Research Article
BibTex RIS Cite

FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM

Year 2016, Volume: 66 Issue: 2, 45 - 60, 01.12.2016
https://doi.org/10.26560/iuifm.331689

Abstract








Energy is a very important factor in terms of sustaining the economic
development for developing and industrialized countries. Electricity is one
of the most important forms of energy for industrialization and improvement
of living standards. The estimation and modeling of electricity consumption
has a special importance in Turkey which is a foreign-dependent country
in energy. In this study a forecasting application is made by using Turkey’s
electricity consumption, population, import, export and gross domestic
product between 1975-2014, employing support vector regression method.
By using genetic algorithm to choose the parameters of SVR, the method
outperforms significantly. 




References

  • Abosedra, S., Dah, A., ve Ghosh, S. (2009) “Electricity consumption and economic growth, the case of Lebanon” Applied Energy, 86(4):429-432.
  • Akay, D., ve Atak, M. (2007) “Grey prediction with rolling mechanism for electricity demand forecasting of Turkey” Energy, 32(9):1670-1675.
  • Altinay, G., ve Karagol, E. (2005) “Electricity consumption and economic growth: evidence from Turkey” Energy Economics, 27(6):849-856.
  • Azadeh, A., ve Tarverdian, S. (2007) “Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption” Energy Policy, 35(10):5229-5241.
  • Azadeh, A., Ghaderi, S. F., Tarverdian, S., ve Saberi, M. (2007) “Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption” Applied Mathematics and Computation, 186(2):1731-1741.
  • Azadeh, A., Ghaderi, S. F., ve Sohrabkhani, S. (2008) “A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran” Energy Policy, 36(7):2637-2644.
  • Bianco, V., Manca, O., ve Nardini, S. (2009) “Electricity consumption forecasting in Italy using linear regression models” Energy, 34(9):1413- 1421.
  • Chen, S. T., Kuo, H. I., ve Chen, C. C. (2007) “The relationship between GDP and electricity consumption in 10 Asian countries” Energy Policy, 35(4):2611-2621.
  • Ekonomou, L. (2010) “Greek long-term energy consumption prediction using artificial neural networks” Energy, 35(2):512-517.
  • Fan, S., Chen, L., ve Lee, W. J. (2008) “Machine learning based switching model for electricity load forecasting” Energy Conversion and Management, 49(6):1331-1344.
  • Gürbüz, F., Öztürk, C., ve Pardalos, P. (2013) “Prediction of electricity energy consumption of Turkey via artificial bee colony: a case study” Energy Systems, 4(3):289-300.
  • Hamzaçebi, C. (2007) “Forecasting of Turkey’s net electricity energy consumption on sectoral bases” Energy Policy, 35(3):2009-2016.
  • Holland, J.H. (1975) Adaption in Natural and Artificial Systems, University of Michigan Pres, Ann Arbor, MI, 1975.
  • Hong, W. C. (2009a) “Electric load forecasting by support vector model” Applied Mathematical Modelling, 33(5):2444-2454.
  • Hong, W. C. (2009b) “Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model” Energy Conversion and Management, 50(1):105-117.
  • Hong, W. C. (2010) “Application of chaotic ant swarm optimization in electric load forecasting” Energy Policy, 38(10):5830-5839.
  • Hu, Z., Bao, Y., ve Xiong, T. (2013) “Electricity load forecasting using support vector regression with memetic algorithms” The Scientific World Journal.
  • Kavaklioglu, K., Ceylan, H., Ozturk, H. K., ve Canyurt, O. E. (2009) “Modeling and prediction of Turkey’s electricity consumption using artificial neural networks” Energy Conversion and Management, 50(11):2719-2727.
  • Kavaklioglu, K. (2011) “Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression” Applied Energy, 88(1):368-375.
  • Kavaklioglu, K. (2014) “Robust electricity consumption modeling of Turkey using singular value decomposition” International Journal of Electrical Power & Energy Systems, 54:268-276.
  • Kucukali, S., ve Baris, K. (2010) “Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach” Energy Policy, 38(5):2438-2445.
  • Narayan, P. K., ve Smyth, R. (2009) “Multivariate Granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries” Energy Policy, 37(1):229-236.
  • Oğcu, G., Demirel, O. F., ve Zaim, S. (2012) “Forecasting electricity consumption with neural networks and support vector regression” Procedia-Social and Behavioral Sciences, 58:1576-1585.
  • Pao, H. T. (2009) “Forecast of electricity consumption and economic growth in Taiwan by state space modeling” Energy, 34(11):1779-1791.
  • Sözen, A., ve Arcakioglu, E. (2007) “Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey” Energy policy, 35(10):4981-4992.
  • Toksarı, M. D. (2007) “Ant colony optimization approach to estimate energy demand of Turkey” Energy Policy, 35(8):3984-3990.
  • Tso, G. K., ve Yau, K. K. (2007) “Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks” Energy, 32(9):1761-1768.
  • Türedi S., Berber M. (2007) “Enerji Tüketimi ve Ekonomik Büyüme İlişkisi Uzun Dönem Analizi: Türkiye Örneği (1976-2005)”, İkinci Uluslararası İşletme ve Ekonomi Çalıştayı, Giresun, Türkiye.
  • Vapnik, V. (1995) The Nature of Statistic Learning Theory, Springer– Verlag, New York, 1995.
  • Wang, J., Zhu, W., Zhang, W., ve Sun, D. (2009) “A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short- term forecasting of electricity demand” Energy Policy, 37(11):4901- 4909.
  • Yang, H. Y. (2000) “A note on the causal relationship between energy and GDP in Taiwan” Energy economics, 22(3):309-317.
  • Yoo, S. H. (2006) “The causal relationship between electricity consumption and economic growth in the ASEAN countries” Energy policy, 34(18):3573-3582.

GENETİK ALGORİTMA İLE EĞİTİLMİŞ DESTEK VEKTÖR REGRESYON KULLANILARAK TÜRKİYE’NİN ELEKTRİK TÜKETİM TAHMİNİ

Year 2016, Volume: 66 Issue: 2, 45 - 60, 01.12.2016
https://doi.org/10.26560/iuifm.331689

Abstract








Enerji, gelişmekte olan ve endüstrileşen ülkeler için ekonomik kalkın-
manın sürdürülebilmesi açısından çok önemli bir faktördür. Elektrik ener-
jisi de endüstrileşme ve yaşam standardının yükseltilmesi için en önemli
enerji formlarından biridir. Enerji bakımından dışa bağımlı bir ülke olan
Türkiye’de elektrik tüketiminin modellenmesi ve tahmin edilmesi ayrı bir
öneme sahiptir. Bu çalışmada destek vektör regresyon yöntemiyle Türki-
ye’nin 1975-2014 yılları arası elektrik tüketimi, nüfusu, ithalat, ihracat ve
GSYH verileri kullanılarak bir tahmin uygulaması yapılmıştır. DVR para-
metrelerinin seçiminde genetik algoritma yardımıyla yöntem performansı
önemli ölçüde arttırılmıştır. 




References

  • Abosedra, S., Dah, A., ve Ghosh, S. (2009) “Electricity consumption and economic growth, the case of Lebanon” Applied Energy, 86(4):429-432.
  • Akay, D., ve Atak, M. (2007) “Grey prediction with rolling mechanism for electricity demand forecasting of Turkey” Energy, 32(9):1670-1675.
  • Altinay, G., ve Karagol, E. (2005) “Electricity consumption and economic growth: evidence from Turkey” Energy Economics, 27(6):849-856.
  • Azadeh, A., ve Tarverdian, S. (2007) “Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption” Energy Policy, 35(10):5229-5241.
  • Azadeh, A., Ghaderi, S. F., Tarverdian, S., ve Saberi, M. (2007) “Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption” Applied Mathematics and Computation, 186(2):1731-1741.
  • Azadeh, A., Ghaderi, S. F., ve Sohrabkhani, S. (2008) “A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran” Energy Policy, 36(7):2637-2644.
  • Bianco, V., Manca, O., ve Nardini, S. (2009) “Electricity consumption forecasting in Italy using linear regression models” Energy, 34(9):1413- 1421.
  • Chen, S. T., Kuo, H. I., ve Chen, C. C. (2007) “The relationship between GDP and electricity consumption in 10 Asian countries” Energy Policy, 35(4):2611-2621.
  • Ekonomou, L. (2010) “Greek long-term energy consumption prediction using artificial neural networks” Energy, 35(2):512-517.
  • Fan, S., Chen, L., ve Lee, W. J. (2008) “Machine learning based switching model for electricity load forecasting” Energy Conversion and Management, 49(6):1331-1344.
  • Gürbüz, F., Öztürk, C., ve Pardalos, P. (2013) “Prediction of electricity energy consumption of Turkey via artificial bee colony: a case study” Energy Systems, 4(3):289-300.
  • Hamzaçebi, C. (2007) “Forecasting of Turkey’s net electricity energy consumption on sectoral bases” Energy Policy, 35(3):2009-2016.
  • Holland, J.H. (1975) Adaption in Natural and Artificial Systems, University of Michigan Pres, Ann Arbor, MI, 1975.
  • Hong, W. C. (2009a) “Electric load forecasting by support vector model” Applied Mathematical Modelling, 33(5):2444-2454.
  • Hong, W. C. (2009b) “Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model” Energy Conversion and Management, 50(1):105-117.
  • Hong, W. C. (2010) “Application of chaotic ant swarm optimization in electric load forecasting” Energy Policy, 38(10):5830-5839.
  • Hu, Z., Bao, Y., ve Xiong, T. (2013) “Electricity load forecasting using support vector regression with memetic algorithms” The Scientific World Journal.
  • Kavaklioglu, K., Ceylan, H., Ozturk, H. K., ve Canyurt, O. E. (2009) “Modeling and prediction of Turkey’s electricity consumption using artificial neural networks” Energy Conversion and Management, 50(11):2719-2727.
  • Kavaklioglu, K. (2011) “Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression” Applied Energy, 88(1):368-375.
  • Kavaklioglu, K. (2014) “Robust electricity consumption modeling of Turkey using singular value decomposition” International Journal of Electrical Power & Energy Systems, 54:268-276.
  • Kucukali, S., ve Baris, K. (2010) “Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach” Energy Policy, 38(5):2438-2445.
  • Narayan, P. K., ve Smyth, R. (2009) “Multivariate Granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries” Energy Policy, 37(1):229-236.
  • Oğcu, G., Demirel, O. F., ve Zaim, S. (2012) “Forecasting electricity consumption with neural networks and support vector regression” Procedia-Social and Behavioral Sciences, 58:1576-1585.
  • Pao, H. T. (2009) “Forecast of electricity consumption and economic growth in Taiwan by state space modeling” Energy, 34(11):1779-1791.
  • Sözen, A., ve Arcakioglu, E. (2007) “Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey” Energy policy, 35(10):4981-4992.
  • Toksarı, M. D. (2007) “Ant colony optimization approach to estimate energy demand of Turkey” Energy Policy, 35(8):3984-3990.
  • Tso, G. K., ve Yau, K. K. (2007) “Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks” Energy, 32(9):1761-1768.
  • Türedi S., Berber M. (2007) “Enerji Tüketimi ve Ekonomik Büyüme İlişkisi Uzun Dönem Analizi: Türkiye Örneği (1976-2005)”, İkinci Uluslararası İşletme ve Ekonomi Çalıştayı, Giresun, Türkiye.
  • Vapnik, V. (1995) The Nature of Statistic Learning Theory, Springer– Verlag, New York, 1995.
  • Wang, J., Zhu, W., Zhang, W., ve Sun, D. (2009) “A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short- term forecasting of electricity demand” Energy Policy, 37(11):4901- 4909.
  • Yang, H. Y. (2000) “A note on the causal relationship between energy and GDP in Taiwan” Energy economics, 22(3):309-317.
  • Yoo, S. H. (2006) “The causal relationship between electricity consumption and economic growth in the ASEAN countries” Energy policy, 34(18):3573-3582.
There are 32 citations in total.

Details

Subjects Business Administration
Journal Section Articles
Authors

Oğuz Kaynar

A. Gürkan Yüksek

Ferhan Demirkoparan This is me

Publication Date December 1, 2016
Published in Issue Year 2016 Volume: 66 Issue: 2

Cite

APA Kaynar, O., Yüksek, A. G., & Demirkoparan, F. (2016). FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, 66(2), 45-60. https://doi.org/10.26560/iuifm.331689
AMA Kaynar O, Yüksek AG, Demirkoparan F. FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM. İstanbul Üniversitesi İktisat Fakültesi Mecmuası. December 2016;66(2):45-60. doi:10.26560/iuifm.331689
Chicago Kaynar, Oğuz, A. Gürkan Yüksek, and Ferhan Demirkoparan. “FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM”. İstanbul Üniversitesi İktisat Fakültesi Mecmuası 66, no. 2 (December 2016): 45-60. https://doi.org/10.26560/iuifm.331689.
EndNote Kaynar O, Yüksek AG, Demirkoparan F (December 1, 2016) FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM. İstanbul Üniversitesi İktisat Fakültesi Mecmuası 66 2 45–60.
IEEE O. Kaynar, A. G. Yüksek, and F. Demirkoparan, “FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM”, İstanbul Üniversitesi İktisat Fakültesi Mecmuası, vol. 66, no. 2, pp. 45–60, 2016, doi: 10.26560/iuifm.331689.
ISNAD Kaynar, Oğuz et al. “FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM”. İstanbul Üniversitesi İktisat Fakültesi Mecmuası 66/2 (December 2016), 45-60. https://doi.org/10.26560/iuifm.331689.
JAMA Kaynar O, Yüksek AG, Demirkoparan F. FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM. İstanbul Üniversitesi İktisat Fakültesi Mecmuası. 2016;66:45–60.
MLA Kaynar, Oğuz et al. “FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM”. İstanbul Üniversitesi İktisat Fakültesi Mecmuası, vol. 66, no. 2, 2016, pp. 45-60, doi:10.26560/iuifm.331689.
Vancouver Kaynar O, Yüksek AG, Demirkoparan F. FORECASTING OF TURKEY’S ELECTRICITY CONSUMPTION USING SUPPORT VECTOR REGRESSION TRAINED WITH GENETIC ALGORITHM. İstanbul Üniversitesi İktisat Fakültesi Mecmuası. 2016;66(2):45-60.