Review
BibTex RIS Cite

CRISPR-Cas: Removing Boundaries of the Nature

Year 2019, Volume: 78 Issue: 2, 157 - 164, 06.12.2019

Abstract

The CRISPR-Cas 9 system, which is known as a natural way of bacteria to defend against phage infection and plasmid transfer, has been re-purposed as a RNA-guided DNA targeting strategy for genome editing. Together with the advances gained in DNA sequencing technology, this platform opened a new era in molecular biology since its recognition was specified by 20-nt single-guide RNA which made technique easier, efficient and simple for application in any organism. Thus, many studies have discussed and performed the applications of CRISPR-Cas systems on different organisms for genome editing. Moreover, targeted gene regulations, epigenetic modulation, chromatin imaging and manipulation could also be applied with this system. Besides all its potential promising aspects, this tool might have some side effects like off-target mutations. In addition, unexpected results have also been reported after some gene editing applications. Thus, this review provides a brief history of gene editing tools together with the overview of the latest applications, regulations and ethical/structural aspects of the CRISPR Cas system.

Supporting Institution

There are no funders to report for this submission.

References

  • 1. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9(1): 1911.
  • 2. Capecchi MR. Altering the genome by homologous recombination. Sci 1989; 244(4910): 1288-92. 3. Lin FL, Sperle K, Sternberg N. Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA 1985; 82: 1391–95.
  • 4. Klug A, Rhodes D. ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Sci 1987; 12: 464-69.
  • 5. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 1996; 93(3): 1156-60.
  • 6. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435(7042): 646.
  • 7. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186(2): 757-761.
  • 8. Doudna JA, Charpentier E, The new frontier of genome engineering with CRISPR-Cas9. Sci 2014; 346(6213): 1258096.
  • 9. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6), 1262-78.
  • 10. Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell 2016, 62(1): 137-47.
  • 11. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Al-Shayeb B. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218.
  • 12. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Doudna JA. Programmed DNA destruction by miniature CRISPRCas14 enzymes. Sci 2018; 362(6416): 839-42.
  • 13. Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. CRISPR-Cas12a has both cis-and trans-cleavage activities on single-stranded DNA. Cell Res 2018; 28(4): 491.
  • 14. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature 2016; 533:420–24.
  • 15. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 2017; 551:464–71.
  • 16. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA–guided activation of endogenous human genes. Nat Methods 2013; 10(10): 977.
  • 17. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Lim WA. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
  • 18. McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R,Challen GA. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 2016; 5(6): 866-74.
  • 19. Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Sci 358(6366), 2017; 1019-27.
  • 20. Chen S, Lee B, Lee AYF, Modzelewski AJ, He L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 2016; 291(28): 14457-67.
  • 21. Fakhiri J, Nickl M,Grimm D. Rapid and Simple Screening of CRISPR Guide RNAs (gRNAs) in Cultured Cells Using Adeno-Associated Viral (AAV) Vectors. In CRISPR Gene Editing, 2019; (pp. 111-126). Humana Press, New York, NY.
  • 22. Malcolm T, Khalili K. U.S. Patent Application, 2018; No. 15/873,483.
  • 23. Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, DineshKumar S. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 2015; 8(8): 1288-91.
  • 24. Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171: 207-18.
  • 25. Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Mazier M. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mo. Sci 2019; 20(2): 402.
  • 26. Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 2017; 7(1): 482.
  • 27. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim JS. DNAfree genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 2015; 33(11): 1162.
  • 28. Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 2014; 41(2): 63-68.
  • 29. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, HidalgoReyes Y, Davidson AR, Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 2015; 526(7571): 136.
  • 30. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a Genetic Disease in Mouse via Use of CRISPRCas9. Cell Stem Cell 2013;13:659–62.
  • 31. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPRCas9–mediated editing of germline DNA. Sci 2014;345:1184–88. 
  • 32. Maji B, Gangopadhyay SA, Lee M, Shi M, Wu P, Heler R, Mok B, Lim D, Siriwardena SU, Paul B, Dančík V. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell 2019;177(4): 1067-79.
  • 33. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218.
  • 34. Technology Review, 2019,  http://www.technologyreview.com. Last accessed June 3, 2019.
  • 35. Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016; 13: 127–37.
  • 36. Klann TS. CRISPR-Cas9 epigenome editing enables highthroughput screening for functional regulatory elements in the human genome. Nat Biotechnol 2017; 35: 561–68.
  • 37. Simeonov DR. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 2017: 549:111-5.
  • 38. Liu SJ, CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Sci 2017; aah7111.
  • 39. Fujita T, Fujii H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun 2013; 439: 132–36.
  • 40. Fujita T, Fuji H. Identification of proteins associated with an IFNγresponsive promoter by a retroviral expression system for enChIP using CRISPR. PLOS ONE 9 2014; e103084.
  • 41. Sanjana NE. Genome-scale CRISPR pooled screens. Anal Biochem 2017; 532: 95-99.
  • 42. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015;16: 299–311.
  • 43. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotech 2015;33: 661–67.
  • 44. Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci 2018; 5:1700964.
  • 45. Parnas O, Jovanovic M, Eisenhaure Thomas M, Herbst Rebecca H, Dixit A, Ye Chun J, Przybylski D, Platt Randall J, Tirosh I, Sanjana Neville E, et al. A genome-wide crıspr screen in primary immune cells to dissect regulatory networks. Cell 2015;162:675–86.
  • 46. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W. High-throughput screening of a CRISPR-Cas9 library for functional genomics in human cells. Nature 2014;509:487–91.
  • 47. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 2015;12:1051–54.
  • 48. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Xia L. Generation of highamylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 2017; 8: 298.
  • 49. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell 2017; 171(2): 470-80.
  • 50. Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Lippman ZB. Variation in the flowering gene SELF PRUNING 5G promotes dayneutrality and early yield in tomato. Nat Genet 2017; 49(1): 162.
  • 51. Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, Yang L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 2017; 10(12): 1575-78.
  • 52. Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 2018; 131: 63-69.
  • 53. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2016; 2(10): 16139.
  • 54. Shimatani Z, Ariizumi T, Fujikura U, Kondo A, Ezura H, Nishida K. Targeted base editing with crispr-deaminase in tomato. ın plant genome editing with crispr systems. Humana Press, New York 2019; 297-307.
  • 55. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol J 2017; 15(12): 1509-19.
  • 56. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breeding 2019; 39(3): 47.
  • 57. Paixão JFR, Gillet FX, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Grossi-de-Sa MF. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep 2019; 9(1): 8080.
  • 58. McGill M. Plant Genome Editing Using CRISPR/Cas9: Investigating the role of ten1 in the maintenance and protection of telomeres in Arabidopsis thaliana 2019; Celebrating Scholarship and Creativity Day.
  • 59. Zhao P, You Q, Lei MA. CRISPR/Cas9 deletion into the phosphate transporter SlPHO1; 1 reveals its role in phosphate nutrition of tomato seedlings. Physiol Plant 2018.
  • 60. Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Mazier M. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 2019; 20(2): 402.
  • 61. Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Peres LEP. De novo domestication of wild tomato using genome editing. Nature Biotechnol 2018; 36: 1211–16. 62. Calyxt, First commercial sale of calyxt high oleic soybean oil on the U.S. market, Press Release, 2019.
  • 63. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 2015; 81(7): 2506-14.
  • 64. Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP. Gene transcription repression in Clostridium beijerinckii using CRISPRdCas9. Biotechnol Bioeng 2016 113(12): 2739-43.
  • 65. Zhu DK, Yang XQ, He Y, Zhou WS, Song XH, Wang JB, Zhang Y, Liu MF, Wang MS, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC. Comparative genomic analysis identifies structural features of CRISPR-Cas systems in Riemerella anatipestifer. BMC genomics 2016; 17(1): 689.
  • 66. Song X, Huang H, Xiong Z, Ai L, Yang S. CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei. Appl Environ Microbiol 2017 83(22): e01259-17. 67. Aparicio T, de Lorenzo V, Martínez‐García E. CRISPR/Cas9based counter selection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J 2018; 13(5): 1700161.
  • 68. Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, HernándezLucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathogens and disease 2018; 76(1): fty002.
  • 69. Li K, Cai D, Wang Z, He Z, Chen S. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol 2018; 84(6): e02608-17.
  • 70. Xiao Y, Wang S, Rommelfanger S, Balassy A, Barba‐Ostria C, Gu P, Galazka JM, Zhang F. Developing a Cas9‐based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 2018; 115(9): 2305-14.
  • 71. Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, Lu Y. CRISPR-Cpf1assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 2018 84(18): e00827-18.
  • 72. Wang Y, Liu Y, Liu J, Guo Y, Fan L, Ni X, Zhang X, Wang M, Zheng P, Sun J, Ma Y. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 2018; 47:200-10.
  • 73. Shariat N. The combination of CRISPR–MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol 2013; 34: 164–73.
  • 74. Barrangou R. Genomic impact of CRISPR immunization against bacteriophages. Biochem Soc Trans 2013; 41: 1383–91.
  • 75. Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 2013; 3: 143–62.
  • 76. Gomaa AA. Programmable removal of bacterial strains by use of genome-targeting CRISPR–Cas systems. MBio 2014; 5: e00928– e1013. 77. Bondy-Denomy J, and Davidson AR. To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends Microbiol 2014; 22: 218–25.
  • 78. Martin-Laffon J, Kuntz M, Ricroch AE, inventors. Worldwide CRISPR patent landscape shows strong geographical biases. Nat Biotechnol 2019; 37(6):613-20.
  • 79. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Sci 2012; 337(6096): 816-21.
  • 80. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Zhang, F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnol 2015; 33(1): 102.
  • 81. Jacobi AM, Rettig GR, Turk R, Collingwood MA, Zeiner SA, Quadros RM, Gurumurthy CB. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 2017; 121: 16-28.
  • 82. Amoasii L, Hildyard JC, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Bassel-Duby R. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Sci 2018; 362(6410): 86-91.
  • 83. Santiago-Fernández O, Osorio FG, Quesada V, Rodríguez F, Basso S, Maeso D, Freije JM. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nat Med 2019; 1.
  • 84. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Randhawa R. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939.
  • 85. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR–Cas9 editing in vivo. Nat Met 2017;14(6): 547.
  • 86. Beaumont KA, Shekar SN, Cook AL, Duffy DL, Sturm RA. Red hair is the null phenotype of MC1R. Hum Mutat 2008; 29(8): E88-E94.
  • 87. Deng S, Kongpan LI, Wang F, Ning LI, Liu G, Zhao Y, Lian Z. One-step generation of myostatin gene knockout sheep via the CRISPR/ Cas9 system 2014; 1: 2-5.
  • 88. Lu Y, Xue J, Deng T, Zhou X, Yu K, Huang M, Gong Y. A phase I trial of PD-1 deficient engineered T cells with CRISPR/Cas9 in patients with advanced non-small cell lung cancer. 2018.
  • 89. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Sci 2018; 359(6382): 1361-65.
  • 90. Normile D. Shock greets claim of CRISPR-edited babies 2018.
  • 91. Wei X, Nielsen R. CCR5-∆ 32 is deleterious in the homozygous state in humans. Nat Med 2019; 1.
  • 92. OGTR, Office of the Gene Technology Regulator, Questions & answers on the technical review of the gene technology regulations 2001 (10 April 2019).
  • 93. World Trade Organization (WTO) Committee on Sanitary and Phytosanitary Measures, International Statement on Agricultural Applications of Precision Biotechnology (Oct. 30, 2018).
  • 94. Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H, Purnhagen K, Whelan A. A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol 2019; 222(4): 1673-84.
  • 95. Dobrovidova O. Russia joins in global gene-editing bonanza. Nature 2018; 569(7756): 319.
  • 96. NHK World–Japan. 2018.Govt. Panel to not regulate some genome editing. [WWW document] URL https://www3.nhk.or.jp/nhkworld/ en/news/20180821_14/ [accessed 21 August 2018].
  • 97. Callaway E. CRISPR plants now subject to tough GM laws in European Union 2018; Nature 560(7716):16.
  • 98. Kupferschmidt K. EU verdict on CRISPR crops dismays scientists 2018.
  • 99. Euractive. The EU future of new plant breeding techniques, Special Report May 2019 http://eurac.tv/9qiu
  • 100. Jeggo PA. Identification of genes involved in repair of DNA doublestrand breaks in mammalian cells. Radiat Res 1998; 150(5s): S80-S91.
Year 2019, Volume: 78 Issue: 2, 157 - 164, 06.12.2019

Abstract

References

  • 1. Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun 2018; 9(1): 1911.
  • 2. Capecchi MR. Altering the genome by homologous recombination. Sci 1989; 244(4910): 1288-92. 3. Lin FL, Sperle K, Sternberg N. Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA 1985; 82: 1391–95.
  • 4. Klug A, Rhodes D. ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Sci 1987; 12: 464-69.
  • 5. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 1996; 93(3): 1156-60.
  • 6. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435(7042): 646.
  • 7. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186(2): 757-761.
  • 8. Doudna JA, Charpentier E, The new frontier of genome engineering with CRISPR-Cas9. Sci 2014; 346(6213): 1258096.
  • 9. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6), 1262-78.
  • 10. Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, Barrangou R, Beisel CL. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell 2016, 62(1): 137-47.
  • 11. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Al-Shayeb B. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218.
  • 12. Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Doudna JA. Programmed DNA destruction by miniature CRISPRCas14 enzymes. Sci 2018; 362(6416): 839-42.
  • 13. Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. CRISPR-Cas12a has both cis-and trans-cleavage activities on single-stranded DNA. Cell Res 2018; 28(4): 491.
  • 14. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage. Nature 2016; 533:420–24.
  • 15. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 2017; 551:464–71.
  • 16. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA–guided activation of endogenous human genes. Nat Methods 2013; 10(10): 977.
  • 17. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Lim WA. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
  • 18. McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R,Challen GA. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 2016; 5(6): 866-74.
  • 19. Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F. RNA editing with CRISPR-Cas13. Sci 358(6366), 2017; 1019-27.
  • 20. Chen S, Lee B, Lee AYF, Modzelewski AJ, He L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 2016; 291(28): 14457-67.
  • 21. Fakhiri J, Nickl M,Grimm D. Rapid and Simple Screening of CRISPR Guide RNAs (gRNAs) in Cultured Cells Using Adeno-Associated Viral (AAV) Vectors. In CRISPR Gene Editing, 2019; (pp. 111-126). Humana Press, New York, NY.
  • 22. Malcolm T, Khalili K. U.S. Patent Application, 2018; No. 15/873,483.
  • 23. Ali Z, Abul-Faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, DineshKumar S. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 2015; 8(8): 1288-91.
  • 24. Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171: 207-18.
  • 25. Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Mazier M. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mo. Sci 2019; 20(2): 402.
  • 26. Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 2017; 7(1): 482.
  • 27. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim JS. DNAfree genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 2015; 33(11): 1162.
  • 28. Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 2014; 41(2): 63-68.
  • 29. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, HidalgoReyes Y, Davidson AR, Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 2015; 526(7571): 136.
  • 30. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J. Correction of a Genetic Disease in Mouse via Use of CRISPRCas9. Cell Stem Cell 2013;13:659–62.
  • 31. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPRCas9–mediated editing of germline DNA. Sci 2014;345:1184–88. 
  • 32. Maji B, Gangopadhyay SA, Lee M, Shi M, Wu P, Heler R, Mok B, Lim D, Siriwardena SU, Paul B, Dančík V. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell 2019;177(4): 1067-79.
  • 33. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218.
  • 34. Technology Review, 2019,  http://www.technologyreview.com. Last accessed June 3, 2019.
  • 35. Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 2016; 13: 127–37.
  • 36. Klann TS. CRISPR-Cas9 epigenome editing enables highthroughput screening for functional regulatory elements in the human genome. Nat Biotechnol 2017; 35: 561–68.
  • 37. Simeonov DR. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 2017: 549:111-5.
  • 38. Liu SJ, CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Sci 2017; aah7111.
  • 39. Fujita T, Fujii H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun 2013; 439: 132–36.
  • 40. Fujita T, Fuji H. Identification of proteins associated with an IFNγresponsive promoter by a retroviral expression system for enChIP using CRISPR. PLOS ONE 9 2014; e103084.
  • 41. Sanjana NE. Genome-scale CRISPR pooled screens. Anal Biochem 2017; 532: 95-99.
  • 42. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015;16: 299–311.
  • 43. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotech 2015;33: 661–67.
  • 44. Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci 2018; 5:1700964.
  • 45. Parnas O, Jovanovic M, Eisenhaure Thomas M, Herbst Rebecca H, Dixit A, Ye Chun J, Przybylski D, Platt Randall J, Tirosh I, Sanjana Neville E, et al. A genome-wide crıspr screen in primary immune cells to dissect regulatory networks. Cell 2015;162:675–86.
  • 46. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W. High-throughput screening of a CRISPR-Cas9 library for functional genomics in human cells. Nature 2014;509:487–91.
  • 47. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 2015;12:1051–54.
  • 48. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Xia L. Generation of highamylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 2017; 8: 298.
  • 49. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell 2017; 171(2): 470-80.
  • 50. Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Lippman ZB. Variation in the flowering gene SELF PRUNING 5G promotes dayneutrality and early yield in tomato. Nat Genet 2017; 49(1): 162.
  • 51. Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, Yang L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 2017; 10(12): 1575-78.
  • 52. Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 2018; 131: 63-69.
  • 53. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2016; 2(10): 16139.
  • 54. Shimatani Z, Ariizumi T, Fujikura U, Kondo A, Ezura H, Nishida K. Targeted base editing with crispr-deaminase in tomato. ın plant genome editing with crispr systems. Humana Press, New York 2019; 297-307.
  • 55. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol J 2017; 15(12): 1509-19.
  • 56. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breeding 2019; 39(3): 47.
  • 57. Paixão JFR, Gillet FX, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Grossi-de-Sa MF. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep 2019; 9(1): 8080.
  • 58. McGill M. Plant Genome Editing Using CRISPR/Cas9: Investigating the role of ten1 in the maintenance and protection of telomeres in Arabidopsis thaliana 2019; Celebrating Scholarship and Creativity Day.
  • 59. Zhao P, You Q, Lei MA. CRISPR/Cas9 deletion into the phosphate transporter SlPHO1; 1 reveals its role in phosphate nutrition of tomato seedlings. Physiol Plant 2018.
  • 60. Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Mazier M. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 2019; 20(2): 402.
  • 61. Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Peres LEP. De novo domestication of wild tomato using genome editing. Nature Biotechnol 2018; 36: 1211–16. 62. Calyxt, First commercial sale of calyxt high oleic soybean oil on the U.S. market, Press Release, 2019.
  • 63. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 2015; 81(7): 2506-14.
  • 64. Wang Y, Zhang ZT, Seo SO, Lynn P, Lu T, Jin YS, Blaschek HP. Gene transcription repression in Clostridium beijerinckii using CRISPRdCas9. Biotechnol Bioeng 2016 113(12): 2739-43.
  • 65. Zhu DK, Yang XQ, He Y, Zhou WS, Song XH, Wang JB, Zhang Y, Liu MF, Wang MS, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC. Comparative genomic analysis identifies structural features of CRISPR-Cas systems in Riemerella anatipestifer. BMC genomics 2016; 17(1): 689.
  • 66. Song X, Huang H, Xiong Z, Ai L, Yang S. CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei. Appl Environ Microbiol 2017 83(22): e01259-17. 67. Aparicio T, de Lorenzo V, Martínez‐García E. CRISPR/Cas9based counter selection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J 2018; 13(5): 1700161.
  • 68. Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, HernándezLucas I. The CRISPR-Cas system in Enterobacteriaceae. Pathogens and disease 2018; 76(1): fty002.
  • 69. Li K, Cai D, Wang Z, He Z, Chen S. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol 2018; 84(6): e02608-17.
  • 70. Xiao Y, Wang S, Rommelfanger S, Balassy A, Barba‐Ostria C, Gu P, Galazka JM, Zhang F. Developing a Cas9‐based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng 2018; 115(9): 2305-14.
  • 71. Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, Lu Y. CRISPR-Cpf1assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol 2018 84(18): e00827-18.
  • 72. Wang Y, Liu Y, Liu J, Guo Y, Fan L, Ni X, Zhang X, Wang M, Zheng P, Sun J, Ma Y. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 2018; 47:200-10.
  • 73. Shariat N. The combination of CRISPR–MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol 2013; 34: 164–73.
  • 74. Barrangou R. Genomic impact of CRISPR immunization against bacteriophages. Biochem Soc Trans 2013; 41: 1383–91.
  • 75. Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 2013; 3: 143–62.
  • 76. Gomaa AA. Programmable removal of bacterial strains by use of genome-targeting CRISPR–Cas systems. MBio 2014; 5: e00928– e1013. 77. Bondy-Denomy J, and Davidson AR. To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends Microbiol 2014; 22: 218–25.
  • 78. Martin-Laffon J, Kuntz M, Ricroch AE, inventors. Worldwide CRISPR patent landscape shows strong geographical biases. Nat Biotechnol 2019; 37(6):613-20.
  • 79. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Sci 2012; 337(6096): 816-21.
  • 80. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Zhang, F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnol 2015; 33(1): 102.
  • 81. Jacobi AM, Rettig GR, Turk R, Collingwood MA, Zeiner SA, Quadros RM, Gurumurthy CB. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 2017; 121: 16-28.
  • 82. Amoasii L, Hildyard JC, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Bassel-Duby R. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Sci 2018; 362(6410): 86-91.
  • 83. Santiago-Fernández O, Osorio FG, Quesada V, Rodríguez F, Basso S, Maeso D, Freije JM. Development of a CRISPR/Cas9-based therapy for Hutchinson–Gilford progeria syndrome. Nat Med 2019; 1.
  • 84. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Randhawa R. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939.
  • 85. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR–Cas9 editing in vivo. Nat Met 2017;14(6): 547.
  • 86. Beaumont KA, Shekar SN, Cook AL, Duffy DL, Sturm RA. Red hair is the null phenotype of MC1R. Hum Mutat 2008; 29(8): E88-E94.
  • 87. Deng S, Kongpan LI, Wang F, Ning LI, Liu G, Zhao Y, Lian Z. One-step generation of myostatin gene knockout sheep via the CRISPR/ Cas9 system 2014; 1: 2-5.
  • 88. Lu Y, Xue J, Deng T, Zhou X, Yu K, Huang M, Gong Y. A phase I trial of PD-1 deficient engineered T cells with CRISPR/Cas9 in patients with advanced non-small cell lung cancer. 2018.
  • 89. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Sci 2018; 359(6382): 1361-65.
  • 90. Normile D. Shock greets claim of CRISPR-edited babies 2018.
  • 91. Wei X, Nielsen R. CCR5-∆ 32 is deleterious in the homozygous state in humans. Nat Med 2019; 1.
  • 92. OGTR, Office of the Gene Technology Regulator, Questions & answers on the technical review of the gene technology regulations 2001 (10 April 2019).
  • 93. World Trade Organization (WTO) Committee on Sanitary and Phytosanitary Measures, International Statement on Agricultural Applications of Precision Biotechnology (Oct. 30, 2018).
  • 94. Eriksson D, Kershen D, Nepomuceno A, Pogson BJ, Prieto H, Purnhagen K, Whelan A. A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol 2019; 222(4): 1673-84.
  • 95. Dobrovidova O. Russia joins in global gene-editing bonanza. Nature 2018; 569(7756): 319.
  • 96. NHK World–Japan. 2018.Govt. Panel to not regulate some genome editing. [WWW document] URL https://www3.nhk.or.jp/nhkworld/ en/news/20180821_14/ [accessed 21 August 2018].
  • 97. Callaway E. CRISPR plants now subject to tough GM laws in European Union 2018; Nature 560(7716):16.
  • 98. Kupferschmidt K. EU verdict on CRISPR crops dismays scientists 2018.
  • 99. Euractive. The EU future of new plant breeding techniques, Special Report May 2019 http://eurac.tv/9qiu
  • 100. Jeggo PA. Identification of genes involved in repair of DNA doublestrand breaks in mammalian cells. Radiat Res 1998; 150(5s): S80-S91.
There are 96 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Nicat Cebrailoglu This is me 0000-0002-2770-5049

Ali Burak Yildiz This is me 0000-0002-9982-7109

Ozlem Akkaya This is me

Yelda Ozden Ciftci 0000-0002-9799-3648

Publication Date December 6, 2019
Submission Date June 20, 2019
Published in Issue Year 2019 Volume: 78 Issue: 2

Cite

AMA Cebrailoglu N, Yildiz AB, Akkaya O, Ozden Ciftci Y. CRISPR-Cas: Removing Boundaries of the Nature. Eur J Biol. December 2019;78(2):157-164.