Research Article
BibTex RIS Cite
Year 2021, Volume: 80 Issue: 1, 35 - 41, 15.06.2021

Abstract

References

  • 1. Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH. Arsenic in soil and groundwater: an overview. Trace Metals and other Contaminants in the Environment. 2007; 9: 3-60.
  • 2. Goutam J, Sharma J, Singh R, Sharma D. Fungal-mediated bioremediation of heavy metal-polluted environment. In microbial rejuvenation of polluted environment 2021; 51-76. Springer, Singapore.
  • 3. Xu Y, Shi H, Fei Y, Wang C, Mo L, Shu M. Identification of soil heavy metal sources in a large-scale area affected by industry. Sustainability 2021; 13(2): 511.
  • 4. Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 2016;174: 14-25.
  • 5. Pečiulytė D, Repečkienė J, Levinskaitė L, Lugauskas A, Motuzas A, Prosyčevas I. Growth and metal accumulation ability of plants in soil polluted with Cu, Zn and Pb. Ekologija 2006; 1: 48-52.
  • 6. Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z. Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant and soil 2013; 366(1): 647-58.
  • 7. Yan A, Wang Y, Tan SN, Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 2020; 11: 359, 1-15.
  • 8. Huihui, Zhang, Li Xin, Xu Zisong, Wang Yue, Teng Zhiyuan, An Meijun, Zhang Yuehui, Zhu Wenxu, Xu Nan, and Sun Guangyu. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety 2020; 195: 110469.
  • 9. Redha A, Al-Hasan R, Afzal M. Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius. Environ Sci Pollut Res 2021; 14: 1-5.
  • 10. Skowrońska M, Bielińska EJ, Szymański K, Futa B, Antonkiewicz J, Kołodziej B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020; 189: 104484.
  • 11. Druzhinina IS, Kopchinskiy AG, Kubicek CP. The first 100 Trichoderma species characterized by molecular data. Mycoscience, 2006; 47: 55-64.
  • 12. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants 2020; 9(6): 762.
  • 13. Harman GE, Kubicek PK. Trichoderma and Gliocladium. Enzymes, biological control and commercial applications (Vol 2) London: Taylor and Francis 1998.
  • 14. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2004; 2(1): 43-56.
  • 15. Garbeva PV, Van Veen JA, Van Elsas JD. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 2004; 8(42): 243-70.
  • 16. Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Int 2014; 27: 503-514.
  • 17. Samolski I, Rincon AM, Pinzón LM, Viterbo A, Monte E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology. 2012;158(1): 129-38.
  • 18. Kottb M, Gigolashvili T, Großkinsky DK, Piechulla B. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol 2015; 29(6): 995.
  • 19. Babu AG, Shim J, Bang KS, Shea PJ, Oh BT. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage 2014; 132: 129-134.
  • 20. Pehlivan N, Gedik K, Eltem R, Terzi E. Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal (oid)s phytoextraction and bioenergy crop farming. J Hazard Mater 2021; 403: 123609.
  • 21. US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) - Interim Guidance. 2001.
  • 22. Zhao L, Hu Q, Huang Y, Keller AA. Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu (OH)2 nanopesticide. ACS Sustain Chem Eng 2017; 5(9): 8294-301.
  • 23. Qiao Y, Ren J, Yin L, Liu Y, Deng X, Liu P, Wang S. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance. BMC Plant Biol 2020; 20: 1-4.
  • 24. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993; 15(3): 532-4.
  • 25. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature protocols 2008; 3(6): 1101.
  • 26. Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJ, Tang YT, Yang XE, Shu WS. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol 2018; 52(21): 11980-94.
  • 27. Gorai PS, Barman S, Gond SK, Mandal NC. Chapter 28 – Trichoderma. Editor(s): Amaresan N, Senthil M, Kumar KA, Krishna K, Sankaranarayanan A. Beneficial microbes in agro-ecology, Academic Press 2020; 571-591.
  • 28. Adams P, De-Leij FAAM, Lynch JM. Trichoderma harzianum Rifai mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 2007; 54(2): 306-13.
  • 29. Sun X, Sun M, Chao Y, Wang H, Pan H, Yang Q, Cui X, Lou Y, Zhuge Y. Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5. Funct Plant Biol 2020; FP20237.
  • 30. Vargas JT, Rodríguez-Monroy M, Meyer ML, Montes-Belmont R, Sepúlveda-Jiménez G. Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 2017; 136: 85-93.
  • 31. Schmidt J, Dotson BR, Schmiderer L, van Tour A, Kumar B, Marttila S, Fredlund KM, Widell S, Rasmusson AG. Substrate and plant genotype strongly influence the growth and gene expression response to Trichoderma afroharzianum T22 in Sugar Beet. Plants 2020; 9(8): 1005.
  • 32. Altomare C, Norvell WA, Björkman T, Harman GE. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. App Env Microb 1999; 65(7): 2926-2933.
  • 33. Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 2008; 71(9): 1769-1773.
  • 34. Chen S, Yu M, Li H, Wang Y, Lu Z, Zhang Y, Liu M, Qiao G, Wu L, Han X, Zhuo, R. SaHsfA4c from Sedum alfredii hance enhances cadmium tolerance by regulating ROS-scavenger activities and heat shock proteins expression. Front Plant Sci 2020; 11: 142.
  • 35. Zhang K, Ezemaduka AN, Wang Z, Hu H, Shi X, Liu C, Lu X, Fu X, Chang Z, Yin CC. A novel mechanism for small heat shock proteins to function as molecular chaperones. Sci Rep 2015; 5(1): 1-8.
  • 36. Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol 1991; 42(1): 579-620.
  • 37. Mastouri F, Björkman T, Harman GE. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant Microbe Interact 2012; 25(9): 1264-71.
  • 38. Zhang S, Gan Y, Xu B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 2016; 7: 1405.
  • 39. Rucińska-Sobkowiak R. Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 2016; 38(11): 1-13. 40. He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M. An aquaporin Pv TIP 4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 2016; 209(2): 746-61.
  • 41. Abbott SP. Mycotoxins and indoor molds. Indoor Env Con 2002; 3: 4.

Variation of Response Patterns Associated with an Avirulent Plant Symbiont Directed Defense Gene Expressions in Maize Exposed to Toxic Elements

Year 2021, Volume: 80 Issue: 1, 35 - 41, 15.06.2021

Abstract

Objective: Microbe-assisted plant heavy metal (HM) tolerance is gaining momentum over a conventional breeding or transgenic approach being used to generate tolerant varieties capable of completing their life cycle in the metalliferous environments. To withstand toxicity, along with the current anthropogenic pressure, applications of fungi representing the largest group of eukaryotic organisms is considerably rising.

Materials and Methods: The hypothesis that a novel strain, which belongs to the Trichoderma genus (TS143), was previously identified as being multi HM-resistant, improves plant HM-tolerance by regulating hydraulic conductance and defense system was tested at a molecular level.

Results: While only a marginal increase in the expression level of 70 kDa chaperon protein (HSP1) gene was obtained, peroxidase (POD1) and plasma membrane intrinsic aquaporin (PIP1-5) genes were found to be upregulated (<2 fold) in the presence of chronic exposure to the HM-mix, (500 mg L-1 As, Cd, Cu, Pb, Zn) explaining the vivid metabolic modification underlying the metal stress response by target fungus. Up-regulation of the ROS-scavenging peroxidase and aquaporin genes affirming that the responses of POD1 (9.44 fold) and PIP1-5 (3.55 fold) expression may serve as potential sensitive biomarkers for HM-induced cellular toxicity monitoring with TS143 biostimulation.

Conclusion: Determining transcriptional level changes might pave the way for further applied research which would analyze gene level interactions of Trichoderma-HMs-plants.

References

  • 1. Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH. Arsenic in soil and groundwater: an overview. Trace Metals and other Contaminants in the Environment. 2007; 9: 3-60.
  • 2. Goutam J, Sharma J, Singh R, Sharma D. Fungal-mediated bioremediation of heavy metal-polluted environment. In microbial rejuvenation of polluted environment 2021; 51-76. Springer, Singapore.
  • 3. Xu Y, Shi H, Fei Y, Wang C, Mo L, Shu M. Identification of soil heavy metal sources in a large-scale area affected by industry. Sustainability 2021; 13(2): 511.
  • 4. Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage 2016;174: 14-25.
  • 5. Pečiulytė D, Repečkienė J, Levinskaitė L, Lugauskas A, Motuzas A, Prosyčevas I. Growth and metal accumulation ability of plants in soil polluted with Cu, Zn and Pb. Ekologija 2006; 1: 48-52.
  • 6. Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z. Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant and soil 2013; 366(1): 647-58.
  • 7. Yan A, Wang Y, Tan SN, Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 2020; 11: 359, 1-15.
  • 8. Huihui, Zhang, Li Xin, Xu Zisong, Wang Yue, Teng Zhiyuan, An Meijun, Zhang Yuehui, Zhu Wenxu, Xu Nan, and Sun Guangyu. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety 2020; 195: 110469.
  • 9. Redha A, Al-Hasan R, Afzal M. Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius. Environ Sci Pollut Res 2021; 14: 1-5.
  • 10. Skowrońska M, Bielińska EJ, Szymański K, Futa B, Antonkiewicz J, Kołodziej B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020; 189: 104484.
  • 11. Druzhinina IS, Kopchinskiy AG, Kubicek CP. The first 100 Trichoderma species characterized by molecular data. Mycoscience, 2006; 47: 55-64.
  • 12. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants 2020; 9(6): 762.
  • 13. Harman GE, Kubicek PK. Trichoderma and Gliocladium. Enzymes, biological control and commercial applications (Vol 2) London: Taylor and Francis 1998.
  • 14. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2004; 2(1): 43-56.
  • 15. Garbeva PV, Van Veen JA, Van Elsas JD. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 2004; 8(42): 243-70.
  • 16. Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Int 2014; 27: 503-514.
  • 17. Samolski I, Rincon AM, Pinzón LM, Viterbo A, Monte E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology. 2012;158(1): 129-38.
  • 18. Kottb M, Gigolashvili T, Großkinsky DK, Piechulla B. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol 2015; 29(6): 995.
  • 19. Babu AG, Shim J, Bang KS, Shea PJ, Oh BT. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage 2014; 132: 129-134.
  • 20. Pehlivan N, Gedik K, Eltem R, Terzi E. Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal (oid)s phytoextraction and bioenergy crop farming. J Hazard Mater 2021; 403: 123609.
  • 21. US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) - Interim Guidance. 2001.
  • 22. Zhao L, Hu Q, Huang Y, Keller AA. Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu (OH)2 nanopesticide. ACS Sustain Chem Eng 2017; 5(9): 8294-301.
  • 23. Qiao Y, Ren J, Yin L, Liu Y, Deng X, Liu P, Wang S. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance. BMC Plant Biol 2020; 20: 1-4.
  • 24. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993; 15(3): 532-4.
  • 25. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature protocols 2008; 3(6): 1101.
  • 26. Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJ, Tang YT, Yang XE, Shu WS. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol 2018; 52(21): 11980-94.
  • 27. Gorai PS, Barman S, Gond SK, Mandal NC. Chapter 28 – Trichoderma. Editor(s): Amaresan N, Senthil M, Kumar KA, Krishna K, Sankaranarayanan A. Beneficial microbes in agro-ecology, Academic Press 2020; 571-591.
  • 28. Adams P, De-Leij FAAM, Lynch JM. Trichoderma harzianum Rifai mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 2007; 54(2): 306-13.
  • 29. Sun X, Sun M, Chao Y, Wang H, Pan H, Yang Q, Cui X, Lou Y, Zhuge Y. Alleviation of lead toxicity and phytostimulation in perennial ryegrass by the Pb-resistant fungus Trichoderma asperellum SD-5. Funct Plant Biol 2020; FP20237.
  • 30. Vargas JT, Rodríguez-Monroy M, Meyer ML, Montes-Belmont R, Sepúlveda-Jiménez G. Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 2017; 136: 85-93.
  • 31. Schmidt J, Dotson BR, Schmiderer L, van Tour A, Kumar B, Marttila S, Fredlund KM, Widell S, Rasmusson AG. Substrate and plant genotype strongly influence the growth and gene expression response to Trichoderma afroharzianum T22 in Sugar Beet. Plants 2020; 9(8): 1005.
  • 32. Altomare C, Norvell WA, Björkman T, Harman GE. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. App Env Microb 1999; 65(7): 2926-2933.
  • 33. Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y. Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 2008; 71(9): 1769-1773.
  • 34. Chen S, Yu M, Li H, Wang Y, Lu Z, Zhang Y, Liu M, Qiao G, Wu L, Han X, Zhuo, R. SaHsfA4c from Sedum alfredii hance enhances cadmium tolerance by regulating ROS-scavenger activities and heat shock proteins expression. Front Plant Sci 2020; 11: 142.
  • 35. Zhang K, Ezemaduka AN, Wang Z, Hu H, Shi X, Liu C, Lu X, Fu X, Chang Z, Yin CC. A novel mechanism for small heat shock proteins to function as molecular chaperones. Sci Rep 2015; 5(1): 1-8.
  • 36. Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol 1991; 42(1): 579-620.
  • 37. Mastouri F, Björkman T, Harman GE. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Mol Plant Microbe Interact 2012; 25(9): 1264-71.
  • 38. Zhang S, Gan Y, Xu B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 2016; 7: 1405.
  • 39. Rucińska-Sobkowiak R. Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 2016; 38(11): 1-13. 40. He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M. An aquaporin Pv TIP 4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 2016; 209(2): 746-61.
  • 41. Abbott SP. Mycotoxins and indoor molds. Indoor Env Con 2002; 3: 4.
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Necla Pehlivan 0000-0002-2045-8380

Publication Date June 15, 2021
Submission Date January 31, 2021
Published in Issue Year 2021 Volume: 80 Issue: 1

Cite

AMA Pehlivan N. Variation of Response Patterns Associated with an Avirulent Plant Symbiont Directed Defense Gene Expressions in Maize Exposed to Toxic Elements. Eur J Biol. June 2021;80(1):35-41.