Research Article
BibTex RIS Cite

THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS

Year 2021, , 472 - 481, 01.10.2021
https://doi.org/10.26650/IUITFD.2021.896230

Abstract

Objective: Tissue Inhibitor of Metalloproteinase-3 human (TIMP3) is one of tissue inhibitors of metalloproteinases (TIMPs), which binds to the components of the extracellular matrix, and has crucial roles in atherosclerogenesis and adipose tissue differentiation. In this study, it was aimed to determine the effects of TIMP3 gene expression levels on severity of atherosclerosis in different tissues. Material and Methods: The first group of the study (evaluated for coronary artery disease) were cases classified as high and low plaque scores according to the degree and location of atherosclerotic lesions. In the second group (post-mortem cases) were male cadavers who died due to coronary heart disease (CHD, n=26) and non-cardiac trauma (T-nonP, n=4). The TIMP3 expression levels were examined in leukocyte and peri-coronary epicardial adipose tissues (EAT) samples (n=69 and n=34, respectively) of the first group and EAT and coronary artery samples (n=12 and n=30, respectively) of the second group using quantitative RT-PCR. In addition, the protein expressions of TIMP3 were analysed on artery sections by immunofluorestaining. Results: In the post-mortem study group, the TIMP3 expression levels were found to increase in no plaque segments of arteries of cases with CHD (CHD-nonP) compared to advanced atherosclerotic arteries (CHD-P) and normal arteries of T-nonP cases (p=0.01 and p=0.05, respectively). The TIMP3 expressions in EATs and leukocytes were not statistically significant between the study groups. In addition, TIMP3 protein was detected in normal arteries, peri-coronary EATs and mostly in macrophages- rich areas in advanced atherosclerotic arteries. Conclusion: Tissue Inhibitor of Metalloproteinase-3 human (TIMP3) expression levels increase in normal coronary arterial segments of cases with CHD, which depict a protective role of TIMP3 in development of atherosclerosis.

Supporting Institution

İstanbul Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

TSA-2016-21496 ve 28473

Thanks

We are grateful to Dr. Sema Bilgic for her contribution in the application of cryosection method.

References

  • 1. Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003;10:267-74. [CrossRef]
  • 2. Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol 2018;81:241-330. [CrossRef]
  • 3. Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 2010;48(3):558-63. [CrossRef]
  • 4. Lindsey ML. MMP induction and inhibition in myocardial infarction. Heart Fail Rev 2004;9(1):7-19. [CrossRef]
  • 5. Yalcinkaya E, Celik M, Bugan B. Extracellular matrix turnover: a balance between MMPs and their inhibitors. Arq Bras Cardiol 2014;102(5):519-20. [CrossRef]
  • 6. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007;8(3):221-33. [CrossRef]
  • 7. Fabunmi RP, Sukhova GK, Sugiyama S, Libby P. Expression of tissue inhibitor of metalloproteinases-3 in human atheroma and regulation in lesion-associated cells: a potential protective mechanism in plaque stability. Circ Res 1998;83(3):270-8. [CrossRef]
  • 8. Chintalgattu V, Greenberg J, Singh S, Chiueh V, Gilbert A, O’Neill JW, et al. Utility of Glycosylated TIMP3 molecules: Inhibition of MMPs and TACE to improve cardiac function in rat myocardial infarct model. Pharmacol Res Perspect 2018;6(6):e00442. [CrossRef]
  • 9. Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC. Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol 2008;28(9):1647-53. [CrossRef]
  • 10. Casagrande V, Menghini R, Menini S, Marino A, Marchetti V, Cavalera M, et al. Overexpression of tissue inhibitor of metalloproteinase 3 in macrophages reduces atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 2012;32(1):74- 81. [CrossRef]
  • 11. Bernot D, Barruet E, Poggi M, Bonardo B, Alessi MC, Peiretti F. Down-regulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) expression is necessary for adipocyte differentiation. J Biol Chem 2010;285(9):6508-14. [CrossRef]
  • 12. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 2010;17(4):332-41. [CrossRef]
  • 13. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 2014;4(6):416-29.
  • 14. Psaltis PJ, Talman AH, Munnur K, Cameron JD, Ko BSH, Meredith IT, et al. Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography. Int J Cardiovasc Imaging 2016;32(2):317-328. [CrossRef]
  • 15. Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab 2006;91(11):4620- 7. [CrossRef]
  • 16. Sinning C, Lillpopp L, Appelbaum S, Ojeda F, Zeller T, Schnabel R, et al. Angiographic score assessment improves cardiovascular risk prediction: the clinical value of SYNTAX and Gensini application. Clin Res Cardiol 2013;102:495-503. [CrossRef]
  • 17. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis, a report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 1995;92(5):1355-74. [CrossRef]
  • 18. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39(2):175-91. [CrossRef]
  • 19. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685-95. [CrossRef]
  • 20. Rojas J, Salazar J, Martínez MS, Palmar J, Bautista J, Chávez- Castillo M, et al. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. Scientifica (Cairo) 2015;2015:851252. [CrossRef]
  • 21. Cardellini M, Menghini R, Luzi A, Davato F, Cardolini I, D’Alfonso R, et al. Decreased IRS2 and TIMP3 expression in monocytes from offspring of type 2 diabetic patients is correlated with insulin resistance and increased intimamedia thickness. Diabetes 2011;60(12):3265-70. [CrossRef]
  • 22. Cardellini M, Menghini R, Martelli E, Casagrande V, Marino A, Rizza S, et al. TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes 2009;58(10):2396-401. [CrossRef]
  • 23. Li T, Li X, Feng Y, Dong G, Wang Y, Yang J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm 2020;2020:3872367. [CrossRef]
  • 24. Johnson JL, Jenkins NP, Huang WC, Di Gregoli K, Sala- Newby GB, Scholtes VP, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm 2014;2014:276457. [CrossRef]
  • 25. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009;19(3):211-7. [CrossRef]
  • 26. Hajsadeghi F, Nabavi V, Bhandari A, Choi A, Vincent H, Flores F, et al. Increased epicardial adipose tissue is associated with coronary artery disease and major adverse cardiovascular events. Atherosclerosis 2014;237(2):486-9. [CrossRef]
  • 27. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003;88(11):5163-8. [CrossRef]
  • 28. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29(5):781-6. [CrossRef]
  • 29. Verhagen SN, Rutten A, Meijs MF, Isgum I, Cramer MJ, van der Graaf Y, Visseren FL. Relationship between myocardial bridges and reduced coronary atherosclerosis in patients with angina pectoris. Int J Cardiol 2013;167(3):883-8. [CrossRef]
  • 30. Mahabadi AA, Lehmann N, Kälsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging 2014;7(9):909-16. [CrossRef]
  • 31. Menghini R, Casagrande V, Menini S, Marino A, Marzano V, Hribal ML, et al. MTIMP3 overexpression in macrophages protects from insulin resistance, adipose inflammation, and nonalcoholic fatty liver disease in mice. Diabetes 2012;61(12):454-62. [CrossRef]
  • 32. Pidsley R, Mill J. Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 2011;69(12):146-56. [CrossRef]

METALLOPROTEİNAZ-3 DOKU İNHİBİTÖRÜNÜN (TIMP3) İFADE DÜZEYLERİ İLE ATEROSKLEROZUN ŞİDDETİ ARASINDAKİ İLİŞKİ

Year 2021, , 472 - 481, 01.10.2021
https://doi.org/10.26650/IUITFD.2021.896230

Abstract

Amaç: Hücre dışı matriksin bileşenlerine bağlanan TIMP3, metaloproteinazların doku inhibitörlerinden (TIMP’ler) biridir ve ateroskleroz gelişimi ile yağ dokusu farklılaşmasında rol oynamaktadır. Bu çalışmada, farklı dokulardaki TIMP3 gen ifade düzeylerinin ateroskleroz şiddeti üzerine olan etkisinin belirlenmesi amaçlandı. Gereç ve Yöntemler: Çalışmanın ilk grubu (koroner arter hastalığı için değerlendirilen), aterosklerotik lezyonların derecesine ve yerine göre yüksek ve düşük plak skoru olarak sınıflandırılan vakalardı. İkinci grup (post-mortem vakalar), koroner kalp hastalığı (CHD, n=26) ve kardiyak olmayan travma (T-nonP, n=4) nedeniyle ölen erkek kadavralardı. Birinci grubun lökosit ve peri-koroner epikardiyal yağ doku (EYD) örnekleri (sırasıyla, n=69 ve n=34) ile ikinci grubun EYD ve koroner arter örneklerinde (sırasıyla, n=12 ve n=30) TIPM3 ifade düzeyleri kantitatif RT-PCR ile incelendi. Ek olarak, TIMP3 protein lokalizasyonları, immunfluoresans tekniği ile belirlendi. Bulgular: Post-mortem çalışma grubunda, TIMP3 ifade düzeylerinin CHD’li vakaların plaksız arter segmentlerinde (CHD-nonP), ileri aterosklerotik arterlere (CHD-P) ve T-nonP vakaların normal arterlere kıyasla arttığı bulundu (sırasıyla, p=0.01 ve p=0.05). Lökosit ve EYD’lerdeki TIMP3 gen ifadeleri, çalışma grupları arasında istatistiksel olarak anlamlı fark göstermedi. Ek olarak, TIMP3 proteini normal arter, peri-koroner EYD ve ileri aterosklerotik arterde makrofajların yoğun olduğu alanlarda tespit edildi. Sonuç: CHD’li vakaların normal koroner arteriyel segmentlerinde TIMP3 ifadesindeki artışın ateroskleroz gelişimine karşı koruyucu bir etkisi olabileceğini göstermektedir

Project Number

TSA-2016-21496 ve 28473

References

  • 1. Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003;10:267-74. [CrossRef]
  • 2. Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv Pharmacol 2018;81:241-330. [CrossRef]
  • 3. Zamilpa R, Lindsey ML. Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 2010;48(3):558-63. [CrossRef]
  • 4. Lindsey ML. MMP induction and inhibition in myocardial infarction. Heart Fail Rev 2004;9(1):7-19. [CrossRef]
  • 5. Yalcinkaya E, Celik M, Bugan B. Extracellular matrix turnover: a balance between MMPs and their inhibitors. Arq Bras Cardiol 2014;102(5):519-20. [CrossRef]
  • 6. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007;8(3):221-33. [CrossRef]
  • 7. Fabunmi RP, Sukhova GK, Sugiyama S, Libby P. Expression of tissue inhibitor of metalloproteinases-3 in human atheroma and regulation in lesion-associated cells: a potential protective mechanism in plaque stability. Circ Res 1998;83(3):270-8. [CrossRef]
  • 8. Chintalgattu V, Greenberg J, Singh S, Chiueh V, Gilbert A, O’Neill JW, et al. Utility of Glycosylated TIMP3 molecules: Inhibition of MMPs and TACE to improve cardiac function in rat myocardial infarct model. Pharmacol Res Perspect 2018;6(6):e00442. [CrossRef]
  • 9. Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC. Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol 2008;28(9):1647-53. [CrossRef]
  • 10. Casagrande V, Menghini R, Menini S, Marino A, Marchetti V, Cavalera M, et al. Overexpression of tissue inhibitor of metalloproteinase 3 in macrophages reduces atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 2012;32(1):74- 81. [CrossRef]
  • 11. Bernot D, Barruet E, Poggi M, Bonardo B, Alessi MC, Peiretti F. Down-regulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) expression is necessary for adipocyte differentiation. J Biol Chem 2010;285(9):6508-14. [CrossRef]
  • 12. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 2010;17(4):332-41. [CrossRef]
  • 13. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT. Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 2014;4(6):416-29.
  • 14. Psaltis PJ, Talman AH, Munnur K, Cameron JD, Ko BSH, Meredith IT, et al. Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography. Int J Cardiovasc Imaging 2016;32(2):317-328. [CrossRef]
  • 15. Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab 2006;91(11):4620- 7. [CrossRef]
  • 16. Sinning C, Lillpopp L, Appelbaum S, Ojeda F, Zeller T, Schnabel R, et al. Angiographic score assessment improves cardiovascular risk prediction: the clinical value of SYNTAX and Gensini application. Clin Res Cardiol 2013;102:495-503. [CrossRef]
  • 17. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis, a report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 1995;92(5):1355-74. [CrossRef]
  • 18. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39(2):175-91. [CrossRef]
  • 19. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352(16):1685-95. [CrossRef]
  • 20. Rojas J, Salazar J, Martínez MS, Palmar J, Bautista J, Chávez- Castillo M, et al. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. Scientifica (Cairo) 2015;2015:851252. [CrossRef]
  • 21. Cardellini M, Menghini R, Luzi A, Davato F, Cardolini I, D’Alfonso R, et al. Decreased IRS2 and TIMP3 expression in monocytes from offspring of type 2 diabetic patients is correlated with insulin resistance and increased intimamedia thickness. Diabetes 2011;60(12):3265-70. [CrossRef]
  • 22. Cardellini M, Menghini R, Martelli E, Casagrande V, Marino A, Rizza S, et al. TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes 2009;58(10):2396-401. [CrossRef]
  • 23. Li T, Li X, Feng Y, Dong G, Wang Y, Yang J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm 2020;2020:3872367. [CrossRef]
  • 24. Johnson JL, Jenkins NP, Huang WC, Di Gregoli K, Sala- Newby GB, Scholtes VP, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm 2014;2014:276457. [CrossRef]
  • 25. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 2009;19(3):211-7. [CrossRef]
  • 26. Hajsadeghi F, Nabavi V, Bhandari A, Choi A, Vincent H, Flores F, et al. Increased epicardial adipose tissue is associated with coronary artery disease and major adverse cardiovascular events. Atherosclerosis 2014;237(2):486-9. [CrossRef]
  • 27. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003;88(11):5163-8. [CrossRef]
  • 28. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29(5):781-6. [CrossRef]
  • 29. Verhagen SN, Rutten A, Meijs MF, Isgum I, Cramer MJ, van der Graaf Y, Visseren FL. Relationship between myocardial bridges and reduced coronary atherosclerosis in patients with angina pectoris. Int J Cardiol 2013;167(3):883-8. [CrossRef]
  • 30. Mahabadi AA, Lehmann N, Kälsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging 2014;7(9):909-16. [CrossRef]
  • 31. Menghini R, Casagrande V, Menini S, Marino A, Marzano V, Hribal ML, et al. MTIMP3 overexpression in macrophages protects from insulin resistance, adipose inflammation, and nonalcoholic fatty liver disease in mice. Diabetes 2012;61(12):454-62. [CrossRef]
  • 32. Pidsley R, Mill J. Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 2011;69(12):146-56. [CrossRef]
There are 32 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Gizem Çelebi 0000-0002-4985-3632

Filiz Güçlü Geyik This is me 0000-0003-4257-9930

Emine Dilek Yılmazbayhan 0000-0002-4836-567X

Deniz Özsoy This is me 0000-0001-6675-2836

Cenk Eray Yıldız This is me 0000-0002-8630-1570

Mustafa Yıldız 0000-0003-3502-4785

Doğaç Öksen This is me 0000-0003-4548-9543

Mehmet Cavlak 0000-0003-3059-3372

Evrim Komurcu-bayrak 0000-0003-1271-1208

Project Number TSA-2016-21496 ve 28473
Publication Date October 1, 2021
Submission Date March 13, 2021
Published in Issue Year 2021

Cite

APA Çelebi, G., Güçlü Geyik, F., Yılmazbayhan, E. D., Özsoy, D., et al. (2021). THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS. Journal of Istanbul Faculty of Medicine, 84(4), 472-481. https://doi.org/10.26650/IUITFD.2021.896230
AMA Çelebi G, Güçlü Geyik F, Yılmazbayhan ED, Özsoy D, Yıldız CE, Yıldız M, Öksen D, Cavlak M, Komurcu-bayrak E. THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS. İst Tıp Fak Derg. October 2021;84(4):472-481. doi:10.26650/IUITFD.2021.896230
Chicago Çelebi, Gizem, Filiz Güçlü Geyik, Emine Dilek Yılmazbayhan, Deniz Özsoy, Cenk Eray Yıldız, Mustafa Yıldız, Doğaç Öksen, Mehmet Cavlak, and Evrim Komurcu-bayrak. “THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS”. Journal of Istanbul Faculty of Medicine 84, no. 4 (October 2021): 472-81. https://doi.org/10.26650/IUITFD.2021.896230.
EndNote Çelebi G, Güçlü Geyik F, Yılmazbayhan ED, Özsoy D, Yıldız CE, Yıldız M, Öksen D, Cavlak M, Komurcu-bayrak E (October 1, 2021) THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS. Journal of Istanbul Faculty of Medicine 84 4 472–481.
IEEE G. Çelebi, F. Güçlü Geyik, E. D. Yılmazbayhan, D. Özsoy, C. E. Yıldız, M. Yıldız, D. Öksen, M. Cavlak, and E. Komurcu-bayrak, “THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS”, İst Tıp Fak Derg, vol. 84, no. 4, pp. 472–481, 2021, doi: 10.26650/IUITFD.2021.896230.
ISNAD Çelebi, Gizem et al. “THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS”. Journal of Istanbul Faculty of Medicine 84/4 (October 2021), 472-481. https://doi.org/10.26650/IUITFD.2021.896230.
JAMA Çelebi G, Güçlü Geyik F, Yılmazbayhan ED, Özsoy D, Yıldız CE, Yıldız M, Öksen D, Cavlak M, Komurcu-bayrak E. THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS. İst Tıp Fak Derg. 2021;84:472–481.
MLA Çelebi, Gizem et al. “THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS”. Journal of Istanbul Faculty of Medicine, vol. 84, no. 4, 2021, pp. 472-81, doi:10.26650/IUITFD.2021.896230.
Vancouver Çelebi G, Güçlü Geyik F, Yılmazbayhan ED, Özsoy D, Yıldız CE, Yıldız M, Öksen D, Cavlak M, Komurcu-bayrak E. THE RELATIONSHIP BETWEEN THE EXPRESSION LEVELS OF TISSUE INHIBITOR OF METALLOPROTEINASES-3 (TIMP3) AND SEVERITY OF ATHEROSCLEROSIS. İst Tıp Fak Derg. 2021;84(4):472-81.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61