Research Article
BibTex RIS Cite

Crude Extracts of Three Iris Species as Sources of MRSA Antimicrobial Compounds

Year 2024, Volume: 83 Issue: 2, 182 - 188, 19.12.2024
https://doi.org/10.26650/EurJBiol.2024.1480514

Abstract

Objective: Iris species are widely used in pharmaceutical and cosmetic applications owing to their high content of bioactive compounds with anti-inflammatory and antimicrobial properties. This study aimed to investigate the potential antibacterial effect of crude extracts (aqueous, 50% and 80% ethanol) of three Iris species (I. pumila, while I. reichenbachii and I. illyrica are endemic) from Bosnia and Herzegovina against the multiresistant bacterial strain methicillin-resistant Staphylococcus aureus subsp. aureus ATCC 33591 (MRSA strain).

Materials and Methods: The antimicrobial compounds in the crude extracts were identified using High-performance liquid chromatography (HPLC), and their effects on the MRSA strain were tested using agar well diffusion and broth microdilution method. The binding affinities were analysed using molecular docking simulations.

Results: We identified bioactive targeted compounds in these extracts, mainly flavonoids named isorhamnetin, hesperidin, quercetin, fisetin, genistein, and kaempferol. Antibacterial assays showed that extracts of all three Iris species inhibited MRSA. The binding affinity analysis showed that isorhamnetin and hesperidin had the highest affinity scores, stronger (isorhamnetin) or the same (hesperidin) as the positive control ceftobiprole.

Conclusion: Thisin vitro and in silico study showed that Iris species represent a valuable source of bioactive compounds that can be used against multidrug-resistant strains such as MRSA. The potential use of these agents in multiple drugs is warranted, and further evaluation for human application is needed.

References

  • Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Over-coming methicillin-resistant Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics (Basel). 2022;11(7):951. doi: 10.3390/antibiotics11070951 google scholar
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520-532. google scholar
  • Ahmad-Mansour N, Loubet P, Pouget C, et al. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins (Basel). 2021;13(10):677. doi: 10.3390/toxins13100677 google scholar
  • Baek KT, Gründling A, Mogensen RG, et al. p—Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is in-creased by inactivation of the ClpXP protease. Antimicrob Agents Chemother. 2014;58(8):4593-4603. google scholar
  • Brown NM, Goodman AL, Horner C, Jenkins A, Brown EM. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC-Antimicrob Resist. 2021;3(1):dlaa114. doi: 10.1093/jacamr/dlaa114 google scholar
  • CDC. Special report: COVID-19 U.S. Impact on antimicrobial resistance. 2022; Available: https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf google scholar
  • Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol. 2022;69:102160. doi: 10.1016/j.cbpa.2022.102160 google scholar
  • Rakotofina HME, Donno D, Tombozara N, et al. Chemical composition, antimicrobial activity, and antioxidant capacity of Micromeria flagellaris Baker and M. madagascariensis Baker: Two endemic species from Madagascar as sources of essential oils. Heliyon. 2024;10(5):e26865. doi: 10.1016/j.heliyon.2024.e26865 google scholar
  • Dini S, Chen Q, Fatemi F, Asri Y. Phytochemical and biolog-ical activities of some Iranian medicinal plants. Pharm Biol. 2022;60(1):664-689. google scholar
  • İnanir M, Uçar E, Tüzün B, Eruygur N, Ataş M, Akpu-lat HA. The pharmacological properties of Gypsophila eriocalyx: The endemic medicinal plant of northern cen-tral Turkey. Int J Biol Macromol. 2024;266(Pt2):130943. doi: 10.1016/j.ijbiomac.2024.130943 google scholar
  • Alam K, Ahmad N, Ahmad I, Nafees M. Pharmacolog-ical activities of Rhododendron afghanicum; An endemic species of Khyber Pakhtunkhwa, Pakistan. Chem Biodivers. 2023;20(12):e202301273. doi: 10.1002/cbdv.202301273 google scholar
  • Fan L, Gao Y, Hasenstein KH, Wang L. ‘Flower Angel’: A new Iris sanguinea cultivar. HortSci. 2021;56:617-618. google scholar
  • Khatib S, Faraloni C, Bouissane L. Exploring the use of Iris species: Antioxidant properties, phytochemistry, medicinal and industrial applications. Antioxidants (Basel). 2022;11(3):526. doi: 10.3390/antiox11030526 google scholar
  • Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. Back to nature: Medicinal plants as promising sources for antibac-terial drugs in the post-antibiotic era. Plants. 2023;12(17):3077. doi: 10.3390/plants12173077 google scholar
  • Volenzo T, Odiyo J. Integrating endemic medicinal plants into the global value chains: The ecological degradation challenges and opportunities. Heliyon. 2020;6(9):e04970. doi: 10.1016/j.heliyon.2020.e04970 google scholar
  • Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Med Ther. 2021;21(1):2. doi: 10.1186/s12906-020-03183-0 google scholar
  • European Committee on Antimicrobial Susceptibility Testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST, Basel, Switzerland (2017). google scholar
  • CLSI, Clinical and Laboratory Standards Institute. MO7: Meth-ods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, 11th ed. Wayne, PA: USA (2018). google scholar
  • Elshikh M, Ahmed S, Funston S, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016;38(6):1015-1019. google scholar
  • Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A. Methicillin-Resistant Staphylococcus aureus: Docking-based virtual screening and molecular dynamics simu-lations to identify potential inhibitors of penicillin-binding protein 2a in natural flavonoids. Int J Microbiol. 2022;9130700. doi: 10.1155/2022/9130700 google scholar
  • Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acid Res. 2019;47(1):W345-W349. google scholar
  • Trott O, Olson A. AutoDock Vina: Improving the speed and accu-racy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455-461. google scholar
  • Kassak P. Secondary metabolites of the choosen genus Iris species. Acta Univ Agric et Silvic Mendel Brun. 2012;60(8):269-280. google scholar
  • Amin HIM, Hussain FHS, Najmaldin SK, et al. Phytochemistry and biological activities of Iris species growing in Iraqi Kurdis-tan and phenolic constituents of the traditional plant Iris postii. Molecules. 2021;26(2):264. doi: 10.3390/molecules26020264 google scholar
  • Periferakis A, Periferakis K, Badarau IA, et al. Kaempferol: Antimicrobial properties, sources, clinical and traditional applications. Int J Mol Sci. 2022;23(23):15054. doi: 10.3390/ijms232315054 google scholar
  • Unver T, Uslu H, Gurhan I, Goktas B. Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods. Food Sci Nutr. 2024; 00:1-17. doi:10.1002/fsn3.4251 google scholar
  • Alhadrami HA, Hamed AA, Hassan HM, Belbahri L, Rateb ME, Sayed AM. Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimen-tal study. Antibiotics (Basel). 2020;9(9):562. doi: 10.3390/antibi-otics9090562 google scholar
  • Pyrzynska K. Hesperidin: A Review on extraction methods, sta-bility and biological activities. Nutrients. 2022;14(12):2387. doi: 10.3390/nu14122387 google scholar
  • Xu HX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res. 2001;15(1):39-43. google scholar
  • Yin N, Yang X, Wang L, et al. Kaempferol inhibits the expres-sion of a-hemolysin and protects mice from methicillin-resistant Staphylococcus aureus-induced lethal pneumonia. Microb Pathog. 2022;162:105336. doi: 10.1016/j.micpath.2021.105336 google scholar
  • Vijayakumar K, Muhilvannan S, Vignesh MA. Hesperidin in-hibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: an in vitro and in silico approach. World J Microbiol Biotechnol. 2022;38(3):44. doi: 10.1007/s11274-022-03232-5 google scholar
  • Guo X. Antibacterial and anti-inflammatory effects of genistein in Staphylococcus aureus induced osteomyelitis in rats. J Biochem Mol Toxicol. 2023;37(4):e23298. doi: 10.1002/jbt.23298 google scholar
  • Kalalo MJ, Fatimawali, F, Kalalo, T, Rambi CIJ. Tea bioactive compounds as inhibitor of MRSA penicillin binding protein 2a (PBP2a): A molecular docking study. J Farm Medica. 2020; 3(2):70-75. Doi: 10.35799/pmj.3.2.2020.32878 google scholar
  • Fishovitz, J, Hermoso, JA, Chang, M, Mobashery, S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014; 66(8):572-7. doi: 10.1002/iub.1289 google scholar
  • Iwashina T, Mizuno T. Flavonoids and Xanthones from the genus Iris: Phytochemistry, relationships with flower colors and taxon-omy, and activities and function. Nat Prod Commun. 2020;15(10). doi:10.1177/1934578X20937 google scholar
  • Gold, NA, Mirza TM, Avva U. Alcohol sanitizers. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 30020626 google scholar
  • Hoang L, Benes F, Fenclova M, et al. Phytochemical composition and in vitro biological activity of Iris spp. (Iridaceae): A new source of bioactive constituents for the inhibition of oral bacterial biofilms. Antibiotics (Basel). 2020;9(7):403. doi: 10.3390/antibi-otics9070403 google scholar
Year 2024, Volume: 83 Issue: 2, 182 - 188, 19.12.2024
https://doi.org/10.26650/EurJBiol.2024.1480514

Abstract

References

  • Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Over-coming methicillin-resistant Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics (Basel). 2022;11(7):951. doi: 10.3390/antibiotics11070951 google scholar
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520-532. google scholar
  • Ahmad-Mansour N, Loubet P, Pouget C, et al. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins (Basel). 2021;13(10):677. doi: 10.3390/toxins13100677 google scholar
  • Baek KT, Gründling A, Mogensen RG, et al. p—Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is in-creased by inactivation of the ClpXP protease. Antimicrob Agents Chemother. 2014;58(8):4593-4603. google scholar
  • Brown NM, Goodman AL, Horner C, Jenkins A, Brown EM. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC-Antimicrob Resist. 2021;3(1):dlaa114. doi: 10.1093/jacamr/dlaa114 google scholar
  • CDC. Special report: COVID-19 U.S. Impact on antimicrobial resistance. 2022; Available: https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf google scholar
  • Johnston CW, Badran AH. Natural and engineered precision antibiotics in the context of resistance. Curr Opin Chem Biol. 2022;69:102160. doi: 10.1016/j.cbpa.2022.102160 google scholar
  • Rakotofina HME, Donno D, Tombozara N, et al. Chemical composition, antimicrobial activity, and antioxidant capacity of Micromeria flagellaris Baker and M. madagascariensis Baker: Two endemic species from Madagascar as sources of essential oils. Heliyon. 2024;10(5):e26865. doi: 10.1016/j.heliyon.2024.e26865 google scholar
  • Dini S, Chen Q, Fatemi F, Asri Y. Phytochemical and biolog-ical activities of some Iranian medicinal plants. Pharm Biol. 2022;60(1):664-689. google scholar
  • İnanir M, Uçar E, Tüzün B, Eruygur N, Ataş M, Akpu-lat HA. The pharmacological properties of Gypsophila eriocalyx: The endemic medicinal plant of northern cen-tral Turkey. Int J Biol Macromol. 2024;266(Pt2):130943. doi: 10.1016/j.ijbiomac.2024.130943 google scholar
  • Alam K, Ahmad N, Ahmad I, Nafees M. Pharmacolog-ical activities of Rhododendron afghanicum; An endemic species of Khyber Pakhtunkhwa, Pakistan. Chem Biodivers. 2023;20(12):e202301273. doi: 10.1002/cbdv.202301273 google scholar
  • Fan L, Gao Y, Hasenstein KH, Wang L. ‘Flower Angel’: A new Iris sanguinea cultivar. HortSci. 2021;56:617-618. google scholar
  • Khatib S, Faraloni C, Bouissane L. Exploring the use of Iris species: Antioxidant properties, phytochemistry, medicinal and industrial applications. Antioxidants (Basel). 2022;11(3):526. doi: 10.3390/antiox11030526 google scholar
  • Abdallah EM, Alhatlani BY, de Paula Menezes R, Martins CHG. Back to nature: Medicinal plants as promising sources for antibac-terial drugs in the post-antibiotic era. Plants. 2023;12(17):3077. doi: 10.3390/plants12173077 google scholar
  • Volenzo T, Odiyo J. Integrating endemic medicinal plants into the global value chains: The ecological degradation challenges and opportunities. Heliyon. 2020;6(9):e04970. doi: 10.1016/j.heliyon.2020.e04970 google scholar
  • Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Med Ther. 2021;21(1):2. doi: 10.1186/s12906-020-03183-0 google scholar
  • European Committee on Antimicrobial Susceptibility Testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. EUCAST, Basel, Switzerland (2017). google scholar
  • CLSI, Clinical and Laboratory Standards Institute. MO7: Meth-ods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, 11th ed. Wayne, PA: USA (2018). google scholar
  • Elshikh M, Ahmed S, Funston S, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016;38(6):1015-1019. google scholar
  • Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A. Methicillin-Resistant Staphylococcus aureus: Docking-based virtual screening and molecular dynamics simu-lations to identify potential inhibitors of penicillin-binding protein 2a in natural flavonoids. Int J Microbiol. 2022;9130700. doi: 10.1155/2022/9130700 google scholar
  • Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acid Res. 2019;47(1):W345-W349. google scholar
  • Trott O, Olson A. AutoDock Vina: Improving the speed and accu-racy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455-461. google scholar
  • Kassak P. Secondary metabolites of the choosen genus Iris species. Acta Univ Agric et Silvic Mendel Brun. 2012;60(8):269-280. google scholar
  • Amin HIM, Hussain FHS, Najmaldin SK, et al. Phytochemistry and biological activities of Iris species growing in Iraqi Kurdis-tan and phenolic constituents of the traditional plant Iris postii. Molecules. 2021;26(2):264. doi: 10.3390/molecules26020264 google scholar
  • Periferakis A, Periferakis K, Badarau IA, et al. Kaempferol: Antimicrobial properties, sources, clinical and traditional applications. Int J Mol Sci. 2022;23(23):15054. doi: 10.3390/ijms232315054 google scholar
  • Unver T, Uslu H, Gurhan I, Goktas B. Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods. Food Sci Nutr. 2024; 00:1-17. doi:10.1002/fsn3.4251 google scholar
  • Alhadrami HA, Hamed AA, Hassan HM, Belbahri L, Rateb ME, Sayed AM. Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimen-tal study. Antibiotics (Basel). 2020;9(9):562. doi: 10.3390/antibi-otics9090562 google scholar
  • Pyrzynska K. Hesperidin: A Review on extraction methods, sta-bility and biological activities. Nutrients. 2022;14(12):2387. doi: 10.3390/nu14122387 google scholar
  • Xu HX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res. 2001;15(1):39-43. google scholar
  • Yin N, Yang X, Wang L, et al. Kaempferol inhibits the expres-sion of a-hemolysin and protects mice from methicillin-resistant Staphylococcus aureus-induced lethal pneumonia. Microb Pathog. 2022;162:105336. doi: 10.1016/j.micpath.2021.105336 google scholar
  • Vijayakumar K, Muhilvannan S, Vignesh MA. Hesperidin in-hibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: an in vitro and in silico approach. World J Microbiol Biotechnol. 2022;38(3):44. doi: 10.1007/s11274-022-03232-5 google scholar
  • Guo X. Antibacterial and anti-inflammatory effects of genistein in Staphylococcus aureus induced osteomyelitis in rats. J Biochem Mol Toxicol. 2023;37(4):e23298. doi: 10.1002/jbt.23298 google scholar
  • Kalalo MJ, Fatimawali, F, Kalalo, T, Rambi CIJ. Tea bioactive compounds as inhibitor of MRSA penicillin binding protein 2a (PBP2a): A molecular docking study. J Farm Medica. 2020; 3(2):70-75. Doi: 10.35799/pmj.3.2.2020.32878 google scholar
  • Fishovitz, J, Hermoso, JA, Chang, M, Mobashery, S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014; 66(8):572-7. doi: 10.1002/iub.1289 google scholar
  • Iwashina T, Mizuno T. Flavonoids and Xanthones from the genus Iris: Phytochemistry, relationships with flower colors and taxon-omy, and activities and function. Nat Prod Commun. 2020;15(10). doi:10.1177/1934578X20937 google scholar
  • Gold, NA, Mirza TM, Avva U. Alcohol sanitizers. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 30020626 google scholar
  • Hoang L, Benes F, Fenclova M, et al. Phytochemical composition and in vitro biological activity of Iris spp. (Iridaceae): A new source of bioactive constituents for the inhibition of oral bacterial biofilms. Antibiotics (Basel). 2020;9(7):403. doi: 10.3390/antibi-otics9070403 google scholar
There are 37 citations in total.

Details

Primary Language English
Subjects Genomics and Transcriptomics, Bacteriology
Journal Section Research Articles
Authors

Belmina Saric Medic 0000-0001-8593-4678

Anesa Jerković- Mujkić 0000-0002-7769-4181

Berina Cubara 0009-0007-1965-3297

Adaleta Durmic- Pasic 0000-0002-5022-6185

Jasna Hanjalic Kurtovic 0000-0002-8693-7886

Kasim Bajrović 0000-0002-7927-2417

Elma Omeragić 0000-0002-5996-4926

Mirza Dedić 0000-0002-4951-7516

Faruk Bogunić 0000-0002-7636-3559

Lejla Pojskic 0000-0003-2260-318X

Publication Date December 19, 2024
Submission Date May 15, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 83 Issue: 2

Cite

AMA Saric Medic B, Jerković- Mujkić A, Cubara B, Durmic- Pasic A, Hanjalic Kurtovic J, Bajrović K, Omeragić E, Dedić M, Bogunić F, Pojskic L. Crude Extracts of Three Iris Species as Sources of MRSA Antimicrobial Compounds. Eur J Biol. December 2024;83(2):182-188. doi:10.26650/EurJBiol.2024.1480514