Research Article
BibTex RIS Cite

Türk böbrek nakilli hastalarda üridine difosfat-glukuronoziltransferaz polimorfizmlerinin mikofenolik asit’in kan konsantrasyonları üzerine etkileri

Year 2017, , 104 - 110, 01.09.2017
https://doi.org/10.18017/iuitfd.363585

Abstract

Amaç: Mikofenolik asitin
(MPA) farmakokinetiğinde bireyler arasında farklılıklar vardır. MPA öncelikle
uridin difosfat-glukuronosiltransferazlar (UGT) tarafından metabolize olur.
UGT2B7, MPA glukuronidasyonu için önemli bir UGT
dir.
Çalışmanın amacı, Türk böbrek nakilli hastalarda UGT2B7 His268Tyr (802C>T)
polimorfizmlerinde MPA farmakokinetiğini incelemektir.

Gereç ve Yöntem: Çalışmaya renal transplant
yapılmış, 65 hasta dahil edildi. UGT2B7 His268Tyr (802C>T) genotiplemesi
PCR-RFLP kullanılarak yapıldı. MPA konsantrasyonları Klonlanmış Enzim Donör
Immunoassay (CEDIA) ile belirlendi. Tüm hastalar çalışma süresi boyunca akut
rejeksiyon ve greft fonksiyonu açısından izlendi.

Bulgular: Hastalar arasında UGT2B7
(802C>T) CC, CT ve TT genotip frekansları sırasıyla 24 (%36,9), 36 (%55,4)
ve 5 (%7,7) idi. Üçüncü ve altıncı aylarda MPA düzeyleri UGT2B7 (802C>T) TT
taşıyıcılarında CT ve CC taşıyanlara göre sırasıyla istatistiksel olarak
anlamlı derecede yüksek bulundu (p=0,038, p=0,021). MPA
nın
doz/kan konsantrasyonu oranı nakil sonrası altıncı ayda TT genotipi
taşıyanlarda CC ve CT genotipi taşıyanlara göre daha yüksekti (p=0,042). TT
genotipi taşıyan bireyler sırasıyla CC ve CT genotiplerine kıyasla üçüncü ve
altıncı ayda düşük doz gereksinimleri göstermişlerdir (p=0,109, p=0,238).
Ayrıca UGT2B7 (802C>T) polimorfizmi ile akut rejeksiyon arasında bir ilişki
bulunmamıştır (p>0,05).







Sonuç: Bizim sonuçlarımız, böbrek nakilli
hastalarda UGT2B7 (802C>T) polimorfizmi ile MPA farmakokinetiği arasında bir
korelasyon olduğunu göstermiştir. UGT2B7 polimorfizminin saptanması, en uygun
MPA kan konsantrasyonları hedefi belirlenmesine yardımcı olabilir.

References

  • 1. Ashavaid T, Raje H, Shalia K, Shah B. Effect of gene polymorphisms on the levels of calcineurin inhibitors in Indian renal transplant recipients. Indian J Nephrol 2010;20(3):146-51.
  • 2. Khakhar AK, Shahinian VB, House AA, Muirhead N, Hollomby DJ, Leckie SH, et al. The impact of allograft nephrectomy on percent panel reactive antibody and clinical outcome. Transpl Proc 2003;35(2):862-63.
  • 3. Roth D, Colona J, Burke GW, Ciancio G, Esquenazi V, Miller J. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. Transplantation 1998;65(2):248-52.
  • 4. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007;46(1):13-58.
  • 5. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34(6):429-55.
  • 6. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics 2003;3(3):136-58.
  • 7. Lin GF, Guo WC, Chen JG, Qin YO, Golka K, Xiang CQ, et al. An association of UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci 2005;85(1):502-6.
  • 8. Bernard O, Guillemette O. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occuring variant. Drug Metab Dispos 2004;32(8):775-8.
  • 9. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 2003;3(5):534-42.
  • 10. Henderson DR, Friedman SB, Harris JD, Manning WB, Zoccoli MA. CEDIA, a new homogeneous immunoassay system. Clin Chem 1986;32(9):1637-41.
  • 11. De Loor H, Naesens M, Verbeke K, Vanrenterghem Y, Kuypers DR. Stability of mycophenolic acid and glucuronide metabolites in human plasma and the impact of deproteinization methodology. Clinica Chim Acta 2008;389(1-2):87-92. 12. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999;55(2):713-23.
  • 13. Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB. Immunosuppression: evolution in practice and trends, Am J Transplant 2006;6(5):1111-31.
  • 14. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004;14(8):501-15.
  • 15. Pou L, Brunet M, Cantarell C, Vidal E, Oppenheimer F, Monforte V, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001;23(1):35-8.
  • 16. Djebli N, Picard N, Rérolle JP, Le Meur Y, Marquet P. Influence of the UGTB27 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007;17(5):321-30.
  • 17. Pazik J, Ołdak M, Lewandowski Z, Podgórska M, Sitarek E, Płoski R, et al. Uridine diphosphate glucuronosyltransferase 2B7 variant p.His268Tyr as a predictor of kidney allograft early acute rejection. Transplant Proc 2013;45(4):1516-9.
  • 18. Michelon H, Konig J, Durrbach A, Quteineh l, Verstuyft C, Furlan V, et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics 2010;11(2):1703-13.
  • 19. Woillard JB, Rerolle JP, Picard N, Rousseau A, Drouet M, Munteanu E, et al. Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 2010;69(6):675-83.
  • 20. Xie XC, Li J, Wang HY, Li HL, Liu J, Fu Q, et al. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin 2015;36(5):644-50.
  • 21. Bernard O, Tojcic J, Joumault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphism of UGT1A8 and UGT2B7 metabolizing enzymeson the formation of phenolic and acly glucuronides of mycophenolic acid. Drug Metab Dispos 2006;34(9):1539-45.
  • 22. Levesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther 2007;81(3):392-400.
  • 23. Kagaya H, Inoue K, Miura M, Satoh S, Saito M, Tada H, et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal tranpslant recipients. Eur J Clin Pharmacol 2007;63(3):279-88.
  • 24. Yu ZC, Zhou PJ, Wang XH, Françoise B, Xu D, Zhang WX, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin 2017: DOI: 10.1038/aps.2017.115.
  • 25. Le Meur Y, Büchler M, Thierry A, Caillard S, Villemain F, Lavaud S, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007;7(11):2496-503.

Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients

Year 2017, , 104 - 110, 01.09.2017
https://doi.org/10.18017/iuitfd.363585

Abstract

Objective: The pharmacokinetics of
mycophenolic acid (MPA) differ among individuals. MPA is primarily metabolized
by uridine diphosphate-glucuronosyltransferase (UGT), and UGT2B7 is an
important UGT for the glucuronidation of MPA. This study aimed to examine the
pharmacokinetics of MPA in Turkish renal transplant patients with UGT2B7
His268Tyr (802C>T) polymorphisms.

Materials and Methods: Sixty-five renal
transplants patients were included in this study. UGT2B7 (802C>T) genotyping
was performed using PCR-RFLP. Concentrations of MPA were determined using a cloned
enzyme donor immunoassay (CEDIA). All patients were monitored for acute
rejection and graft function during the study period.

Results: The UGT2B7 (802C>T) CC, CT, and
TT genotype frequencies among patients were 24 (36.9%), 36 (55.4%), and 5
(7.7%) respectively. At three and six months post-transplant respectively,
levels of MPA were significantly higher in UGT2B7 (802C>T) TT carriers than
in CT and CC carriers (p=0.038; p=0.021). The ratio of plasma concentration to
MPA dosage for patients with 802C>T TT genotype was higher than that of CC
and CT genotypes at six months post-transplant (p=0.042). Individuals carrying
the TT genotype demonstrated lower dose requirements at three and six months
compared with those of the CC and CT genotypes respectively (p=0.109, p=0.238).
Additionally, there was no association found between UGT2B7 (802C>T)
polymorphism and acute rejection (p>0.05).







Conclusion: Our results demonstrated a
correlation between the UGT2B7 (802C>T) polymorphism and MPA
pharmacokinetics among renal transplant patients. Determination of UGT2B7
polymorphism may be helpful for determining the optimum dose of MPA to achieve
the target plasma concentration. 

References

  • 1. Ashavaid T, Raje H, Shalia K, Shah B. Effect of gene polymorphisms on the levels of calcineurin inhibitors in Indian renal transplant recipients. Indian J Nephrol 2010;20(3):146-51.
  • 2. Khakhar AK, Shahinian VB, House AA, Muirhead N, Hollomby DJ, Leckie SH, et al. The impact of allograft nephrectomy on percent panel reactive antibody and clinical outcome. Transpl Proc 2003;35(2):862-63.
  • 3. Roth D, Colona J, Burke GW, Ciancio G, Esquenazi V, Miller J. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. Transplantation 1998;65(2):248-52.
  • 4. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 2007;46(1):13-58.
  • 5. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34(6):429-55.
  • 6. Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics 2003;3(3):136-58.
  • 7. Lin GF, Guo WC, Chen JG, Qin YO, Golka K, Xiang CQ, et al. An association of UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci 2005;85(1):502-6.
  • 8. Bernard O, Guillemette O. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occuring variant. Drug Metab Dispos 2004;32(8):775-8.
  • 9. Shaw LM, Korecka M, Venkataramanan R, Goldberg L, Bloom R, Brayman KL. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 2003;3(5):534-42.
  • 10. Henderson DR, Friedman SB, Harris JD, Manning WB, Zoccoli MA. CEDIA, a new homogeneous immunoassay system. Clin Chem 1986;32(9):1637-41.
  • 11. De Loor H, Naesens M, Verbeke K, Vanrenterghem Y, Kuypers DR. Stability of mycophenolic acid and glucuronide metabolites in human plasma and the impact of deproteinization methodology. Clinica Chim Acta 2008;389(1-2):87-92. 12. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999;55(2):713-23.
  • 13. Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB. Immunosuppression: evolution in practice and trends, Am J Transplant 2006;6(5):1111-31.
  • 14. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 2004;14(8):501-15.
  • 15. Pou L, Brunet M, Cantarell C, Vidal E, Oppenheimer F, Monforte V, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001;23(1):35-8.
  • 16. Djebli N, Picard N, Rérolle JP, Le Meur Y, Marquet P. Influence of the UGTB27 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics 2007;17(5):321-30.
  • 17. Pazik J, Ołdak M, Lewandowski Z, Podgórska M, Sitarek E, Płoski R, et al. Uridine diphosphate glucuronosyltransferase 2B7 variant p.His268Tyr as a predictor of kidney allograft early acute rejection. Transplant Proc 2013;45(4):1516-9.
  • 18. Michelon H, Konig J, Durrbach A, Quteineh l, Verstuyft C, Furlan V, et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics 2010;11(2):1703-13.
  • 19. Woillard JB, Rerolle JP, Picard N, Rousseau A, Drouet M, Munteanu E, et al. Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 2010;69(6):675-83.
  • 20. Xie XC, Li J, Wang HY, Li HL, Liu J, Fu Q, et al. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin 2015;36(5):644-50.
  • 21. Bernard O, Tojcic J, Joumault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphism of UGT1A8 and UGT2B7 metabolizing enzymeson the formation of phenolic and acly glucuronides of mycophenolic acid. Drug Metab Dispos 2006;34(9):1539-45.
  • 22. Levesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther 2007;81(3):392-400.
  • 23. Kagaya H, Inoue K, Miura M, Satoh S, Saito M, Tada H, et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal tranpslant recipients. Eur J Clin Pharmacol 2007;63(3):279-88.
  • 24. Yu ZC, Zhou PJ, Wang XH, Françoise B, Xu D, Zhang WX, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin 2017: DOI: 10.1038/aps.2017.115.
  • 25. Le Meur Y, Büchler M, Thierry A, Caillard S, Villemain F, Lavaud S, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007;7(11):2496-503.
There are 24 citations in total.

Details

Subjects Health Care Administration
Journal Section Clinical Research
Authors

Hayriye Şentürk Çiftçi This is me

Tzevat Tefik

Meltem Savran Karadeniz

Erol Demir

İsmet Nane

Fatma Savran Oğuz

Aydın Türkmen This is me

Publication Date September 1, 2017
Submission Date June 9, 2017
Published in Issue Year 2017

Cite

APA Şentürk Çiftçi, H., Tefik, T., Savran Karadeniz, M., Demir, E., et al. (2017). Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients. Journal of Istanbul Faculty of Medicine, 80(3), 104-110. https://doi.org/10.18017/iuitfd.363585
AMA Şentürk Çiftçi H, Tefik T, Savran Karadeniz M, Demir E, Nane İ, Savran Oğuz F, Türkmen A. Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients. İst Tıp Fak Derg. September 2017;80(3):104-110. doi:10.18017/iuitfd.363585
Chicago Şentürk Çiftçi, Hayriye, Tzevat Tefik, Meltem Savran Karadeniz, Erol Demir, İsmet Nane, Fatma Savran Oğuz, and Aydın Türkmen. “Effect of Uridine Diphosphate-Glucuronosyltransferase Polymorphisms on the Plasma Concentrations of Mycophenolic Acid in Turkish Renal Transplant Patients”. Journal of Istanbul Faculty of Medicine 80, no. 3 (September 2017): 104-10. https://doi.org/10.18017/iuitfd.363585.
EndNote Şentürk Çiftçi H, Tefik T, Savran Karadeniz M, Demir E, Nane İ, Savran Oğuz F, Türkmen A (September 1, 2017) Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients. Journal of Istanbul Faculty of Medicine 80 3 104–110.
IEEE H. Şentürk Çiftçi, T. Tefik, M. Savran Karadeniz, E. Demir, İ. Nane, F. Savran Oğuz, and A. Türkmen, “Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients”, İst Tıp Fak Derg, vol. 80, no. 3, pp. 104–110, 2017, doi: 10.18017/iuitfd.363585.
ISNAD Şentürk Çiftçi, Hayriye et al. “Effect of Uridine Diphosphate-Glucuronosyltransferase Polymorphisms on the Plasma Concentrations of Mycophenolic Acid in Turkish Renal Transplant Patients”. Journal of Istanbul Faculty of Medicine 80/3 (September 2017), 104-110. https://doi.org/10.18017/iuitfd.363585.
JAMA Şentürk Çiftçi H, Tefik T, Savran Karadeniz M, Demir E, Nane İ, Savran Oğuz F, Türkmen A. Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients. İst Tıp Fak Derg. 2017;80:104–110.
MLA Şentürk Çiftçi, Hayriye et al. “Effect of Uridine Diphosphate-Glucuronosyltransferase Polymorphisms on the Plasma Concentrations of Mycophenolic Acid in Turkish Renal Transplant Patients”. Journal of Istanbul Faculty of Medicine, vol. 80, no. 3, 2017, pp. 104-10, doi:10.18017/iuitfd.363585.
Vancouver Şentürk Çiftçi H, Tefik T, Savran Karadeniz M, Demir E, Nane İ, Savran Oğuz F, Türkmen A. Effect of uridine diphosphate-glucuronosyltransferase polymorphisms on the plasma concentrations of mycophenolic acid in Turkish renal transplant patients. İst Tıp Fak Derg. 2017;80(3):104-10.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61