Research Article
BibTex RIS Cite

VALPROİK ASİT UYGULANAN SIÇANLARDA ALFA LİPOİK ASİDİN LENS HASARI ÜZERİNE ETKİLERİ

Year 2022, , 557 - 563, 28.10.2022
https://doi.org/10.26650/IUITFD.1073100

Abstract

Amaç: Valproik asit (VPA) kısa zincirli bir yağ asididir ve migren ile şizofreni tedavisinde kullanılır. Tedavi edici etkilerinin olmasına rağmen, bu ilacın yan etkileri serbest radikaller ile ilişkilidir ve bu yol ile birçok organ ve dokuyu etkilemektedir. Alfa lipoik asit (ALA), güçlü bir antioksidandır. Gereç ve Yöntem: Bu çalışmada, ALA’in VPA ile oluşturulan lens hasarı üzerine koruyucu etkileri araştırıldı. Dişi sıçanlar dört gruba ayrıldı: 1. grup, kontrol hayvanları (15 gün boyunca her gün mısır özü yağı verildi); 2. grup, ALA verilen grup (15 gün boyunca her gün 50 mg/kg verildi); 3. grup, VPA uygulanan grup (15 gün boyunca her gün 500 mg/kg uygulandı), 4. grup; Her gün aynı saatte ve dozda VPA ile ALA uygulanan grup, 16’ıncı günde, lens dokuları alındı. Bulgular: VPA uygulanmasından sonra, lens glutatyon düzeyleri ve glutatyon-S-transferaz aktiviteleri azalırken lipid peroksidasyonu ve protein karbonil seviyeleri, süperoksit dismutaz, glutatyon peroksidaz ve redüktaz, aldoz redüktaz ve sorbitol dehidrojenaz aktiviteleri artış gösterdi. ALA, VPA grubundaki bu seviyeleri ve artışları tersine çevirdi. Sonuç: ALA’in antioksidan özelliğini kullandığı ve VPA ile oluşturulan lens hasarını iyileştirdiği sonucuna varılmıştır. 

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa

Project Number

FYL-2016-21656

References

  • 1. Burton B. On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J 1882;3:385-95. google scholar
  • 2. Dean JC, Penry JK. Valproate monotherapy in 30 patients with partial seizures. Epilepsia 1988;29(2):140-4. [CrossRef] google scholar
  • 3. Lipina TV, Haque FN, McGirr A, Boutros PC, Berger T, Mak TW, et al. Prophylactic valproic acid treatment prevents schizophrenia-related behaviour in Disc1-L100P mutant mice. PLoS One 2012;7(12):e51562. [CrossRef] google scholar
  • 4. Brown BL, Craycraft LK, Justice SB. Valproic acid in the treatment of migraines. Adv Emerg Nurs J 2020;42(4):243-53. [CrossRef] google scholar
  • 5. Emekli-Alturfan E, Alev B, Tunali S, Oktay S, Tunali-Akbay T, Ozturk LK, et al. Effects of edaravone on cardiac damage in valproic acid induced toxicity. Ann Clin Lab Sci 2015;45(2):166-72. google scholar
  • 6. Tunali S, Cimen ES, Yanardag R. The effects of chard on brain damage in valproic acid-induced toxicity. J Food Biochem 2020;44(10):e13382. [CrossRef] google scholar
  • 7. Bayrak BB, Yilmaz S, Hacihasanoglu Cakmak N, Yanardag R. The effects of edaravone, a free-radical scavenger in lung injury induced by valproic acid demonstrated via different biochemical parameters. J Biochem Mol Toxicol 2021;35(9):e22847. [CrossRef] google scholar
  • 8. Celik C, Bayrak BB, Hacıhasanoglu Cakmak N, Yanardag R. Protective effect of edaravone on rat testis after valproic acid treatment. J Res Pharm 2022;26(1):52-62. [CrossRef] google scholar
  • 9. Sokmen BB, Tunali S, Yanardag R. Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem Toxicol 2012;50(10):3562-6. [CrossRef] google scholar
  • 10. Gezginci-Oktayoglu S, Turkyilmaz IB, Ercin M, Yanardag R, Bolkent S. Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties. Protoplasma 2016;253:127-35. [CrossRef] google scholar
  • 11. Oztay F, Tunali S, Kayalar O, Yanardag R. The protective effect of vitamin U on valproic acid-induced lung toxicity in rats via amelioration of oxidative stress. J Biochem Mol Toxicol 2020;34(12):e22602. [CrossRef] google scholar
  • 12. Rosa FT, Zulet MÂ, Marchini JS, Martınez JA. Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr 2012;63(6):749-65. [CrossRef] google scholar
  • 13. Abdel-Zaher AO, Abdel-Hady RH, Abdel Moneim WM, Salim SY. Alpha-lipoic acid protects against potassium cyanide-induced seizures and mortality. Exp Toxicol Pathol 2011;63(1-2):161-5. [CrossRef] google scholar
  • 14. Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol 2015;93(12):1021-7. [CrossRef] google scholar
  • 15. Lachman J, Hamouz K, Orsak M, Pivec V. Potato tubers as a significant source of antioxidants in human nutrition. Rostl Vyroba 2000;46(5):231-6. google scholar
  • 16. Elsawy H, Al-Omair MA, Sedky A, Al-Otaibi L. Protective effect of a-lipoic acid against a-cypermethrin-induced changes in rat cerebellum. J Chem Neuroanat 2017;86:52-8. [CrossRef] google scholar
  • 17. Turkyilmaz IB, Bilgin Sokmen B, Yanardag R. Alpha-lipoic acid prevents brain injury in rats administered with valproic acid. J Biochem Mol Toxicol 2020;34(11):e22580. [CrossRef] google scholar
  • 18. Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 1988;57:479-504. [CrossRef] google scholar
  • 19. Srikanthan D, Bateman OA, Purkiss AG, Slingsby C. Sulfur in human crystallins. Exp Eye Res 2004;79(6):823-31. [CrossRef] google scholar
  • 20. Serebryany E, Thorn DC, Quintanar L. Redox chemistry of lens crystallins: A system of cysteines. Exp Eye Res 2021;211:108707. [CrossRef] google scholar
  • 21. Tunali S. The effects of vitamin B6 on lens antioxidant system in valproic acid-administered rats. Hum Exp Toxicol 2014;33(6):623-8. [CrossRef] google scholar
  • 22. Tunali S, Kahraman S, Yanardag R. Vitamin U, a novel free radical scavenger, prevents lens injury in rats administered with valproic acid. Hum Exp Toxicol 2015;34(9):904-10. [CrossRef] google scholar
  • 23. Palsamy P, Bidasee KR, Shinohara T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp Eye Res 2014;121:26-34. [CrossRef] google scholar
  • 24. Beutler E. Reduced glutathione (GSH). In: Bergmeyer HV. Editor. Red Blood Cell Metabolism: A Manual of Biochemical Methods. 2nd Edition, Grune and Stratton, New York. 1975. p.112-4. google scholar
  • 25. Ledwozyw A, Michalak J, Stepien A, Kadziolka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986;155(3):275-83. [CrossRef] google scholar
  • 26. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464-78. [CrossRef] google scholar
  • 27. Habig WH, Jakoby WB. Assays for differentiation of glutathione-S-transferases. Methods Enzymol 1981;77:398-405. [CrossRef] google scholar
  • 28. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82(3):512-20. [CrossRef] google scholar
  • 29. Wendel A. Glutathione peroxidase. Methods Enzymol 1981;77:325-33. [CrossRef] google scholar
  • 30. Beutler E. Red cell metabolism. A Manual of Biochemical Methods. 12nd ed. London: Academic Press, 1971.p. 68-70. google scholar
  • 31. Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J Biol Chem 1965;240(2):877-82. [CrossRef] google scholar
  • 32. Barretto OC, Beutler E. The sorbitol-oxidizing enzyme of red blood cells. J Lab Clin Med 1975;85(4):645-9. google scholar
  • 33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193(1):265-75. [CrossRef] google scholar
  • 34. Hejtmancik JF, Shiels A. Overview of the lens. Prog Mol Biol Transl Sci 2015;134:119-27. [CrossRef] google scholar
  • 35. Âlvarez-Barrios A, Âlvarez L, Garda M, Artime E, Pereiro R, Gonzâlez-Iglesias H. Antioxidant defenses in the human eye: A focus on metallothioneins. Antioxidants (Basel) 2021;10(1):89. [CrossRef] google scholar
  • 36. Oktay S, Alev B, Tunali S, Emekli-Alturfan E, Tunali-Akbay T, Koc-Ozturk L, et al. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine. Hum Exp Toxicol 2015;34(6):654-61. [CrossRef] google scholar
  • 37. Fan X, Monnier VM, Whitson J. Lens glutathione homeostasis: Discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. Exp Eye Res 2017;156:103-11. [CrossRef] google scholar
  • 38. Kisic B, Miric D, Zoric L, Ilic A, Dragojevic I. Antioxidant capacity of lenses with age-related cataract. Oxid Med Cell Longev 2012;2012:467130. [CrossRef] google scholar
  • 39. Lou MF. Redox regulation in the lens. Prog Retin Eye Res 2003;22(5):657-82. [CrossRef] google scholar
  • 40. Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 1997;6(3):321-38. [CrossRef] google scholar
  • 41. Neal R, Cooper K, Kellogg G, Gurer H, Ercal N. Effects of some sulfur-containing antioxidants on lead-exposed lenses. Free Radic Biol Med 1999;26(1-2):239-43. [CrossRef] google scholar
  • 42. Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Eye Res 2006;31(1):1-11. [CrossRef] google scholar
  • 43. Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman, E. The Eye, Basic Sciences in Practice. 3rd ed.; Saunders Elsevier: Edinburgh, UK, 2008;540, ISBN 9780702079931. google scholar
  • 44. Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietila M, Koivunen P, et al. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 2015;331:47-56. [CrossRef] google scholar
  • 45. Tibullo D, Li Volti G, Giallongo C, Grasso S, Tomassoni D, Anfuso CD, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity. molecular pathways and therapeutic potential. Inflamm Res 2017;66:947-59. [CrossRef] google scholar
  • 46. Lightman S. Does aldose reductase have a role in the development of the ocular complications of diabetes?. Eye (Lond) 1993;7:238-41. [CrossRef] google scholar
  • 47. Veeresham C, Rama Rao A, Asres K. Aldose reductase inhibitors of plant origin. Phytother Res 2014;28(3):317-33. [CrossRef] google scholar
  • 48. Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010;2010:479364. [CrossRef] google scholar
  • 49. Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 1995;19(2):227-50. [CrossRef] google scholar
  • 50. Eason RC, Archer HE, Akhtar S, Bailey CJ. Lipoic acid increases glucose uptake by skeletal muscles of obese-diabetic ob/ob mice. Diabetes Obes Metab 2002;4(1):29-35. [CrossRef] google scholar

THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID

Year 2022, , 557 - 563, 28.10.2022
https://doi.org/10.26650/IUITFD.1073100

Abstract

Objective: Valproic acid (2-propyl valeric acid; VPA) is an effective short-chained fatty acid which is used for the treatment of migraine and schizophrenia. Though it provides effective treatment, its side effects are associated with free radicals and in this way it affects many organs and tissues. Alpha lipoic acid (ALA) is known to be a powerful antioxidant. Material and Methods: The aim of this current study was to investigate the protection of ALA on VPA induced lens injury. Female rats were split into four groups as follows: 1st group, control animals (corn oil per day for 15 days); 2nd group, ALA administered group (50 mg per kg each day for 15 days); 3rd group, VPA administered group (500 mg per kg each day for 15 days) and 4th group, VPA and ALA administered group to which the same dose was given at the same time each day. On the 16th day, lens tissues were taken. Results: Lens glutathione levels and glutathione-S-transferase activities were decreased while lipid peroxidation and protein carbonyl levels, superoxide dismutase, glutathione peroxidase and reductase, aldose reductase and sorbitol dehydrogenase activities were elevated after VPA administration. ALA reversed these levels and activities in the VPA group. Conclusion: We can conclude that ALA used its antioxidant property and ameliorated VPA induced lens injury.

Project Number

FYL-2016-21656

References

  • 1. Burton B. On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J 1882;3:385-95. google scholar
  • 2. Dean JC, Penry JK. Valproate monotherapy in 30 patients with partial seizures. Epilepsia 1988;29(2):140-4. [CrossRef] google scholar
  • 3. Lipina TV, Haque FN, McGirr A, Boutros PC, Berger T, Mak TW, et al. Prophylactic valproic acid treatment prevents schizophrenia-related behaviour in Disc1-L100P mutant mice. PLoS One 2012;7(12):e51562. [CrossRef] google scholar
  • 4. Brown BL, Craycraft LK, Justice SB. Valproic acid in the treatment of migraines. Adv Emerg Nurs J 2020;42(4):243-53. [CrossRef] google scholar
  • 5. Emekli-Alturfan E, Alev B, Tunali S, Oktay S, Tunali-Akbay T, Ozturk LK, et al. Effects of edaravone on cardiac damage in valproic acid induced toxicity. Ann Clin Lab Sci 2015;45(2):166-72. google scholar
  • 6. Tunali S, Cimen ES, Yanardag R. The effects of chard on brain damage in valproic acid-induced toxicity. J Food Biochem 2020;44(10):e13382. [CrossRef] google scholar
  • 7. Bayrak BB, Yilmaz S, Hacihasanoglu Cakmak N, Yanardag R. The effects of edaravone, a free-radical scavenger in lung injury induced by valproic acid demonstrated via different biochemical parameters. J Biochem Mol Toxicol 2021;35(9):e22847. [CrossRef] google scholar
  • 8. Celik C, Bayrak BB, Hacıhasanoglu Cakmak N, Yanardag R. Protective effect of edaravone on rat testis after valproic acid treatment. J Res Pharm 2022;26(1):52-62. [CrossRef] google scholar
  • 9. Sokmen BB, Tunali S, Yanardag R. Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem Toxicol 2012;50(10):3562-6. [CrossRef] google scholar
  • 10. Gezginci-Oktayoglu S, Turkyilmaz IB, Ercin M, Yanardag R, Bolkent S. Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties. Protoplasma 2016;253:127-35. [CrossRef] google scholar
  • 11. Oztay F, Tunali S, Kayalar O, Yanardag R. The protective effect of vitamin U on valproic acid-induced lung toxicity in rats via amelioration of oxidative stress. J Biochem Mol Toxicol 2020;34(12):e22602. [CrossRef] google scholar
  • 12. Rosa FT, Zulet MÂ, Marchini JS, Martınez JA. Bioactive compounds with effects on inflammation markers in humans. Int J Food Sci Nutr 2012;63(6):749-65. [CrossRef] google scholar
  • 13. Abdel-Zaher AO, Abdel-Hady RH, Abdel Moneim WM, Salim SY. Alpha-lipoic acid protects against potassium cyanide-induced seizures and mortality. Exp Toxicol Pathol 2011;63(1-2):161-5. [CrossRef] google scholar
  • 14. Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol 2015;93(12):1021-7. [CrossRef] google scholar
  • 15. Lachman J, Hamouz K, Orsak M, Pivec V. Potato tubers as a significant source of antioxidants in human nutrition. Rostl Vyroba 2000;46(5):231-6. google scholar
  • 16. Elsawy H, Al-Omair MA, Sedky A, Al-Otaibi L. Protective effect of a-lipoic acid against a-cypermethrin-induced changes in rat cerebellum. J Chem Neuroanat 2017;86:52-8. [CrossRef] google scholar
  • 17. Turkyilmaz IB, Bilgin Sokmen B, Yanardag R. Alpha-lipoic acid prevents brain injury in rats administered with valproic acid. J Biochem Mol Toxicol 2020;34(11):e22580. [CrossRef] google scholar
  • 18. Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 1988;57:479-504. [CrossRef] google scholar
  • 19. Srikanthan D, Bateman OA, Purkiss AG, Slingsby C. Sulfur in human crystallins. Exp Eye Res 2004;79(6):823-31. [CrossRef] google scholar
  • 20. Serebryany E, Thorn DC, Quintanar L. Redox chemistry of lens crystallins: A system of cysteines. Exp Eye Res 2021;211:108707. [CrossRef] google scholar
  • 21. Tunali S. The effects of vitamin B6 on lens antioxidant system in valproic acid-administered rats. Hum Exp Toxicol 2014;33(6):623-8. [CrossRef] google scholar
  • 22. Tunali S, Kahraman S, Yanardag R. Vitamin U, a novel free radical scavenger, prevents lens injury in rats administered with valproic acid. Hum Exp Toxicol 2015;34(9):904-10. [CrossRef] google scholar
  • 23. Palsamy P, Bidasee KR, Shinohara T. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Exp Eye Res 2014;121:26-34. [CrossRef] google scholar
  • 24. Beutler E. Reduced glutathione (GSH). In: Bergmeyer HV. Editor. Red Blood Cell Metabolism: A Manual of Biochemical Methods. 2nd Edition, Grune and Stratton, New York. 1975. p.112-4. google scholar
  • 25. Ledwozyw A, Michalak J, Stepien A, Kadziolka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986;155(3):275-83. [CrossRef] google scholar
  • 26. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464-78. [CrossRef] google scholar
  • 27. Habig WH, Jakoby WB. Assays for differentiation of glutathione-S-transferases. Methods Enzymol 1981;77:398-405. [CrossRef] google scholar
  • 28. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82(3):512-20. [CrossRef] google scholar
  • 29. Wendel A. Glutathione peroxidase. Methods Enzymol 1981;77:325-33. [CrossRef] google scholar
  • 30. Beutler E. Red cell metabolism. A Manual of Biochemical Methods. 12nd ed. London: Academic Press, 1971.p. 68-70. google scholar
  • 31. Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J Biol Chem 1965;240(2):877-82. [CrossRef] google scholar
  • 32. Barretto OC, Beutler E. The sorbitol-oxidizing enzyme of red blood cells. J Lab Clin Med 1975;85(4):645-9. google scholar
  • 33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193(1):265-75. [CrossRef] google scholar
  • 34. Hejtmancik JF, Shiels A. Overview of the lens. Prog Mol Biol Transl Sci 2015;134:119-27. [CrossRef] google scholar
  • 35. Âlvarez-Barrios A, Âlvarez L, Garda M, Artime E, Pereiro R, Gonzâlez-Iglesias H. Antioxidant defenses in the human eye: A focus on metallothioneins. Antioxidants (Basel) 2021;10(1):89. [CrossRef] google scholar
  • 36. Oktay S, Alev B, Tunali S, Emekli-Alturfan E, Tunali-Akbay T, Koc-Ozturk L, et al. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine. Hum Exp Toxicol 2015;34(6):654-61. [CrossRef] google scholar
  • 37. Fan X, Monnier VM, Whitson J. Lens glutathione homeostasis: Discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. Exp Eye Res 2017;156:103-11. [CrossRef] google scholar
  • 38. Kisic B, Miric D, Zoric L, Ilic A, Dragojevic I. Antioxidant capacity of lenses with age-related cataract. Oxid Med Cell Longev 2012;2012:467130. [CrossRef] google scholar
  • 39. Lou MF. Redox regulation in the lens. Prog Retin Eye Res 2003;22(5):657-82. [CrossRef] google scholar
  • 40. Han D, Handelman G, Marcocci L, Sen CK, Roy S, Kobuchi H, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystine utilization. Biofactors 1997;6(3):321-38. [CrossRef] google scholar
  • 41. Neal R, Cooper K, Kellogg G, Gurer H, Ercal N. Effects of some sulfur-containing antioxidants on lead-exposed lenses. Free Radic Biol Med 1999;26(1-2):239-43. [CrossRef] google scholar
  • 42. Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Eye Res 2006;31(1):1-11. [CrossRef] google scholar
  • 43. Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman, E. The Eye, Basic Sciences in Practice. 3rd ed.; Saunders Elsevier: Edinburgh, UK, 2008;540, ISBN 9780702079931. google scholar
  • 44. Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietila M, Koivunen P, et al. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 2015;331:47-56. [CrossRef] google scholar
  • 45. Tibullo D, Li Volti G, Giallongo C, Grasso S, Tomassoni D, Anfuso CD, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity. molecular pathways and therapeutic potential. Inflamm Res 2017;66:947-59. [CrossRef] google scholar
  • 46. Lightman S. Does aldose reductase have a role in the development of the ocular complications of diabetes?. Eye (Lond) 1993;7:238-41. [CrossRef] google scholar
  • 47. Veeresham C, Rama Rao A, Asres K. Aldose reductase inhibitors of plant origin. Phytother Res 2014;28(3):317-33. [CrossRef] google scholar
  • 48. Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010;2010:479364. [CrossRef] google scholar
  • 49. Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 1995;19(2):227-50. [CrossRef] google scholar
  • 50. Eason RC, Archer HE, Akhtar S, Bailey CJ. Lipoic acid increases glucose uptake by skeletal muscles of obese-diabetic ob/ob mice. Diabetes Obes Metab 2002;4(1):29-35. [CrossRef] google scholar
There are 50 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Yeşim Öztaylan This is me 0000-0002-2051-4098

İsmet Burcu Türkyılmaz 0000-0003-2789-5943

Refiye Yanardağ 0000-0003-4185-4363

Project Number FYL-2016-21656
Publication Date October 28, 2022
Submission Date February 14, 2022
Published in Issue Year 2022

Cite

APA Öztaylan, Y., Türkyılmaz, İ. B., & Yanardağ, R. (2022). THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID. Journal of Istanbul Faculty of Medicine, 85(4), 557-563. https://doi.org/10.26650/IUITFD.1073100
AMA Öztaylan Y, Türkyılmaz İB, Yanardağ R. THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID. İst Tıp Fak Derg. October 2022;85(4):557-563. doi:10.26650/IUITFD.1073100
Chicago Öztaylan, Yeşim, İsmet Burcu Türkyılmaz, and Refiye Yanardağ. “THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID”. Journal of Istanbul Faculty of Medicine 85, no. 4 (October 2022): 557-63. https://doi.org/10.26650/IUITFD.1073100.
EndNote Öztaylan Y, Türkyılmaz İB, Yanardağ R (October 1, 2022) THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID. Journal of Istanbul Faculty of Medicine 85 4 557–563.
IEEE Y. Öztaylan, İ. B. Türkyılmaz, and R. Yanardağ, “THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID”, İst Tıp Fak Derg, vol. 85, no. 4, pp. 557–563, 2022, doi: 10.26650/IUITFD.1073100.
ISNAD Öztaylan, Yeşim et al. “THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID”. Journal of Istanbul Faculty of Medicine 85/4 (October 2022), 557-563. https://doi.org/10.26650/IUITFD.1073100.
JAMA Öztaylan Y, Türkyılmaz İB, Yanardağ R. THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID. İst Tıp Fak Derg. 2022;85:557–563.
MLA Öztaylan, Yeşim et al. “THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID”. Journal of Istanbul Faculty of Medicine, vol. 85, no. 4, 2022, pp. 557-63, doi:10.26650/IUITFD.1073100.
Vancouver Öztaylan Y, Türkyılmaz İB, Yanardağ R. THE EFFECTS OF ALPHA LIPOIC ACID ON LENS INJURY IN RATS ADMINISTERED WITH VALPROIC ACID. İst Tıp Fak Derg. 2022;85(4):557-63.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61