Review
BibTex RIS Cite

Cell Surface Sialylated N-Glycan Alterations during Development

Year 2017, , 79 - 88, 27.12.2017
https://doi.org/10.5152/EurJBiol.2017.1714

Abstract

 



This
brief survey focuses on the comparison of sialylated N-glycans of embryonic
stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem
cells (MSCs) and of differentiated cells. In addition, the impact of sialic
acid (Sia) deficiency on cell surfaces during development is summarized. The
most common Sia is N-acetylneuraminic acid (Neu5Ac). The branched structures of
complex- and hybrid- type N-glycans are the carrier for Sia. Transmembrane
adhesive proteins, voltage-gated ion channels and many ligand-activated
receptors are some examples of heavily sialylated N-glycan bearing membrane
proteins. Their oligosaccharide extensions provide an important contribution to
glycocalyx glycans. ESCs and iPSCs are characterized with high mannose-type and
biantennary complex-type core structures. Two branches terminate with α2,6-
linked Sia. MSCs contain high mannose, hybrid- and complex- type N-glycans.
Linear poly-N-acetyllactosamine (poly-Galβ1-4GlcNAc, poly-LacNAc) chains are
the characteristic structures. Both α2,3- and α2,6- linked Sias are seen in a
species-specific manner in MSCs. α2,6- linked Sia is probably a marker
associated with the multipotency of human MSCs. Differentiated healthy cells
contain the most abundant 2-branched complex structures. The bisecting branch
on the core structure appears as a differentiation marker. poly-LacNAc chains
are terminated with α2,3- and α2,6- linked Sia, with the former being higher.
poly-LacNAc sequences have a high affinity for β-galactoside recognizing lectin
and galectin. Galectin forms a lattice structure with the N-glycans of
glycoproteins anchored to the plasma membrane. The impact of N-glycan-galectin
complexes in cell biology is summarized. Finally, the effect of reduced Sia on
clearance of aged cells is explained. Experimental evidence for the masking
role of Sia in the regulation of histolysis in aged cells is revealed. 

References

  • 1. Brooks S, Dwek M, Schumacher U. Functional and molecular glycobiology. 1st ed. 2002; Oxford, UK: BIOS Scientific Publishers Ltd. 2. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. Essentials of Glycobiology. 2nd ed. Essentials of Glycobiology, A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. 2009; Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 3. Taylor M, Drickamer K. Introduction to Glycobiology. 3rd ed. 2011; New York, NY, USA: Oxford University Press. 4. Schultz MJ, Swindall AF, Bellis SL. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 2012; 31(3-4): 501-18. 5. Pshezhetsky AV, Ashmarina LI. Desialylation of surface receptors as a new dimension in cell signaling. Biochemistry (Mosc) 2013; 78(7):736-45. 6. Ciołczyk-Wierzbicka D, Gil D, Hoja-Lukowicz D, Litynska A Laidler P. Carbohydrate moieties of N-cadherin from human melanoma cell lines. Acta Biochim Pol 2002; 49(4): 991-8. 7. Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673-87. 8. Thornhill WB, Wu MB, Jiang X, Wu X, Morgan PT Margiotta JF. Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem 1996; 271(32): 19093-8. 9. Bennett ES. Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: functional sialic acids are localized to the S5-S6 loop of domain I. J Physiol 2002; 538(3): 675-90. 10. Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2012; 2(2):1269-301. 11. Ednie AR, Harper JM, Bennett ES. Sialic acids attached to N- and O-glycans within the Na(v)1.4 D1S5-S6 linker contribute to channel gating. Biochim Biophys Acta 2015; 1850(2): 307-17. 12. Ahrens J, Foadi N, Eberhardt A, Haeseler G, Dengler R, Leffler A, et al. Defective polysialylation and sialylation induce opposite effects on gating of the skeletal Na+ channel NaV1.4 in Chinese hamster ovary cells. Pharmacology 2011; 87(5-6): 311-7. 13. Stocker PJ, Bennett ES. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium. J Gen Physiol 2006; 127(3): 253-65. 14. Ednie AR, Bennett ES. Reduced sialylation impacts ventricular repolarization by modulating specific K(+) channel isoforms distinctly. J Biol Chem 2015; 290(5): 2769-83. 15. Johnson D, Bennett ES. Gating of the shaker potassium channel is modulated differentially by N-glycosylation and sialic acids. Pflugers Arch 2008; 456(2): 393-405. 16. Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, et al. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 2014; 453(2): 243-53. 17. Zhu J, Yan J, Thornhill WB. N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels. FEBS J 2012; 279(15): 2632-44. 18. Du D, Yang H, Ednie AR, Bennett ES. In-silico modeling of the functional role of reduced sialylation in sodium and potassium channel gating of mouse ventricular myocytes. IEEE J Biomed Health Inform 2017. doi: 10.1109/JBHI.2017.2664579. 19. Michineau S, Alhenc-Gelas F, Rajerison RM. Human bradykinin B2 receptor sialylation and N-glycosylation participate with disulfide bonding in surface receptor dimerization. Biochemistry 2006; 45(8): 2699-707. 20. Lemmon MA. Ligand-induced ErbB receptor dimerization. Exp Cell Res 2009; 315(4): 638-48. 21. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA 2011; 108(28): 11332-37. 22. Zhen Y, Caprioli RM, Staros JV. Characterization of glycosylation sites of the epidermal growth factor receptor. Biochemistry 2003; 42(18): 5478-92. 23. Yen HY, Liu YC, Chen NY, Tsai CF, Wang YT, Chen YJ, et al. Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proc Natl Acad Sci USA 2015; 112(22): 6955-60. 24. Mathew MP, Tan E, Saeui CT, Bovonratwet P, Sklar S, Bhattacharya R, et al. Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 2016; 7(41): 66491-511. 25. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA 2011; 108(28): 11332-37. 26. Rabinovich GA, Toscano MA, Jackson SS, Vasta GR. Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 2007; 17(5): 513-20. 27. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 2008; 10: e17. 28. Nabi IR, Shankar J, Dennis JW. The galectin lattice at a glance. J Cell Sci 2015; 128(13): 2213. 29. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007; 129(1): 123-34. 30. Brewer CF, Miceli MC, Baum LG. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 2002; 12(5): 616-23. 31. Garner OB, Baum LG. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 2008; 36(Pt 6): 1472-7. 32. Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW, Foster LJ, et al. Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem 2012; 287(39): 32940-52. 33. Vasta GR. Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol 2012; 946: 21-36. 34. Yang EH, Rode J, Howlader MA, Eckermann M, Santos JT, Hernandez Armada D, et al. Galectin-3 alters the lateral mobility and clustering of beta1-integrin receptors. PLoS One 2017; 12(10): e0184378. 35. Grigorian A, Torossian S, Demetriou M. T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 2009; 230(1): 232-46. 36. Shimura T, Takenaka Y, Fukumori T, Tsutsumi S, Okada K, Hogan V, et al. Implication of galectin-3 in Wnt signaling. Cancer Res 2005; 65(9): 3535-7. 37. Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell 2009; 139(7): 1229-41. 38. Elola MT, Blidner AG, Ferragut F, Bracalente C, Rabinovich GA. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes. Biochem J 2015; 469(1): 1-16. 39. Iacobini C, Fantauzzi CB, Pugliese G, Menini S. Role of Galectin-3 in bone cell differentiation, bone pathophysiology and vascular osteogenesis. Int J Mol Sci 2017; 18(11). 40. Vasta GR, Feng C, Bianchet MA, Bachvaroff TR, Tasumi S. Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse. Fish Shellfish Immunol 2015; 46(1): 94-106. 41. Schauer R, Sialic Acids: Chemistry, metabolism, and function. Cell Biology Monographs. 1982; Springer-Verlag/Wien: Springer-Verlag Wien. 42. Varki A. Diversity in the sialic acids. Glycobiology 1992; 2(1): 25-40. 43. Varki A. Sialic acids as ligands in recognition phenomena. FASEB J 1997; 11(4): 248-55. 44. Varki A, Schnaar R, Schauer R. Sialic acids and other nonulosonic acids in Essentials of Glycobiology, Varki A, Cummings R, Esko J, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH. Editors. 2017; old Spring Harbor Laboratory Press: Cold Spring Harbor (NY). 45. Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009; 19(5): 507-14. 46. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S Delannoy P. The human sialyltransferase family. Biochimie 2001; 83(8): 727-37. 47. Meng L, Forouhar F, Thieker D, Gao Z, Ramiah A, Moniz H, et al. Enzymatic basis for N-glycan sialylation: Structure of rat α2,6-sialyltransferase (st6gal1) reveals conserved and unique features for glycan sialylation. J Biol Chem 2013; 288(48): 34680-98. 48. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, Venerando B, et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 2000; 349(Pt 1): 343-51. 49. Zanchetti G, Colombi P, Manzoni M, Anastasia L, Caimi L, Borsani G, et al. Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures. Biochem J 2007; 408(Pt 2): 211-19. 50. Meesmann HM, Fehr EM, Kierschke S, Herrmann M, Bilyy R, Heyder P, et al. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci 2010; 123(Pt 19): 3347-56. 51. Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chem Biol 2010; 5(2): 163-76. 52. Abeln M, Borst KM, Cajic S, Thiesler H, Kats E, Albers I, et al. Sialylation is dispensable for early murine embryonic development in vitro. Chem biochem 2017; 18(13): 1305-16. 53. Amano M, Galvan M, He J, Baum LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem 2003; 278(9): 7469-75. 54. Datta AK. Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs. Curr Drug Targets 2009; 10(6): 483-98. 55. Fukushima K, Takahashi T, Ito S, Takaguchi M, Takano M, Kurebayashi Y, et al. Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3. Virology 2014; 464-465: 424-31. 56. Kraushaar DC, Dalton S Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem 2013; 394(6): 741-51. 57. Tang L, Li N, Xie H Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol 2011; 226(3): 832-42. 58. Venable A, Mitalipova M, Lyons I, Jones K, Shin S, Pierce M, et al. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces. BMC Dev Biol 2005; 5: 5-15. 59. Wearne KA, Winter HC, O’Shea K Goldstein IJ. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates. Glycobiology 2006; 16(10): 981-90. 60. Wearne KA, Winter HC Goldstein IJ. Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies. Glycoconj J 2008; 25(2): 121-36. 61. Satomaa T, Heiskanen A, Mikkola M, Olsson C, Blomqvist M, Tiittanen M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biol 2009; 10: 42. 62. Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 2011; 286(23): 20345-53. 63. Toyoda M, Yamazaki-Inoue M, Itakura Y, Kuno A, Ogawa T, Yamada M, et al. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2011; 16(1): 1-11. 64. Dodla MC, Young A, Venable A, Hasneen K, Rao RR, Machacek DW, et al. Differing lectin binding profiles among human embryonic stem cells and derivatives aid in the isolation of neural progenitor cells. PLoS One 2011; 6(8): e23266. 65. An HJ, Gip P, Kim J, Wu S, Park KW, McVaugh CT, et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol Cell Proteomics 2012; 11(4): M111.010660. 66. Kawamura T, Miyagawa S, Fukushima S, Yoshida A, Kashiyama N, Kawamura A, et al. N-glycans: phenotypic homology and structural differences between myocardial cells and induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2014; 9(10): 111064. 67. Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, et al. Quantitative Assessment of Sialo-Glycoproteins and N-Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. Chembiochem 2017; 18(13): 1317-31. 68. Hasehira K, Tateno H, Onuma Y, Ito Y, Asashima M, Hirabayashi J. Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 2012; 11(12): 1913-23. 69. Hamouda H, Kaup M, Ullah M, Berger M, Sandig V, Tauber R, et al. Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J Proteome Res 2014; 13(12): 6144-51. 70. Muramatsu T, Muramatsu H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 2004; 21(1-2): 41-5. 71. Natunen S, Lampinen M, Suila H, Ritamo I, Pitkänen V, Nairn AV, et al. Metabolic glycoengineering of mesenchymal stromal cells with N-propanoylmannosamine. Glycobiology 2013; 23(8): 1004-12. 72. Hasehira K, Hirabayashi J, Tateno H. Structural and quantitative evidence of α2-6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells. Glycoconj J 2017; 34(6): 797-806. 73. Hamouda H, Ullah M, Berger M, Sittinger M, Tauber R, Ringe J, et al. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers. Stem Cells Dev 2013; 22(23): 3100-13. 74. Tateno H, Saito S, Hiemori K, Kiyoi K, Hasehira K, Toyoda M, et al. α2–6 sialylation is a marker of the differentiation potential of human mesenchymal stem cells. Glycobiology 2016; 26(12): 1328-37. 75. Heiskanen A, Hirvonen T, Salo H, Impola U, Olonen A, Laitinen A, et al. Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj J 2009; 26(3): 367-84. 76. Desantis S, Accogli G, Crovace A, Francioso EG, Crovace AM. Surface glycan pattern of canine, equine, and ovine bone marrow-derived mesenchymal stem cells. Cytometry A 2017. doi: 10.1002/cyto.a.23241. 77. Hamanoue M, Ikeda Y, Ogata T, Takamatsu K. Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells. Stem Cell Res 2015; 14(1): 68-78. 78. Hua D, Qin F, Shen L, Jiang Z, Zou ST, Xu L, et al. Beta3GnT8 regulates laryngeal carcinoma cell proliferation via targeting MMPs/TIMPs and TGF-beta1. Asian Pac J Cancer Prev 2012; 13(5): 2087-93. 79. Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y, et al. Colon cancer cells treated with 5fluorouracil exhibit changes in polylactosaminetype Nglycans. Mol Med Rep 2014; 9(5): 1697-702. 80. Gu J, Isaji T, Sato Y, Kariya Y, Fukuda T. Importance of N-glycosylation on alpha5beta1 integrin for its biological functions. Biol Pharm Bull 2009; 32(5): 780-5. 81. Kang J, Park HM, Kim YW, Kim YH, Varghese S, Seok HK, et al. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism. Eur Cell Mater 2014; 28: 387-403. 82. Curran JM, Chen R, Hunt JA. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 2005; 26(34): 7057-67. 83. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89. 84. Takahata M, Iwasaki N, Nakagawa H, Abe Y, Watanabe T, Ito M, et al. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. Bone 2007; 41(1): 77-86. 85. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3(2): 97-130. 86. Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem 2004; 73: 491-537. 87. Amano M, Yamaguchi M, Takegawa Y, Yamashita T, Terashima M, Furukawa J, et al. Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol Cell Proteomics 2010; 9(3): 523-37. 88. Park D, Brune KA, Mitra A, Marusina AI, Maverakis E, Lebrilla CB. Characteristic changes in cell surface glycosylation accompany intestinal epithelial cell (IEC) differentiation: High mannose structures dominate the cell surface glycome of undifferentiated enterocytes. Mol Cell Proteomics 2015; 14(11): 2910-21. 89. Brockhausen I, Narasimhan S Schachter H. The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 1988; 70(11): 1521-33. 90. Isaji T, Kariya Y, Xu Q, Fukuda T, Taniguchi N Gu J. Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion. Methods Enzymol 2010; 480: 445-59. 91. Taniguchi N, Korekane H. Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 2011; 44(12): 772-81. 92. Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P. The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 2012; 29(8-9): 609-18. 93. Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, et al. Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor beta1 (TGF-beta1) in epithelial cell lines. J Biol Chem 2012; 287(20): 16563-74. 94. Karaçalı S, İzzetoğlu S, Deveci R. Glycosylation changes leading to the increase in size on the common core of N-glycans, required enzymes, and related cancer-associated proteins. Turk J Biol 2014; 38: 754-71. 95. Zhang W, Revers L, Pierce M, Schachter H. Regulation of expression of the human beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 2000; 347(Pt 2): 511-8. 96. Terashima M, Amano M, Onodera T, Nishimura S, Iwasaki N. Quantitative glycomics monitoring of induced pluripotent- and embryonic stem cells during neuronal differentiation. Stem Cell Res 2014; 13(3 Pt A): 454-64. 97. Kawamura T, Miyagawa S, Fukushima S, Kashiyama N, Kawamura A, Ito E, et al. Structural changes in N-glycans on induced pluripotent stem cells differentiating toward cardiomyocytes. Stem Cells Transl Med 2015; 4(11): 1258-64. 98. Montacir H, Freyer N, Knospel F, Urbaniak T, Dedova T, Berger M, et al. The cell-surface N-glycome of human embryonic stem cells and differentiated hepatic cells thereof. Chembiochem 2017; 18(13): 1234-41. 99. Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, et al. Glycosylation changes triggered by the differentiation of monocytic THP-1 cell line into macrophages. J Proteome Res 2017; 16(1): 156-69. 100. Wilson KM, Thomas-Oates JE, Genever PG, Ungar D. Glycan profiling shows unvaried N-glycomes in MSC clones with distinct differentiation potentials. Front Cell Dev Biol 2016; 4: 52. doi: 10.3389/fcell.2016.00052 101. North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, et al. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 2010; 285(8): 5759-75. 102. Toegel S, Pabst M, Wu SQ, Grass J, Goldring MB, Chiari C, et al. Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis Cartilage 2010; 18(2): 240-8. 103. Liu W, Yan X, Liu W, Wang Y, Rao Y, Yu H, et al. Alterations of protein glycosylation in embryonic stem cells during adipogenesis. Int J Mol Med 2018; 41(1): 293-301. 104. Zamze S, Harvey DJ, Chen YJ, Guile GR, Dwek RA, Wing DR. Sialylated N-glycans in adult rat brain tissue--a widespread distribution of disialylated antennae in complex and hybrid structures. Eur J Biochem 1998; 258(1): 243-70. 105. Torii T, Yoshimura T, Narumi M, Hitoshi S, Takaki Y, Tsuji S, et al. Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj J 2014; 31(9): 671-83. 106. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 2002; 1572(2-3): 232-54. 107. Iwaki J, Tateno H, Nishi N, Minamisawa T, Nakamura-Tsuruta S, Itakura Y, et al. The Galbeta-(syn)-gauche configuration is required for galectin-recognition disaccharides. Biochim Biophys Acta 2011; 1810(7): 643-51. 108. Argüeso P Panjwani N. Focus on Molecules: Galectin-3. Exp Eye Res 2011; 92(1): 2-3. 109. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 2008; 283(15): 10109-23. 110. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 2004; 279(12): 10841-7. 111. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol 2010; 176(5): 2067-81. 112. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, et al. Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 2002; 99(8): 5267-70. 113. Weidemann W, Klukas C, Klein A, Simm A, Schreiber F, Horstkorte R. Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 2010; 20(1): 107-17. 114. Milman KI, Sela I, Eiges R, Blanchard V, Berger M, Becker Cohen M, et al. GNE is involved in the early development of skeletal and cardiac muscle. PLoS One 2011; 6(6): e21389. 115. Weidemann W, Hering J, Bennmann D, Thate A, Horstkorte R. The key enzyme of the sialic acid metabolism is involved in embryoid body formation and expression of marker genes of germ layer formation. Int J Mol Sci 2013; 14(10): 20555-63. 116. Cho A, Christine M, Malicdan V, Miyakawa M, Nonaka I, Nishino I, et al. Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Hum Mol Genet 2017; 26(16): 3081-93. 117. Pham ND, Pang PC, Krishnamurthy S, Wands AM, Grassi P, Dell A, et al. Effects of altered sialic acid biosynthesis on N-linked glycan branching and cell surface interactions. J Biol Chem 2017; 292(23): 9637-51. 118. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246(5): 1461-7. 119. Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 1974; 41(0): 99-128. 120. Hudgin RL, Pricer WE, Jr., Ashwell G, Stockert RJ, Morell AG. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 1974; 249(17): 5536-43. 121. Jancik J, Schauer R. Sialic acid--a determinant of the life-time of rabbit erythrocytes. Hoppe Seylers Z Physiol Chem 1974; 355(4): 395-400. 122. Kelm S, Schauer R. Sialic acids in molecular and cellular interactions. Int Rev Cytol 1997; 175: 137-240. 123. Aminoff D, Bruegge WF, Bell WC, Sarpolis K Williams R. Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Natl Acad Sci USA 1977; 74(4): 1521-4. 124. Bratosin D, Mazurier J, Debray H, Lecocq M, Boilly B, Alonso C, et al. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconj J 1995; 12(3):258-67. 125. Sørensen AL, Rumjantseva V, Nayeb-Hashemi S, Clausen H, Hartwig JH, Wandall HH, et al. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 2009; 114(8): 1645-54. 126. Grewal PK. The Ashwell-Morell receptor. Methods Enzymol 2010; 479: 223-41. 127. Aminoff D. The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation. Blood cells 1988; 14(1): 229-57. 128. Rolfes-Curl A, Ogden LL, Omann GM Aminoff D. Flow cytometric analysis of human erythrocytes: II. Possible identification of senescent RBC with fluorescently labelled wheat germ agglutinin. Exp Gerontol 1991; 26(4): 327-45. 129. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 2013; 4: 387. 130. Luo C, Chen S, Xu N, Sai WB, Zhao W, Li YC, et al. Establishment of a fluorescence-based method to evaluate endocytosis of desialylated glycoproteins in vitro. Biomed Pharmacother 2017; 88: 87-94. 131. Greenberg J, Packham MA, Cazenave JP, Reimers HJ Mustard JF. Effects on platelet function of removal of platelet sialic acid by neuraminidase. Lab Invest 1975; 32(4): 476-84. 132. Kotze HF, van Wyk V, Badenhorst PN, Heyns AD, Roodt JP, Lotter MG. Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb Haemost 1993; 70(4): 676-80. 133. Grozovsky R, Giannini S, Falet H, Hoffmeister KM. Novel mechanisms of platelet clearance and thrombopoietin regulation. Curr Opin Hematol 2015; 22(5): 445-51. 134. Grozovsky R, Giannini S, Falet H, Hoffmeister KM. Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126(16): 1877-84. 135. Hoffmeister KM, Falet H. Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2016; 141 Suppl 2: S68-72. 136. Li R, Hoffmeister KM, Falet H. Glycans and the platelet life cycle. Platelets 2016; 27(6): 505-11. 137. Tadokoro T, Yamamoto K, Kuwahara I, Fujisawa H, Ikekita M, Taniguchi A, et al. Preferential reduction of the alpha-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging. Glycoconj J 2006; 23(5-6): 443-52. 138. Itakura Y, Sasaki N, Kami D, Gojo S, Umezawa A, Toyoda M. N- and O-glycan cell surface protein modifications associated with cellular senescence and human aging. Cell Biosci 2016; 6(1): 14. 139. Sasaki N, Itakura Y, Toyoda M. Sialylation regulates myofibroblast differentiation of human skin fibroblasts. Stem Cell Res Ther 2017; 8(1): 81. 140. Karaçalı S, Kirmizigul S, Deveci R, Deveci O, Onat T Gurcu B. Presence of sialic acid in prothoracic glands of Galleria mellonella (Lepidoptera). Tissue Cell 1997; 29(3): 315-21. 141. Karaçalı S, Deveci R, Pehlivan S, Özcan ALI. Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in the larval stage. Inverteb Reprod Dev 2000; 37(2): 167-70. 142. Ozkan M, Karacali S. Galleria mellonella (Lepidoptera)’da metamorfoz geçiren sinir sisteminde sialik asidin rolü. İzmir, Turkey: Ege Universitesi Fen Bilimleri Arasiırma Projesi. 2006. 143. Eratak B, Karaçalı S. Galleria mellonella (Lepidoptera)’da metamorfoz geçiren corpus cardiacum corpus allatum (CCCA) kompleksinde sialik asidin rolu. Izmir, Turkey: Ege Universitesi Fen Bilimleri Arastirma Projesi. 2006. 144. Bayro İ, Deveci R. Galleria mellonella (Lepidoptera)’nın gelisen testislerinde sialik asidin rolu. İzmir, Turkey: Ege Universitesi Fen Bilimleri Arastirma Projesi. 2006. 145. Lanctot PM, Gage FH, Varki AP. The glycans of stem cells. Curr Opin Chem Biol 2007; 11(4): 373-80. 146. Rosu-Myles M, McCully J, Fair J, Mehic J, Menendez P, Rodriguez R, et al. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo. Stem Cells Dev 2013; 22(9): 1387-97. 147. Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: Culture, differentiation and challenges. World J Stem Cells 2015; 7(4): 769-75.
Year 2017, , 79 - 88, 27.12.2017
https://doi.org/10.5152/EurJBiol.2017.1714

Abstract

References

  • 1. Brooks S, Dwek M, Schumacher U. Functional and molecular glycobiology. 1st ed. 2002; Oxford, UK: BIOS Scientific Publishers Ltd. 2. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. Essentials of Glycobiology. 2nd ed. Essentials of Glycobiology, A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. 2009; Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 3. Taylor M, Drickamer K. Introduction to Glycobiology. 3rd ed. 2011; New York, NY, USA: Oxford University Press. 4. Schultz MJ, Swindall AF, Bellis SL. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 2012; 31(3-4): 501-18. 5. Pshezhetsky AV, Ashmarina LI. Desialylation of surface receptors as a new dimension in cell signaling. Biochemistry (Mosc) 2013; 78(7):736-45. 6. Ciołczyk-Wierzbicka D, Gil D, Hoja-Lukowicz D, Litynska A Laidler P. Carbohydrate moieties of N-cadherin from human melanoma cell lines. Acta Biochim Pol 2002; 49(4): 991-8. 7. Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673-87. 8. Thornhill WB, Wu MB, Jiang X, Wu X, Morgan PT Margiotta JF. Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem 1996; 271(32): 19093-8. 9. Bennett ES. Isoform-specific effects of sialic acid on voltage-dependent Na+ channel gating: functional sialic acids are localized to the S5-S6 loop of domain I. J Physiol 2002; 538(3): 675-90. 10. Ednie AR, Bennett ES. Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2012; 2(2):1269-301. 11. Ednie AR, Harper JM, Bennett ES. Sialic acids attached to N- and O-glycans within the Na(v)1.4 D1S5-S6 linker contribute to channel gating. Biochim Biophys Acta 2015; 1850(2): 307-17. 12. Ahrens J, Foadi N, Eberhardt A, Haeseler G, Dengler R, Leffler A, et al. Defective polysialylation and sialylation induce opposite effects on gating of the skeletal Na+ channel NaV1.4 in Chinese hamster ovary cells. Pharmacology 2011; 87(5-6): 311-7. 13. Stocker PJ, Bennett ES. Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium. J Gen Physiol 2006; 127(3): 253-65. 14. Ednie AR, Bennett ES. Reduced sialylation impacts ventricular repolarization by modulating specific K(+) channel isoforms distinctly. J Biol Chem 2015; 290(5): 2769-83. 15. Johnson D, Bennett ES. Gating of the shaker potassium channel is modulated differentially by N-glycosylation and sialic acids. Pflugers Arch 2008; 456(2): 393-405. 16. Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, et al. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 2014; 453(2): 243-53. 17. Zhu J, Yan J, Thornhill WB. N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels. FEBS J 2012; 279(15): 2632-44. 18. Du D, Yang H, Ednie AR, Bennett ES. In-silico modeling of the functional role of reduced sialylation in sodium and potassium channel gating of mouse ventricular myocytes. IEEE J Biomed Health Inform 2017. doi: 10.1109/JBHI.2017.2664579. 19. Michineau S, Alhenc-Gelas F, Rajerison RM. Human bradykinin B2 receptor sialylation and N-glycosylation participate with disulfide bonding in surface receptor dimerization. Biochemistry 2006; 45(8): 2699-707. 20. Lemmon MA. Ligand-induced ErbB receptor dimerization. Exp Cell Res 2009; 315(4): 638-48. 21. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA 2011; 108(28): 11332-37. 22. Zhen Y, Caprioli RM, Staros JV. Characterization of glycosylation sites of the epidermal growth factor receptor. Biochemistry 2003; 42(18): 5478-92. 23. Yen HY, Liu YC, Chen NY, Tsai CF, Wang YT, Chen YJ, et al. Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proc Natl Acad Sci USA 2015; 112(22): 6955-60. 24. Mathew MP, Tan E, Saeui CT, Bovonratwet P, Sklar S, Bhattacharya R, et al. Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 2016; 7(41): 66491-511. 25. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA 2011; 108(28): 11332-37. 26. Rabinovich GA, Toscano MA, Jackson SS, Vasta GR. Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 2007; 17(5): 513-20. 27. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 2008; 10: e17. 28. Nabi IR, Shankar J, Dennis JW. The galectin lattice at a glance. J Cell Sci 2015; 128(13): 2213. 29. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 2007; 129(1): 123-34. 30. Brewer CF, Miceli MC, Baum LG. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 2002; 12(5): 616-23. 31. Garner OB, Baum LG. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 2008; 36(Pt 6): 1472-7. 32. Boscher C, Zheng YZ, Lakshminarayan R, Johannes L, Dennis JW, Foster LJ, et al. Galectin-3 protein regulates mobility of N-cadherin and GM1 ganglioside at cell-cell junctions of mammary carcinoma cells. J Biol Chem 2012; 287(39): 32940-52. 33. Vasta GR. Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol 2012; 946: 21-36. 34. Yang EH, Rode J, Howlader MA, Eckermann M, Santos JT, Hernandez Armada D, et al. Galectin-3 alters the lateral mobility and clustering of beta1-integrin receptors. PLoS One 2017; 12(10): e0184378. 35. Grigorian A, Torossian S, Demetriou M. T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 2009; 230(1): 232-46. 36. Shimura T, Takenaka Y, Fukumori T, Tsutsumi S, Okada K, Hogan V, et al. Implication of galectin-3 in Wnt signaling. Cancer Res 2005; 65(9): 3535-7. 37. Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell 2009; 139(7): 1229-41. 38. Elola MT, Blidner AG, Ferragut F, Bracalente C, Rabinovich GA. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes. Biochem J 2015; 469(1): 1-16. 39. Iacobini C, Fantauzzi CB, Pugliese G, Menini S. Role of Galectin-3 in bone cell differentiation, bone pathophysiology and vascular osteogenesis. Int J Mol Sci 2017; 18(11). 40. Vasta GR, Feng C, Bianchet MA, Bachvaroff TR, Tasumi S. Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse. Fish Shellfish Immunol 2015; 46(1): 94-106. 41. Schauer R, Sialic Acids: Chemistry, metabolism, and function. Cell Biology Monographs. 1982; Springer-Verlag/Wien: Springer-Verlag Wien. 42. Varki A. Diversity in the sialic acids. Glycobiology 1992; 2(1): 25-40. 43. Varki A. Sialic acids as ligands in recognition phenomena. FASEB J 1997; 11(4): 248-55. 44. Varki A, Schnaar R, Schauer R. Sialic acids and other nonulosonic acids in Essentials of Glycobiology, Varki A, Cummings R, Esko J, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH. Editors. 2017; old Spring Harbor Laboratory Press: Cold Spring Harbor (NY). 45. Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 2009; 19(5): 507-14. 46. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S Delannoy P. The human sialyltransferase family. Biochimie 2001; 83(8): 727-37. 47. Meng L, Forouhar F, Thieker D, Gao Z, Ramiah A, Moniz H, et al. Enzymatic basis for N-glycan sialylation: Structure of rat α2,6-sialyltransferase (st6gal1) reveals conserved and unique features for glycan sialylation. J Biol Chem 2013; 288(48): 34680-98. 48. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, Venerando B, et al. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 2000; 349(Pt 1): 343-51. 49. Zanchetti G, Colombi P, Manzoni M, Anastasia L, Caimi L, Borsani G, et al. Sialidase NEU3 is a peripheral membrane protein localized on the cell surface and in endosomal structures. Biochem J 2007; 408(Pt 2): 211-19. 50. Meesmann HM, Fehr EM, Kierschke S, Herrmann M, Bilyy R, Heyder P, et al. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci 2010; 123(Pt 19): 3347-56. 51. Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chem Biol 2010; 5(2): 163-76. 52. Abeln M, Borst KM, Cajic S, Thiesler H, Kats E, Albers I, et al. Sialylation is dispensable for early murine embryonic development in vitro. Chem biochem 2017; 18(13): 1305-16. 53. Amano M, Galvan M, He J, Baum LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem 2003; 278(9): 7469-75. 54. Datta AK. Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs. Curr Drug Targets 2009; 10(6): 483-98. 55. Fukushima K, Takahashi T, Ito S, Takaguchi M, Takano M, Kurebayashi Y, et al. Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3. Virology 2014; 464-465: 424-31. 56. Kraushaar DC, Dalton S Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem 2013; 394(6): 741-51. 57. Tang L, Li N, Xie H Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J Cell Physiol 2011; 226(3): 832-42. 58. Venable A, Mitalipova M, Lyons I, Jones K, Shin S, Pierce M, et al. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces. BMC Dev Biol 2005; 5: 5-15. 59. Wearne KA, Winter HC, O’Shea K Goldstein IJ. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates. Glycobiology 2006; 16(10): 981-90. 60. Wearne KA, Winter HC Goldstein IJ. Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies. Glycoconj J 2008; 25(2): 121-36. 61. Satomaa T, Heiskanen A, Mikkola M, Olsson C, Blomqvist M, Tiittanen M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biol 2009; 10: 42. 62. Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 2011; 286(23): 20345-53. 63. Toyoda M, Yamazaki-Inoue M, Itakura Y, Kuno A, Ogawa T, Yamada M, et al. Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2011; 16(1): 1-11. 64. Dodla MC, Young A, Venable A, Hasneen K, Rao RR, Machacek DW, et al. Differing lectin binding profiles among human embryonic stem cells and derivatives aid in the isolation of neural progenitor cells. PLoS One 2011; 6(8): e23266. 65. An HJ, Gip P, Kim J, Wu S, Park KW, McVaugh CT, et al. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol Cell Proteomics 2012; 11(4): M111.010660. 66. Kawamura T, Miyagawa S, Fukushima S, Yoshida A, Kashiyama N, Kawamura A, et al. N-glycans: phenotypic homology and structural differences between myocardial cells and induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2014; 9(10): 111064. 67. Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, et al. Quantitative Assessment of Sialo-Glycoproteins and N-Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. Chembiochem 2017; 18(13): 1317-31. 68. Hasehira K, Tateno H, Onuma Y, Ito Y, Asashima M, Hirabayashi J. Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 2012; 11(12): 1913-23. 69. Hamouda H, Kaup M, Ullah M, Berger M, Sandig V, Tauber R, et al. Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J Proteome Res 2014; 13(12): 6144-51. 70. Muramatsu T, Muramatsu H. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 2004; 21(1-2): 41-5. 71. Natunen S, Lampinen M, Suila H, Ritamo I, Pitkänen V, Nairn AV, et al. Metabolic glycoengineering of mesenchymal stromal cells with N-propanoylmannosamine. Glycobiology 2013; 23(8): 1004-12. 72. Hasehira K, Hirabayashi J, Tateno H. Structural and quantitative evidence of α2-6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells. Glycoconj J 2017; 34(6): 797-806. 73. Hamouda H, Ullah M, Berger M, Sittinger M, Tauber R, Ringe J, et al. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers. Stem Cells Dev 2013; 22(23): 3100-13. 74. Tateno H, Saito S, Hiemori K, Kiyoi K, Hasehira K, Toyoda M, et al. α2–6 sialylation is a marker of the differentiation potential of human mesenchymal stem cells. Glycobiology 2016; 26(12): 1328-37. 75. Heiskanen A, Hirvonen T, Salo H, Impola U, Olonen A, Laitinen A, et al. Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj J 2009; 26(3): 367-84. 76. Desantis S, Accogli G, Crovace A, Francioso EG, Crovace AM. Surface glycan pattern of canine, equine, and ovine bone marrow-derived mesenchymal stem cells. Cytometry A 2017. doi: 10.1002/cyto.a.23241. 77. Hamanoue M, Ikeda Y, Ogata T, Takamatsu K. Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells. Stem Cell Res 2015; 14(1): 68-78. 78. Hua D, Qin F, Shen L, Jiang Z, Zou ST, Xu L, et al. Beta3GnT8 regulates laryngeal carcinoma cell proliferation via targeting MMPs/TIMPs and TGF-beta1. Asian Pac J Cancer Prev 2012; 13(5): 2087-93. 79. Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y, et al. Colon cancer cells treated with 5fluorouracil exhibit changes in polylactosaminetype Nglycans. Mol Med Rep 2014; 9(5): 1697-702. 80. Gu J, Isaji T, Sato Y, Kariya Y, Fukuda T. Importance of N-glycosylation on alpha5beta1 integrin for its biological functions. Biol Pharm Bull 2009; 32(5): 780-5. 81. Kang J, Park HM, Kim YW, Kim YH, Varghese S, Seok HK, et al. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism. Eur Cell Mater 2014; 28: 387-403. 82. Curran JM, Chen R, Hunt JA. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 2005; 26(34): 7057-67. 83. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89. 84. Takahata M, Iwasaki N, Nakagawa H, Abe Y, Watanabe T, Ito M, et al. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. Bone 2007; 41(1): 77-86. 85. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3(2): 97-130. 86. Haltiwanger RS, Lowe JB. Role of glycosylation in development. Annu Rev Biochem 2004; 73: 491-537. 87. Amano M, Yamaguchi M, Takegawa Y, Yamashita T, Terashima M, Furukawa J, et al. Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol Cell Proteomics 2010; 9(3): 523-37. 88. Park D, Brune KA, Mitra A, Marusina AI, Maverakis E, Lebrilla CB. Characteristic changes in cell surface glycosylation accompany intestinal epithelial cell (IEC) differentiation: High mannose structures dominate the cell surface glycome of undifferentiated enterocytes. Mol Cell Proteomics 2015; 14(11): 2910-21. 89. Brockhausen I, Narasimhan S Schachter H. The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 1988; 70(11): 1521-33. 90. Isaji T, Kariya Y, Xu Q, Fukuda T, Taniguchi N Gu J. Functional roles of the bisecting GlcNAc in integrin-mediated cell adhesion. Methods Enzymol 2010; 480: 445-59. 91. Taniguchi N, Korekane H. Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 2011; 44(12): 772-81. 92. Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P. The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 2012; 29(8-9): 609-18. 93. Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, et al. Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor beta1 (TGF-beta1) in epithelial cell lines. J Biol Chem 2012; 287(20): 16563-74. 94. Karaçalı S, İzzetoğlu S, Deveci R. Glycosylation changes leading to the increase in size on the common core of N-glycans, required enzymes, and related cancer-associated proteins. Turk J Biol 2014; 38: 754-71. 95. Zhang W, Revers L, Pierce M, Schachter H. Regulation of expression of the human beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 2000; 347(Pt 2): 511-8. 96. Terashima M, Amano M, Onodera T, Nishimura S, Iwasaki N. Quantitative glycomics monitoring of induced pluripotent- and embryonic stem cells during neuronal differentiation. Stem Cell Res 2014; 13(3 Pt A): 454-64. 97. Kawamura T, Miyagawa S, Fukushima S, Kashiyama N, Kawamura A, Ito E, et al. Structural changes in N-glycans on induced pluripotent stem cells differentiating toward cardiomyocytes. Stem Cells Transl Med 2015; 4(11): 1258-64. 98. Montacir H, Freyer N, Knospel F, Urbaniak T, Dedova T, Berger M, et al. The cell-surface N-glycome of human embryonic stem cells and differentiated hepatic cells thereof. Chembiochem 2017; 18(13): 1234-41. 99. Delannoy CP, Rombouts Y, Groux-Degroote S, Holst S, Coddeville B, Harduin-Lepers A, et al. Glycosylation changes triggered by the differentiation of monocytic THP-1 cell line into macrophages. J Proteome Res 2017; 16(1): 156-69. 100. Wilson KM, Thomas-Oates JE, Genever PG, Ungar D. Glycan profiling shows unvaried N-glycomes in MSC clones with distinct differentiation potentials. Front Cell Dev Biol 2016; 4: 52. doi: 10.3389/fcell.2016.00052 101. North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, et al. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 2010; 285(8): 5759-75. 102. Toegel S, Pabst M, Wu SQ, Grass J, Goldring MB, Chiari C, et al. Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis Cartilage 2010; 18(2): 240-8. 103. Liu W, Yan X, Liu W, Wang Y, Rao Y, Yu H, et al. Alterations of protein glycosylation in embryonic stem cells during adipogenesis. Int J Mol Med 2018; 41(1): 293-301. 104. Zamze S, Harvey DJ, Chen YJ, Guile GR, Dwek RA, Wing DR. Sialylated N-glycans in adult rat brain tissue--a widespread distribution of disialylated antennae in complex and hybrid structures. Eur J Biochem 1998; 258(1): 243-70. 105. Torii T, Yoshimura T, Narumi M, Hitoshi S, Takaki Y, Tsuji S, et al. Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj J 2014; 31(9): 671-83. 106. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 2002; 1572(2-3): 232-54. 107. Iwaki J, Tateno H, Nishi N, Minamisawa T, Nakamura-Tsuruta S, Itakura Y, et al. The Galbeta-(syn)-gauche configuration is required for galectin-recognition disaccharides. Biochim Biophys Acta 2011; 1810(7): 643-51. 108. Argüeso P Panjwani N. Focus on Molecules: Galectin-3. Exp Eye Res 2011; 92(1): 2-3. 109. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 2008; 283(15): 10109-23. 110. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 2004; 279(12): 10841-7. 111. Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, et al. Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol 2010; 176(5): 2067-81. 112. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, et al. Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 2002; 99(8): 5267-70. 113. Weidemann W, Klukas C, Klein A, Simm A, Schreiber F, Horstkorte R. Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 2010; 20(1): 107-17. 114. Milman KI, Sela I, Eiges R, Blanchard V, Berger M, Becker Cohen M, et al. GNE is involved in the early development of skeletal and cardiac muscle. PLoS One 2011; 6(6): e21389. 115. Weidemann W, Hering J, Bennmann D, Thate A, Horstkorte R. The key enzyme of the sialic acid metabolism is involved in embryoid body formation and expression of marker genes of germ layer formation. Int J Mol Sci 2013; 14(10): 20555-63. 116. Cho A, Christine M, Malicdan V, Miyakawa M, Nonaka I, Nishino I, et al. Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Hum Mol Genet 2017; 26(16): 3081-93. 117. Pham ND, Pang PC, Krishnamurthy S, Wands AM, Grassi P, Dell A, et al. Effects of altered sialic acid biosynthesis on N-linked glycan branching and cell surface interactions. J Biol Chem 2017; 292(23): 9637-51. 118. Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246(5): 1461-7. 119. Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 1974; 41(0): 99-128. 120. Hudgin RL, Pricer WE, Jr., Ashwell G, Stockert RJ, Morell AG. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 1974; 249(17): 5536-43. 121. Jancik J, Schauer R. Sialic acid--a determinant of the life-time of rabbit erythrocytes. Hoppe Seylers Z Physiol Chem 1974; 355(4): 395-400. 122. Kelm S, Schauer R. Sialic acids in molecular and cellular interactions. Int Rev Cytol 1997; 175: 137-240. 123. Aminoff D, Bruegge WF, Bell WC, Sarpolis K Williams R. Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Natl Acad Sci USA 1977; 74(4): 1521-4. 124. Bratosin D, Mazurier J, Debray H, Lecocq M, Boilly B, Alonso C, et al. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconj J 1995; 12(3):258-67. 125. Sørensen AL, Rumjantseva V, Nayeb-Hashemi S, Clausen H, Hartwig JH, Wandall HH, et al. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 2009; 114(8): 1645-54. 126. Grewal PK. The Ashwell-Morell receptor. Methods Enzymol 2010; 479: 223-41. 127. Aminoff D. The role of sialoglycoconjugates in the aging and sequestration of red cells from circulation. Blood cells 1988; 14(1): 229-57. 128. Rolfes-Curl A, Ogden LL, Omann GM Aminoff D. Flow cytometric analysis of human erythrocytes: II. Possible identification of senescent RBC with fluorescently labelled wheat germ agglutinin. Exp Gerontol 1991; 26(4): 327-45. 129. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 2013; 4: 387. 130. Luo C, Chen S, Xu N, Sai WB, Zhao W, Li YC, et al. Establishment of a fluorescence-based method to evaluate endocytosis of desialylated glycoproteins in vitro. Biomed Pharmacother 2017; 88: 87-94. 131. Greenberg J, Packham MA, Cazenave JP, Reimers HJ Mustard JF. Effects on platelet function of removal of platelet sialic acid by neuraminidase. Lab Invest 1975; 32(4): 476-84. 132. Kotze HF, van Wyk V, Badenhorst PN, Heyns AD, Roodt JP, Lotter MG. Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb Haemost 1993; 70(4): 676-80. 133. Grozovsky R, Giannini S, Falet H, Hoffmeister KM. Novel mechanisms of platelet clearance and thrombopoietin regulation. Curr Opin Hematol 2015; 22(5): 445-51. 134. Grozovsky R, Giannini S, Falet H, Hoffmeister KM. Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126(16): 1877-84. 135. Hoffmeister KM, Falet H. Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2016; 141 Suppl 2: S68-72. 136. Li R, Hoffmeister KM, Falet H. Glycans and the platelet life cycle. Platelets 2016; 27(6): 505-11. 137. Tadokoro T, Yamamoto K, Kuwahara I, Fujisawa H, Ikekita M, Taniguchi A, et al. Preferential reduction of the alpha-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging. Glycoconj J 2006; 23(5-6): 443-52. 138. Itakura Y, Sasaki N, Kami D, Gojo S, Umezawa A, Toyoda M. N- and O-glycan cell surface protein modifications associated with cellular senescence and human aging. Cell Biosci 2016; 6(1): 14. 139. Sasaki N, Itakura Y, Toyoda M. Sialylation regulates myofibroblast differentiation of human skin fibroblasts. Stem Cell Res Ther 2017; 8(1): 81. 140. Karaçalı S, Kirmizigul S, Deveci R, Deveci O, Onat T Gurcu B. Presence of sialic acid in prothoracic glands of Galleria mellonella (Lepidoptera). Tissue Cell 1997; 29(3): 315-21. 141. Karaçalı S, Deveci R, Pehlivan S, Özcan ALI. Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in the larval stage. Inverteb Reprod Dev 2000; 37(2): 167-70. 142. Ozkan M, Karacali S. Galleria mellonella (Lepidoptera)’da metamorfoz geçiren sinir sisteminde sialik asidin rolü. İzmir, Turkey: Ege Universitesi Fen Bilimleri Arasiırma Projesi. 2006. 143. Eratak B, Karaçalı S. Galleria mellonella (Lepidoptera)’da metamorfoz geçiren corpus cardiacum corpus allatum (CCCA) kompleksinde sialik asidin rolu. Izmir, Turkey: Ege Universitesi Fen Bilimleri Arastirma Projesi. 2006. 144. Bayro İ, Deveci R. Galleria mellonella (Lepidoptera)’nın gelisen testislerinde sialik asidin rolu. İzmir, Turkey: Ege Universitesi Fen Bilimleri Arastirma Projesi. 2006. 145. Lanctot PM, Gage FH, Varki AP. The glycans of stem cells. Curr Opin Chem Biol 2007; 11(4): 373-80. 146. Rosu-Myles M, McCully J, Fair J, Mehic J, Menendez P, Rodriguez R, et al. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo. Stem Cells Dev 2013; 22(9): 1387-97. 147. Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: Culture, differentiation and challenges. World J Stem Cells 2015; 7(4): 769-75.
There are 1 citations in total.

Details

Journal Section Review
Authors

Sabire Karacali

Publication Date December 27, 2017
Submission Date January 13, 2018
Published in Issue Year 2017

Cite

AMA Karacali S. Cell Surface Sialylated N-Glycan Alterations during Development. Eur J Biol. December 2017;76(2):79-88. doi:10.5152/EurJBiol.2017.1714