Short Communication
BibTex RIS Cite

Induction of Apoptosis in BCR-ABL Fusion Associated Chronic Myeloid Leukemia Cells by Camellia kissiWall. (Theaceae) Extract

Year 2024, , 117 - 122, 30.05.2024
https://doi.org/10.26650/EurJBiol.2024.1399845

Abstract

Objective: Camellia kissi, a prominent tea, lacks academic works. In a previous report, this plant substantially affected chronic myeloid leukemia cells. Understanding the mechanism of action of this tea species on leukemia cells will contribute to researching alternative treatment methods in the context of drug resistance in chronic myeloid leukemia, which is constantly increasing.
Materials and Methods: C. kissi comes from Lam Dong, Vietnam. The crude tea extract in methanol was obtained. The flow cytometry method with Annexin V and PI staining and the DNA fragmentation assays were used to indicate the apoptosis cells. The reversed transcription real-time PCR reactions were conducted to measure the mRNA level under the treatment.
Results: The results showed the apoptosis-inducing capacity of the C. kissi extract on K562 cells, and the impact was suggested to be through the induction of intracellular apoptosis and cell cycle arrest.
Conclusion: The apoptosis induction on K562 caused by C. kissi was reported for the first time. Initial recognition of the signaling pathway of inhibition is through the BCR-ABL/PTEN.

Ethical Statement

No Application

Supporting Institution

No Application

Project Number

No Application

Thanks

The authors would like to thank Mr Phung My Trung for sample collection and identification.

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality world-wide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. google scholar
  • Dong Y, Shi O, Zeng Q, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 2020;9:14. doi: 10.1186/s40164-020-00170-6. google scholar
  • Levine R, Loriaux M, Huntly B, et al. The JAK2V617F activat-ing mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377-3379. google scholar
  • Lagunas-Rangel FA, Chavez-Valencia V, Gomez-Guijosa M, Cortes-Penagos C. Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328-339. google scholar
  • Sampaio MM, Santos MLC, Marques HS, et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol. 2021;12(2):69-94. google scholar
  • Mughal T, Goldman J. Chronic myeloid leukemia: Why does it evolve from chronic phase to blast transformation? Front Biosci. 2006;11(1):198-208. google scholar
  • Roskoski R, Jr. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myeloge-nous leukemia. Pharmacol Res. 2022;178:106156. doi: 10.1016/j.phrs.2022.106156. google scholar
  • Li Y, Zeng P, Xiao J, Huang P, Liu P. Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discov. 2022;8(1):212. doi: 10.1038/s41420-022-00991-w. google scholar
  • Gleixner KV, Filik Y, Berger D, et al. Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1 (T315I)-compound mutations. Am J Cancer Res. 2021;11(9):4470-4784. google scholar
  • Perez-Lamas L, Luna A, Boque C, et al. Toxicity of asciminib in real clinical practice: Analysis of side effects and cross-toxicity with tyrosine kinase inhibitors. Cancers. 2023;15(4):1045. doi:10.3390/cancers15041045 google scholar
  • Merkulova A, Mitchell SC, Stavrou EX, Forbes GL, Schmaier AH. Ponatinib treatment promotes arterial thrombosis and hy-peractive platelets. Blood Adv. 2019;3(15):2312-2316. google scholar
  • Pan SY, Nie Q, Tai HC, et al. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin Med. 2022;17(1):27. doi: 10.1186/s13020-022-00571-1. google scholar
  • Bange E, Timlin C, Kabel C, et al. Evidence for and against green tea and turmeric in the management of chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(10):e421-e6. doi: 10.1016/j.clml.2018.06.021. google scholar
  • Calgarotto A, Pericole FV, Favaro P, et al. Green tea in acute myeloid leukemia. Blood. 2013;122(21):5032. doi: 10.1182/blood.V122.21.5032.5032 google scholar
  • Nguyet Hai Ninh L, Luong V, Nguyen Van C, et al. An updated checklist of Theaceae and a new species of Polyspora from Vietnam. Taiwania. 2020;65(2):216-227. google scholar
  • Quan N, Ly B, Chi H. The cytotoxic effect of Vernonia amyg-dalina Del. extract on myeloid leukemia cells. Biomed Res Ther. 2023;10(8):5855-5863. google scholar
  • Nakazato T, Ito K, Ikeda Y, Kizaki M. Green tea compo-nent, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin Cancer Res. 2005;11(16):6040-6049. google scholar
  • Er S, Dikmen M. Camellia sinensis increased apoptosis on U2OS osteosarcoma cells and wound healing potential on NIH3T3 fibroblast cells. Cytotechnology. 2017;69(6):901-914. google scholar
  • Gao X, Li X, Ho C-T, et al. Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway. Food Res Int. 2020;129:108854. doi: 10.1016/j.foodres.2019.108854. google scholar
  • He D, Wang N, Sai X, Li X, Xu Y. Camellia euphlebia pro-tects against corticosterone-induced apoptosis in differentiated PC12 cells by regulating the mitochondrial apoptotic pathway and PKA/CREB/BDNF signaling pathway. Food Chem Toxicol. 2019;126:211-222. google scholar
  • He X, Li H, Zhan M, et al. Camellia nitidissima chi extract potentiates the sensitivity of gastric cancer cells to paclitaxel via the induction of autophagy and apoptosis. OncoTargets Ther. 2019;12:10811-10825. google scholar
  • Xuan N, Tin S, Trung P, Chi H, Ly B. Investigate the anti-cancer effects of Camellia kissi methanol extract on K562 Leukemia cells. JST-UD. 2023;21(5):73-77. google scholar
  • Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273(16):9357-9360. google scholar
  • Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z. Mea-surement of apoptosis by DNA fragmentation. Methods Mol Biol (Clifton, NJ). 2004;282:1-17. google scholar
  • Chen L, Chen J, Xu H. Sasanquasaponin from Camellia oleifera Abel. induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells. Fitoterapia. 2013;84:123-129. google scholar
  • Wang Y, Ren N, Rankin GO, et al. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells. J Funct Foods. 2017;37:310-321. google scholar
  • Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progres-sion and leukemogenesis. Leukemia. 2004;18(2):189-218. google scholar
  • Morotti A, Panuzzo C, Crivellaro S, et al. BCR-ABL inactivates cytosolic PTEN through Casein Kinase II mediated tail phos-phorylation. Cell cycle (Georgetown, Tex). 2015;14(7):973-979. google scholar
  • Li XX, Liu C, Dong SL, et al. Anticarcinogenic poten-tials of tea catechins. Front Nutr. 2022;9:1060783. doi: 10.3389/fnut.2022.1060783. google scholar
  • Iwasaki R, Ito K, Ishida T, et al. Catechin, green tea component, causes caspase-independent necrosis-like cell death in chronic myelogenous leukemia. Cancer Sci. 2009;100(2):349-356. google scholar
  • Massimino M, Stella S, Tirro E, et al. Non ABL-directed in-hibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer2018;17(1):56. doi: 10.1186/s12943-018-0805-1. google scholar
  • Fisher D, Krasinska L. Explaining redundancy in CDK-mediated control of the cell cycle: Unifying the continuum and quantitative models. Cells. 2022;11(13):2019. doi: 10.3390/cells11132019. google scholar
  • Rizzotto D, Englmaier L, Villunger A. At a crossroads to cancer: How p53-induced cell fate decisions secure genome integrity. Int JMol Sci. 2021;22(19):10883. doi: 10.3390/yms221910883. google scholar
Year 2024, , 117 - 122, 30.05.2024
https://doi.org/10.26650/EurJBiol.2024.1399845

Abstract

Project Number

No Application

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality world-wide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. google scholar
  • Dong Y, Shi O, Zeng Q, et al. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 2020;9:14. doi: 10.1186/s40164-020-00170-6. google scholar
  • Levine R, Loriaux M, Huntly B, et al. The JAK2V617F activat-ing mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377-3379. google scholar
  • Lagunas-Rangel FA, Chavez-Valencia V, Gomez-Guijosa M, Cortes-Penagos C. Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328-339. google scholar
  • Sampaio MM, Santos MLC, Marques HS, et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol. 2021;12(2):69-94. google scholar
  • Mughal T, Goldman J. Chronic myeloid leukemia: Why does it evolve from chronic phase to blast transformation? Front Biosci. 2006;11(1):198-208. google scholar
  • Roskoski R, Jr. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myeloge-nous leukemia. Pharmacol Res. 2022;178:106156. doi: 10.1016/j.phrs.2022.106156. google scholar
  • Li Y, Zeng P, Xiao J, Huang P, Liu P. Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discov. 2022;8(1):212. doi: 10.1038/s41420-022-00991-w. google scholar
  • Gleixner KV, Filik Y, Berger D, et al. Asciminib and ponatinib exert synergistic anti-neoplastic effects on CML cells expressing BCR-ABL1 (T315I)-compound mutations. Am J Cancer Res. 2021;11(9):4470-4784. google scholar
  • Perez-Lamas L, Luna A, Boque C, et al. Toxicity of asciminib in real clinical practice: Analysis of side effects and cross-toxicity with tyrosine kinase inhibitors. Cancers. 2023;15(4):1045. doi:10.3390/cancers15041045 google scholar
  • Merkulova A, Mitchell SC, Stavrou EX, Forbes GL, Schmaier AH. Ponatinib treatment promotes arterial thrombosis and hy-peractive platelets. Blood Adv. 2019;3(15):2312-2316. google scholar
  • Pan SY, Nie Q, Tai HC, et al. Tea and tea drinking: China’s outstanding contributions to the mankind. Chin Med. 2022;17(1):27. doi: 10.1186/s13020-022-00571-1. google scholar
  • Bange E, Timlin C, Kabel C, et al. Evidence for and against green tea and turmeric in the management of chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(10):e421-e6. doi: 10.1016/j.clml.2018.06.021. google scholar
  • Calgarotto A, Pericole FV, Favaro P, et al. Green tea in acute myeloid leukemia. Blood. 2013;122(21):5032. doi: 10.1182/blood.V122.21.5032.5032 google scholar
  • Nguyet Hai Ninh L, Luong V, Nguyen Van C, et al. An updated checklist of Theaceae and a new species of Polyspora from Vietnam. Taiwania. 2020;65(2):216-227. google scholar
  • Quan N, Ly B, Chi H. The cytotoxic effect of Vernonia amyg-dalina Del. extract on myeloid leukemia cells. Biomed Res Ther. 2023;10(8):5855-5863. google scholar
  • Nakazato T, Ito K, Ikeda Y, Kizaki M. Green tea compo-nent, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin Cancer Res. 2005;11(16):6040-6049. google scholar
  • Er S, Dikmen M. Camellia sinensis increased apoptosis on U2OS osteosarcoma cells and wound healing potential on NIH3T3 fibroblast cells. Cytotechnology. 2017;69(6):901-914. google scholar
  • Gao X, Li X, Ho C-T, et al. Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway. Food Res Int. 2020;129:108854. doi: 10.1016/j.foodres.2019.108854. google scholar
  • He D, Wang N, Sai X, Li X, Xu Y. Camellia euphlebia pro-tects against corticosterone-induced apoptosis in differentiated PC12 cells by regulating the mitochondrial apoptotic pathway and PKA/CREB/BDNF signaling pathway. Food Chem Toxicol. 2019;126:211-222. google scholar
  • He X, Li H, Zhan M, et al. Camellia nitidissima chi extract potentiates the sensitivity of gastric cancer cells to paclitaxel via the induction of autophagy and apoptosis. OncoTargets Ther. 2019;12:10811-10825. google scholar
  • Xuan N, Tin S, Trung P, Chi H, Ly B. Investigate the anti-cancer effects of Camellia kissi methanol extract on K562 Leukemia cells. JST-UD. 2023;21(5):73-77. google scholar
  • Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273(16):9357-9360. google scholar
  • Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z. Mea-surement of apoptosis by DNA fragmentation. Methods Mol Biol (Clifton, NJ). 2004;282:1-17. google scholar
  • Chen L, Chen J, Xu H. Sasanquasaponin from Camellia oleifera Abel. induces cell cycle arrest and apoptosis in human breast cancer MCF-7 cells. Fitoterapia. 2013;84:123-129. google scholar
  • Wang Y, Ren N, Rankin GO, et al. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells. J Funct Foods. 2017;37:310-321. google scholar
  • Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progres-sion and leukemogenesis. Leukemia. 2004;18(2):189-218. google scholar
  • Morotti A, Panuzzo C, Crivellaro S, et al. BCR-ABL inactivates cytosolic PTEN through Casein Kinase II mediated tail phos-phorylation. Cell cycle (Georgetown, Tex). 2015;14(7):973-979. google scholar
  • Li XX, Liu C, Dong SL, et al. Anticarcinogenic poten-tials of tea catechins. Front Nutr. 2022;9:1060783. doi: 10.3389/fnut.2022.1060783. google scholar
  • Iwasaki R, Ito K, Ishida T, et al. Catechin, green tea component, causes caspase-independent necrosis-like cell death in chronic myelogenous leukemia. Cancer Sci. 2009;100(2):349-356. google scholar
  • Massimino M, Stella S, Tirro E, et al. Non ABL-directed in-hibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer2018;17(1):56. doi: 10.1186/s12943-018-0805-1. google scholar
  • Fisher D, Krasinska L. Explaining redundancy in CDK-mediated control of the cell cycle: Unifying the continuum and quantitative models. Cells. 2022;11(13):2019. doi: 10.3390/cells11132019. google scholar
  • Rizzotto D, Englmaier L, Villunger A. At a crossroads to cancer: How p53-induced cell fate decisions secure genome integrity. Int JMol Sci. 2021;22(19):10883. doi: 10.3390/yms221910883. google scholar
There are 33 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Short Communication
Authors

Nguyen Anh Xuan 0009-0001-7545-0888

Nguyen Trung Quan 0000-0002-6436-4693

Bui Thi Kim Ly 0000-0002-8433-7035

Hoang Thanh Chi 0000-0002-6638-1235

Project Number No Application
Publication Date May 30, 2024
Submission Date December 4, 2023
Acceptance Date January 19, 2024
Published in Issue Year 2024

Cite

AMA Xuan NA, Trung Quan N, Ly BTK, Chi HT. Induction of Apoptosis in BCR-ABL Fusion Associated Chronic Myeloid Leukemia Cells by Camellia kissiWall. (Theaceae) Extract. Eur J Biol. May 2024;83(1):117-122. doi:10.26650/EurJBiol.2024.1399845