Lloyd P. Gerson & et al., Cambridge: Cambridge University Press, 2018. google scholar
  • Proclus. Elements of Theology. Trans. E. R. Dodds. Oxford: Oxford University Press, 1971. google scholar
  • Rosser, Barkley. “The Burali-Forti Paradox.” The Journal of Symbolic Logic 7 (1) (1942): 1-17. google scholar
  • Spinoza, Baruch. “Ethics.” In Spinoza Complete Works. Ed. Michael L. Morgan, trans. Samuel Shirley, 213-283. Indianapolis: Hackett, 2002a. google scholar
  • Spinoza, Baruch. “Letters.” In Spinoza Complete Works. Ed. Michael L. Morgan, trans. Samuel Shirley, 755-961. Indianapolis: Hackett, 2002b. google scholar
  • Stauffer, Lester. “Spinoza, Cantor, and infinity.” Southern Philosophical Studies 15 (1993): 74-81. google scholar
  • Suarez, Francisco. Metaphysical Disputations III & IV. Trans. Shane Duarte. Washington: The Catholic University of America Press, 2023. google scholar
  • Tapp, Christian. “On Some Philosophical Aspects of the BackgroundtoGeorg Cantor’s Theory of Sets.” Philosophia Scientia 5 (2005): 157-173. Thomas-Bolduc, Alasdair R. “Cantor, God, and Inconsistent Multiplicities.” Studies in Logic, Grammar and Rhetoric 44 (57) (2016): 133-146. google scholar
  • Von Neumann, John. “An Axiomatization of Set Theory.” In From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Ed. I. Jean van Heijenoort, 393-414. Cambridge and Massachusetts: Harvard University Press, 1925. google scholar
  • Zermelo, Ernst. “Investigations in the foundations of Set Theory.” In From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Ed. I. Jean van Heijenoort, 183-189. Cambridge and Massachusetts: Harvard University Press, 1908. google scholar
There are 28 citations in total.

Details

Primary Language English
Subjects History of Philosophy (Other)
Journal Section Research Articles
Authors

Osman Gazi Birgül 0000-0003-2089-848X

Publication Date December 31, 2024
Submission Date October 1, 2024
Acceptance Date December 8, 2024
Published in Issue Year 2024 Issue: 61

Cite

Chicago Birgül, Osman Gazi. “On the Philosophical Roots of the Naïve and Axiomatic Set Theories: Determinatio Est Negatio”. Felsefe Arkivi, no. 61 (December 2024): 73-83. https://doi.org/10.26650/arcp.1559355.