Review
BibTex RIS Cite

COVID-19’DA İMMÜN YANITLAR

Year 2021, , 256 - 263, 25.04.2021
https://doi.org/10.26650/IUITFD.2020.0056

Abstract

Şiddetli akut solunum sendromu ilişkili bir coronavirüsün (Severe acute respiratory syndrome-related coronavirus 2; SARS-CoV-2) etiyolojik etkeni olduğu coronavirüs hastalığı 19 (coronavirus disease 19; COVID-19) pandemisi mevcut ve olası sonuçları açısından tüm dünyayı etkisi altına almıştır. COVID-19 oldukça özgün virolojik, klinik ve immünolojik karakteristik özelliklere sahiptir. COVID19’da bağışık yanıtlar enfeksiyonunun kontrol altına alınmasına imkan sağlayan yanıtlardan ani ve hızlı gelişen yoğun enflamasyon ve sitokin fırtınası ile karakterize pulmoner trombozise kadar uzunan geniş bir yelpazede değişkenlik gösterebilmektedir. Bu derlemede COVID-19’un immünpatogenizine ilişkin bilimsel verilerin irdelenmesi amaçlanmıştır.

References

  • 1. Zhou P, Yan X-L, Wang X-G, Hu B, Zhang L, Zhang W. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-3. [CrossRef]
  • 2. Gorbalenya AE, Baker SC, Baric RS, Groot RJ, Drosten C, Haagmans BL, et al. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndromerelated coronavirus: classifying. Nat Microbiol 2020;5(4):536-54. [CrossRef]
  • 3. Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NM. et al. Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak. biorRxiv 2020; [CrossRef]
  • 4. Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology 2020;158(6):1518-19. [CrossRef]
  • 5. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet 2020;395:809-81. [CrossRef]
  • 6. Guan WJ. Ni, Z-y, Hu Y, Liang W-h, Ou C-q, He J-x. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20. [CrossRef]
  • 7. Yang J, Zhenga Y, Goua X, Pua K, Chena Z, Guo Q. et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. International Journal of Infectious Diseases 2020;94:91-95. [CrossRef]
  • 8. Chen N, Zhou M, Dong Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. [CrossRef]
  • 9. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581(7809):465-9. [CrossRef]
  • 10. Goyal A, Fabian C-O, E, Schiffer J.T. Potency and timing of antiviral therapy as determinants of duration of SARS CoV-2 shedding and intensity of inflammatory response. MedRxiv 2020; [CrossRef]
  • 11. Chang, Mo G, Yuan X, Tao Y, Peng X, Wang F-S. et al. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection. Am J Respir Crit Care Med 2020;201(9):1150-52. [CrossRef]
  • 12. Lin WH, Kouyos RD, Adams RJ, Grenfell BT, Griffin DE. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci U S A 2012;109:14989-94. [CrossRef]
  • 13. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severity: A Multi-center Study of Clinical Features. Am J Respir Crit Care Med 2020;201(11):1380-8. [CrossRef]
  • 14. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences 2020;63(3):364-74. [CrossRef]
  • 15. Fogarty H, Townsend L, Cheallaigh CN, Bergin C, Martin- Loeches I, Browne P, et al. COVID-19 Coagulopathy in Caucasian patients. Br J Haematol 2020; 189(6):1060-1. [CrossRef]
  • 16. Xu, Y-H, Dong J-H, An W-M, Lv X-Y,Yin X-P, Zhang J-Z, et al. Clinical and computed tomographic imaging features of Novel Coronavirus Pneumonia caused by SARS-CoV-2. J Infect 2020;80(4):394-400. [CrossRef]
  • 17. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. JAMA 2020;323;1061-69. [CrossRef]
  • 18. Zhang B, Zhou X, Qiu Y, Feng F, Feng J, Jia Y. et al. Clinical characteristics of 82 death cases with COVID-19. medRxiv 2020; [CrossRef]
  • 19. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20(5):269-2-70. [CrossRef]
  • 20. Tay MZ, Poy CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nature Rew İmmuno 2020;20(6):363-74. [CrossRef]
  • 21. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. Med Virol 2020;92(4):424- 32. [CrossRef]
  • 22. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;180:1-12. [CrossRef]
  • 23. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-3. [CrossRef]
  • 24. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N. et al. A novel angiotensin-converting enzyme– related carboxypeptidase (ace2) converts angiotensin I to angiotensin 1-9. Circ Res 2000;87(5):E1-9. [CrossRef]
  • 25. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Med 2005;1:875-9. [CrossRef]
  • 26. Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic changes and SARS- CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020;172(9):629-32. [CrossRef]
  • 27. Yang, M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN 2020;10.2139/ssrn.3527420. [CrossRef]
  • 28. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020;71(15):762- 8. [CrossRef]
  • 29. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Press 2020;27(6):992-1000.e3. [CrossRef]
  • 30. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the Cytokine Storm’ in COVID-19. J Infect 2020;80(6):607- 13. [CrossRef]
  • 31. Herold T, Jurinovic PV, Arnreich C, Hellmuth JC, Bergwelt- Baildon MV, Klein M. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRvix 2020; [CrossRef]
  • 32. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033-4. [CrossRef]
  • 33. Ciceri F, Beretta L, Scandroglio A.M, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020;22(2):95-7.
  • 34. Randall RE. Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures J Gen Virol 2008;89:1-47. [CrossRef]
  • 35. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et. al. Immunology of COVID-19: current state of the science. Immunity 2020;52(6):910-41. [CrossRef]
  • 36. Chen W. Royer WE. Structural insights into interferon regulatory factor activation Cell Signal 2010;22:883-87. [CrossRef]
  • 37. Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, et al. Coronavirus papain- like proteases negatively regulate antiviral innate immune response through disruption of STING- mediated signaling. PLoS One 2012;7:e30802. [CrossRef]
  • 38. Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng C-TK. et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 2008;82:4471-9. [CrossRef]
  • 39. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. Speciality Collaboration, U. K. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4. [CrossRef]
  • 40. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130(5):2620-9. [CrossRef]
  • 41. Huang L, Shi Y, Gong B, Jiang L, Liu X, Yang J, et al. Blood single cell immune profiling reveals the interferon- MAPK pathway mediated adaptive immune response for COVID-19 medRxiv 2020; [CrossRef]
  • 42. Lei L, Qian H, Yang X, Zhou X, Zhang X, Zhang D, et al. The phenotypic changes of γδTcells in COVID-19 patients. medRxiv 2020; [CrossRef]
  • 43. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L. et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19) medRxiv 2020; [CrossRef]
  • 44. Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang X-C, Yang X-P. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol 2020;17(5):541-3. [CrossRef] 4
  • 5. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nature Reviews Immunology 2013;13:875-87. [CrossRef]
  • 46. Zhao J, Yuan Q, Wang H, Liu W, Liao, Su Y, Wang X. et.al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020;ciaa344 [CrossRef]
  • 47. Perlman S. & Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005;5:917-27. [CrossRef]
  • 48. Sanders JM, Monogue ML, Tomasz Z, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19). JAMA 2020;323(18):1824-36. [CrossRef]
  • 49. Liu S, Lien C, Selvaraj P Wang TT. Evaluation of 19 antiviral drugs against SARS-CoV-2 Infection. bioRxiv 2020; [CrossRef]
  • 50. McKee DL, Sternberg A, Naujokat C, et al. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020;157:104859. [CrossRef]

IMMUN RESPONSES IN COVID-19

Year 2021, , 256 - 263, 25.04.2021
https://doi.org/10.26650/IUITFD.2020.0056

Abstract

The Coronavirus disease 19 (COVID-19) pandemic, which is the etiological agent of a severe acute respiratory syndrome- associated coronavirus (SARS-CoV-2), has influenced the whole world with the current and possible results. COVID-19 has very unique virological, clinical and immunological characteristics. In COVID19, immune responses can vary widely, ranging from responses that allow control of the infection to pulmonary thrombosis characterized by sudden and rapidly developing intense inflammation and storm of cytokenemia. This review aims to examine scientific data about immunopathogenesis of COVID-19

References

  • 1. Zhou P, Yan X-L, Wang X-G, Hu B, Zhang L, Zhang W. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-3. [CrossRef]
  • 2. Gorbalenya AE, Baker SC, Baric RS, Groot RJ, Drosten C, Haagmans BL, et al. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndromerelated coronavirus: classifying. Nat Microbiol 2020;5(4):536-54. [CrossRef]
  • 3. Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NM. et al. Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak. biorRxiv 2020; [CrossRef]
  • 4. Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology 2020;158(6):1518-19. [CrossRef]
  • 5. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet 2020;395:809-81. [CrossRef]
  • 6. Guan WJ. Ni, Z-y, Hu Y, Liang W-h, Ou C-q, He J-x. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20. [CrossRef]
  • 7. Yang J, Zhenga Y, Goua X, Pua K, Chena Z, Guo Q. et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. International Journal of Infectious Diseases 2020;94:91-95. [CrossRef]
  • 8. Chen N, Zhou M, Dong Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. [CrossRef]
  • 9. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581(7809):465-9. [CrossRef]
  • 10. Goyal A, Fabian C-O, E, Schiffer J.T. Potency and timing of antiviral therapy as determinants of duration of SARS CoV-2 shedding and intensity of inflammatory response. MedRxiv 2020; [CrossRef]
  • 11. Chang, Mo G, Yuan X, Tao Y, Peng X, Wang F-S. et al. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection. Am J Respir Crit Care Med 2020;201(9):1150-52. [CrossRef]
  • 12. Lin WH, Kouyos RD, Adams RJ, Grenfell BT, Griffin DE. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci U S A 2012;109:14989-94. [CrossRef]
  • 13. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severity: A Multi-center Study of Clinical Features. Am J Respir Crit Care Med 2020;201(11):1380-8. [CrossRef]
  • 14. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences 2020;63(3):364-74. [CrossRef]
  • 15. Fogarty H, Townsend L, Cheallaigh CN, Bergin C, Martin- Loeches I, Browne P, et al. COVID-19 Coagulopathy in Caucasian patients. Br J Haematol 2020; 189(6):1060-1. [CrossRef]
  • 16. Xu, Y-H, Dong J-H, An W-M, Lv X-Y,Yin X-P, Zhang J-Z, et al. Clinical and computed tomographic imaging features of Novel Coronavirus Pneumonia caused by SARS-CoV-2. J Infect 2020;80(4):394-400. [CrossRef]
  • 17. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. JAMA 2020;323;1061-69. [CrossRef]
  • 18. Zhang B, Zhou X, Qiu Y, Feng F, Feng J, Jia Y. et al. Clinical characteristics of 82 death cases with COVID-19. medRxiv 2020; [CrossRef]
  • 19. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20(5):269-2-70. [CrossRef]
  • 20. Tay MZ, Poy CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nature Rew İmmuno 2020;20(6):363-74. [CrossRef]
  • 21. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. Med Virol 2020;92(4):424- 32. [CrossRef]
  • 22. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;180:1-12. [CrossRef]
  • 23. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-3. [CrossRef]
  • 24. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N. et al. A novel angiotensin-converting enzyme– related carboxypeptidase (ace2) converts angiotensin I to angiotensin 1-9. Circ Res 2000;87(5):E1-9. [CrossRef]
  • 25. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Med 2005;1:875-9. [CrossRef]
  • 26. Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic changes and SARS- CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020;172(9):629-32. [CrossRef]
  • 27. Yang, M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN 2020;10.2139/ssrn.3527420. [CrossRef]
  • 28. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020;71(15):762- 8. [CrossRef]
  • 29. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Press 2020;27(6):992-1000.e3. [CrossRef]
  • 30. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the Cytokine Storm’ in COVID-19. J Infect 2020;80(6):607- 13. [CrossRef]
  • 31. Herold T, Jurinovic PV, Arnreich C, Hellmuth JC, Bergwelt- Baildon MV, Klein M. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. medRvix 2020; [CrossRef]
  • 32. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033-4. [CrossRef]
  • 33. Ciceri F, Beretta L, Scandroglio A.M, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020;22(2):95-7.
  • 34. Randall RE. Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures J Gen Virol 2008;89:1-47. [CrossRef]
  • 35. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et. al. Immunology of COVID-19: current state of the science. Immunity 2020;52(6):910-41. [CrossRef]
  • 36. Chen W. Royer WE. Structural insights into interferon regulatory factor activation Cell Signal 2010;22:883-87. [CrossRef]
  • 37. Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, et al. Coronavirus papain- like proteases negatively regulate antiviral innate immune response through disruption of STING- mediated signaling. PLoS One 2012;7:e30802. [CrossRef]
  • 38. Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng C-TK. et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 2008;82:4471-9. [CrossRef]
  • 39. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. Speciality Collaboration, U. K. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033-4. [CrossRef]
  • 40. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130(5):2620-9. [CrossRef]
  • 41. Huang L, Shi Y, Gong B, Jiang L, Liu X, Yang J, et al. Blood single cell immune profiling reveals the interferon- MAPK pathway mediated adaptive immune response for COVID-19 medRxiv 2020; [CrossRef]
  • 42. Lei L, Qian H, Yang X, Zhou X, Zhang X, Zhang D, et al. The phenotypic changes of γδTcells in COVID-19 patients. medRxiv 2020; [CrossRef]
  • 43. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L. et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19) medRxiv 2020; [CrossRef]
  • 44. Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang X-C, Yang X-P. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol 2020;17(5):541-3. [CrossRef] 4
  • 5. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nature Reviews Immunology 2013;13:875-87. [CrossRef]
  • 46. Zhao J, Yuan Q, Wang H, Liu W, Liao, Su Y, Wang X. et.al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020;ciaa344 [CrossRef]
  • 47. Perlman S. & Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 2005;5:917-27. [CrossRef]
  • 48. Sanders JM, Monogue ML, Tomasz Z, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19). JAMA 2020;323(18):1824-36. [CrossRef]
  • 49. Liu S, Lien C, Selvaraj P Wang TT. Evaluation of 19 antiviral drugs against SARS-CoV-2 Infection. bioRxiv 2020; [CrossRef]
  • 50. McKee DL, Sternberg A, Naujokat C, et al. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020;157:104859. [CrossRef]
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Reviews
Authors

Bülent Çakal This is me 0000-0002-1254-844X

Publication Date April 25, 2021
Submission Date May 15, 2020
Published in Issue Year 2021

Cite

APA Çakal, B. (2021). COVID-19’DA İMMÜN YANITLAR. Journal of Istanbul Faculty of Medicine, 84(2), 256-263. https://doi.org/10.26650/IUITFD.2020.0056
AMA Çakal B. COVID-19’DA İMMÜN YANITLAR. İst Tıp Fak Derg. April 2021;84(2):256-263. doi:10.26650/IUITFD.2020.0056
Chicago Çakal, Bülent. “COVID-19’DA İMMÜN YANITLAR”. Journal of Istanbul Faculty of Medicine 84, no. 2 (April 2021): 256-63. https://doi.org/10.26650/IUITFD.2020.0056.
EndNote Çakal B (April 1, 2021) COVID-19’DA İMMÜN YANITLAR. Journal of Istanbul Faculty of Medicine 84 2 256–263.
IEEE B. Çakal, “COVID-19’DA İMMÜN YANITLAR”, İst Tıp Fak Derg, vol. 84, no. 2, pp. 256–263, 2021, doi: 10.26650/IUITFD.2020.0056.
ISNAD Çakal, Bülent. “COVID-19’DA İMMÜN YANITLAR”. Journal of Istanbul Faculty of Medicine 84/2 (April 2021), 256-263. https://doi.org/10.26650/IUITFD.2020.0056.
JAMA Çakal B. COVID-19’DA İMMÜN YANITLAR. İst Tıp Fak Derg. 2021;84:256–263.
MLA Çakal, Bülent. “COVID-19’DA İMMÜN YANITLAR”. Journal of Istanbul Faculty of Medicine, vol. 84, no. 2, 2021, pp. 256-63, doi:10.26650/IUITFD.2020.0056.
Vancouver Çakal B. COVID-19’DA İMMÜN YANITLAR. İst Tıp Fak Derg. 2021;84(2):256-63.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61