BibTex RIS Cite

BEYİN TÜMÖRLERİNİN 3T MANYETİK ALANDA İN VİVO FOSFOR MANYETİK REZONANS SPEKTROSKOPİK GÖRÜNTÜLEME PİKLERİNİN Z-SKORLARINA DAYALI İNCELENMESİ

Year 2016, , 66 - 71, 02.08.2016
https://doi.org/10.18017/iuitfd.78438

Abstract

Amaç: Fosfor manyetik rezonans spektroskopik görüntüleme (31P-MRSG) beyin tümörlerinin enerji metabolizması hakkında non-invazif olarak bilgi sağlar. Bu çalışmanın amacı, beyin tümörlerinin 3T manyetik alanda in vivo fosfor manyetik rezonans spektroskopik görüntülenmeleri sonucunda elde edilen piklerin oranlarına bağlı z-skorları tanımlamak ve değerlendirmektir.

Gereç ve Yöntem: On üç beyin tümörü teşhisi konmuş hastanın ve beş sağlıklı gönüllünün beyin 31P-MRSG verileri retrospektif olarak incelendi. Hastalarda tümörlü ve normal görünen bölgelerden, ve sağlıklı gönüllülerden elde edilmiş olan 31P-MRSG pik değerlerine bağlı z-skorları tanımlandı. Pik oranlarının ve z-skorlarının bu üç grup arasındaki farklılıkları karşılaştırıldı.

Bulgular: Hastaların ortalama yaşı 53.2±12.4, sağlıklı gönüllülerin ortalama yaşı ise, 34.4±11.6 yıl olarak saptandı. Retrospektif planlanan bu çalışmada, beyin tümörlü hastalarda tümörlü bölgelerde, normal görünen bölgelerine ve sağlıklı gönüllülerin beyin bölgelerine göre istatistiksel olarak anlamlı daha yüksek GPC/PCr, GPE/PCr, Pi/PCr, PC/PCr, PE/PCr, γATP/PCr, αATP/PCr, βATP/PCr, (GPE+PE)/PCr, ve (GPC+PC)/PCr pik oranları tespit edildi. Beyin tümörlü dokuda, GPC/PCr, PC/PCr, PE/PCr, β-ATP/PCr, ve (GPC+PC)/PCr pik oranlarına bağlı hesaplanan z-skorları normal görünen dokudan istatistiksel olarak anlamlı yüksek bulundu.

Sonuç: Bu çalışmanın sonucunda, beyin tümörlerinin lokalizasyonu, biyopsi hedefi tanımlanması ve tedavi sonrası takiplerinde, standart ve objektif bir ölçüm olarak kullanılabilecek 31P-MRSG pik oranlarına bağlı z-skorları tanımlanmıştır.

Anahtar kelimeler: fosfor manyetik rezonans spektroskopik görüntüleme; beyin tümörü; z-skoru; 3 Tesla

References

  • Nelson SJ. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2003;2(5):497-507.
  • Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB. Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 1997;38(2):311-21.
  • Tran TK, Vigneron DB, Sailasuta N, Tropp J, Le Roux P, Kurhanewicz J, et al. Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 2000;43(1):23-33.
  • Ozturk-Isik E, Crane JC, Cha S, Chang SM, Berger MS, Nelson SJ. Unaliasing lipid contamination for MR spectroscopic imaging of gliomas at 3T using sensitivity encoding (SENSE). Magn Reson Med 2006;55(5):1164-9.
  • Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW. P-31 MR spectroscopy of normal human brain and brain tumors. Radiology 1990;174(2):401-9.
  • Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ. Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 2002;15(1):18-27.
  • Star-Lack J, Spielman D, Adalsteinsson E, Kurhanewicz J, Terris DJ, Vigneron DB. In vivo lactate editing with simultaneous detection of choline, creatine, NAA, and lipid singlets at 1.5 T using PRESS excitation with applications to the study of brain and head and neck tumors. J Magn Reson. 1998;133(2):243-54.
  • Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 2000;50(3):215-26.
  • Elkhaled A, Jalbert L, Constantin A, Yoshihara HA, Phillips JJ, Molinaro AM, et al. Characterization of metabolites in infiltrating gliomas using ex vivo H high-resolution magic angle spinning spectroscopy. NMR Biomed 2014;27(5):578-93.
  • Hattingen E, Bahr O, Rieger J, Blasel S, Steinbach J, Pilatus U. Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 2013;8(3):56439.
  • McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ. An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 2001;13(2):167-77.
  • Vanhamme L, Van Huffel S, Van Hecke P, van Ormondt D. Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals. J Magn Reson 1999;140(1):120-30.
  • Glantz S. Primer of Biostatistics. 5th ed: McGraw Hill 2001;343-9.
  • Glantz S. Primer of Biostatistics. 5th ed: McGraw Hill 2001;354-62.
  • Qiao H, Zhang X, Zhu XH, Du F, Chen W. In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4 T and 7 T. Magn Reson Imaging 2006;24(10):1281-6.
  • Sweet RA, Panchalingam K, Pettegrew JW, McClure RJ, Hamilton RL, Lopez OL, et al. Psychosis in Alzheimer disease: postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging 2002;23(4):547-53.
  • Yacubian J, de Castro CC, Ometto M, Barbosa E, de Camargo CP, Tavares H, et al. 31P-spectroscopy of frontal lobe in schizophrenia: alterations in phospholipid and high-energy phosphate metabolism. Schizophr Res 2002;58(2-3):117-22.
  • Husted CA, Goodin DS, Hugg JW, Maudsley AA, Tsuruda JS, de Bie SH, et al. Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 1994;36(2):157-65.
  • Constans JM, Meyerhoff DJ, Norman D, Fein G, Weiner MW. 1H and 31P magnetic resonance spectroscopic imaging of white matter signal hyperintensity areas in elderly subjects. Neuroradiology 1995;37(8):615-23.

Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T

Year 2016, , 66 - 71, 02.08.2016
https://doi.org/10.18017/iuitfd.78438

Abstract

Objective:
Phosphorus magnetic resonance
spectroscopic imaging (31P-MRSI) provides information about the
energy metabolism of brain tumors noninvasively. The aim of this study is to
define and assess the z-scores of the in vivo phosphorus magnetic resonance
spectroscopic imaging peak ratios of brain tumors at 3T.

Materials
and Methods:
31P-MRSI
data of thirteen brain tumor patients and five healthy volunteers were
retrospectively analyzed. z-scores were defined based on the 31P-MRSI
peak ratios obtained from the tumor and normal appearing regions of the brain
tumor patients and the healthy volunteers. The peak ratios and the z-scores
were compared between these three groups.

Results: The mean age was 53.2±12.4 years in brain tumor
patients, and
34.4±11.6 years in volunteers. In this retrospective study,
statistically significantly higher GPC/PCr, GPE/PCr,
Pi/PCr, PC/PCr, PE/PCr, γATP/PCr, αATP/PCr,
βATP/PCr, (GPE+PE)/PCr,
and (GPC+PC)/PCr peak ratios were observed in tumor
regions than both normal appearing regions of patients and healthy volunteers.
The z-scores calculated based on
GPC/PCr, PC/PCr, PE/PCr, β-ATP/PCr, and (GPC+PC)/PCr peak ratios were statistically significantly
higher in brain
tumor regions
than normal appearing regions
.

Conclusion: As a result of this study, z-scores based on 31P-MRSI
peak ratios were defined that might be used as a standardised and objective
measure in brain tumor localization, biopsy target definition and followup
after treatment.









Key
words:
phoshporus
magnetic resonance spectroscopic imaging, brain tumor, z-score, 3 Tesla,

References

  • Nelson SJ. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2003;2(5):497-507.
  • Star-Lack J, Nelson SJ, Kurhanewicz J, Huang LR, Vigneron DB. Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 1997;38(2):311-21.
  • Tran TK, Vigneron DB, Sailasuta N, Tropp J, Le Roux P, Kurhanewicz J, et al. Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 2000;43(1):23-33.
  • Ozturk-Isik E, Crane JC, Cha S, Chang SM, Berger MS, Nelson SJ. Unaliasing lipid contamination for MR spectroscopic imaging of gliomas at 3T using sensitivity encoding (SENSE). Magn Reson Med 2006;55(5):1164-9.
  • Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW. P-31 MR spectroscopy of normal human brain and brain tumors. Radiology 1990;174(2):401-9.
  • Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ. Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 2002;15(1):18-27.
  • Star-Lack J, Spielman D, Adalsteinsson E, Kurhanewicz J, Terris DJ, Vigneron DB. In vivo lactate editing with simultaneous detection of choline, creatine, NAA, and lipid singlets at 1.5 T using PRESS excitation with applications to the study of brain and head and neck tumors. J Magn Reson. 1998;133(2):243-54.
  • Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 2000;50(3):215-26.
  • Elkhaled A, Jalbert L, Constantin A, Yoshihara HA, Phillips JJ, Molinaro AM, et al. Characterization of metabolites in infiltrating gliomas using ex vivo H high-resolution magic angle spinning spectroscopy. NMR Biomed 2014;27(5):578-93.
  • Hattingen E, Bahr O, Rieger J, Blasel S, Steinbach J, Pilatus U. Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 2013;8(3):56439.
  • McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ. An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 2001;13(2):167-77.
  • Vanhamme L, Van Huffel S, Van Hecke P, van Ormondt D. Time-domain quantification of series of biomedical magnetic resonance spectroscopy signals. J Magn Reson 1999;140(1):120-30.
  • Glantz S. Primer of Biostatistics. 5th ed: McGraw Hill 2001;343-9.
  • Glantz S. Primer of Biostatistics. 5th ed: McGraw Hill 2001;354-62.
  • Qiao H, Zhang X, Zhu XH, Du F, Chen W. In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4 T and 7 T. Magn Reson Imaging 2006;24(10):1281-6.
  • Sweet RA, Panchalingam K, Pettegrew JW, McClure RJ, Hamilton RL, Lopez OL, et al. Psychosis in Alzheimer disease: postmortem magnetic resonance spectroscopy evidence of excess neuronal and membrane phospholipid pathology. Neurobiol Aging 2002;23(4):547-53.
  • Yacubian J, de Castro CC, Ometto M, Barbosa E, de Camargo CP, Tavares H, et al. 31P-spectroscopy of frontal lobe in schizophrenia: alterations in phospholipid and high-energy phosphate metabolism. Schizophr Res 2002;58(2-3):117-22.
  • Husted CA, Goodin DS, Hugg JW, Maudsley AA, Tsuruda JS, de Bie SH, et al. Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 1994;36(2):157-65.
  • Constans JM, Meyerhoff DJ, Norman D, Fein G, Weiner MW. 1H and 31P magnetic resonance spectroscopic imaging of white matter signal hyperintensity areas in elderly subjects. Neuroradiology 1995;37(8):615-23.
There are 19 citations in total.

Details

Subjects Health Care Administration
Journal Section Clinical Research
Authors

Esin Öztürk Işık This is me

Publication Date August 2, 2016
Submission Date April 22, 2016
Published in Issue Year 2016

Cite

APA Öztürk Işık, E. (2016). Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T. Journal of Istanbul Faculty of Medicine, 79(2), 66-71. https://doi.org/10.18017/iuitfd.78438
AMA Öztürk Işık E. Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T. İst Tıp Fak Derg. August 2016;79(2):66-71. doi:10.18017/iuitfd.78438
Chicago Öztürk Işık, Esin. “Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T”. Journal of Istanbul Faculty of Medicine 79, no. 2 (August 2016): 66-71. https://doi.org/10.18017/iuitfd.78438.
EndNote Öztürk Işık E (August 1, 2016) Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T. Journal of Istanbul Faculty of Medicine 79 2 66–71.
IEEE E. Öztürk Işık, “Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T”, İst Tıp Fak Derg, vol. 79, no. 2, pp. 66–71, 2016, doi: 10.18017/iuitfd.78438.
ISNAD Öztürk Işık, Esin. “Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T”. Journal of Istanbul Faculty of Medicine 79/2 (August 2016), 66-71. https://doi.org/10.18017/iuitfd.78438.
JAMA Öztürk Işık E. Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T. İst Tıp Fak Derg. 2016;79:66–71.
MLA Öztürk Işık, Esin. “Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T”. Journal of Istanbul Faculty of Medicine, vol. 79, no. 2, 2016, pp. 66-71, doi:10.18017/iuitfd.78438.
Vancouver Öztürk Işık E. Z-SCORE BASED INVESTIGATION OF IN VIVO PHOSPHORUS MAGNETIC RESONANCE SPECTROSCOPIC IMAGING PEAKS OF BRAIN TUMORS AT 3T. İst Tıp Fak Derg. 2016;79(2):66-71.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61