Research Article
BibTex RIS Cite

LAKTOBASİLLERDEN ELDE EDİLEN HÜCRESİZ SÜZÜNTÜLERİN İNSAN ADENOKARSİNOM (HT-29) HÜCRE KÜLTÜRÜNDE CAMPYLOBACTER JEJUNİ’NİN ÜREME VE VİRÜLANS ÖZELLİKLERİ ÜZERİNE ETKİLERİ

Year 2022, , 197 - 204, 24.03.2022
https://doi.org/10.26650/IUITFD.984009

Abstract

Amaç: Laktobasiller en yaygın kullanılan probiyotiklerdendir. Çalışmamızda, Lactobacillus acidophilus (La), L. fermentum (Lf), L. plantarum (Lp) ve L. rhamnosus (Lr)’nin hücresiz süzüntülerinin (CFS) C. jejuni suşlarının (81116 ve RM1221) üremesi, adezyonu ve invazyonu üzerine etkilerini inceledik. Aynı zamanda, CFS’lerin, C. jejuni suşlarının ve CFS+C. jejuni kombinasyonlarının HT-29 hücre canlılığındaki etkilerini araştırdık. Gereç ve Yöntem: Üreme ile adezif ve invazif bakterilerin sayıları, sırasıyla, spektrofotometrik ve koloni sayma yöntemleri ile belirlenmiştir. Çalışmamızda, Metil tiazolil difeni-tetrazolium bromid (MTT) deneyini, hücrelerin (HT-29) canlılığını belirlemede kullandık. Bulgular: İki ve dört saatlik inkübasyonlarda, tüm CFS’ler RM1221 suşunun, La ve Lp CFS’leri ise, 81116 suşunun üremesini anlamlı düzeyde azaltmıştır (sırasıyla, p<0,0001, p<0,05). Tüm CFS’ler (La hariç) 24 saatlik inkübasyonda her iki suşun da üremesini baskılamıştır. C. jejuni 81116’nin adezyonu tüm CFS’lerin varlığında istatistiksel olarak anlamlı düzeyde baskılanmıştır (p<0,0001). C. jejuni RM1221’nin adezyonu La ve Lr süzüntüleri varlığında istatistiksel olarak anlamlı düzeyde baskılanmıştır (sırasıyla, p<0,05 ve p<0,005). Suşların invazyon özellikleri süzüntülerin varlığında etkilenmemiştir. HT-29 hücrelerinin canlılığı hem C. jejuni’nin ve hem de her bir CFS’nin varlığında farklı yönlerde etkilenmiştir. Sonuç: Sonuçlarımız CFS’lerin C. jejuni’nin üreme ve adezyonunu temas süresine bağlı olarak baskıladıklarını göstermektedir. HT-29 hücrelerinin canlılığı inkübasyon süresi ve incelenen suşa bağlı olarak etkilenmiştir.

References

  • 1. Sullivan Å, Nord CE. Probiotics in human infections. J Antimicrob Chemother 2002;50(5):625-7. [CrossRef]
  • 2. Oelschlaeger TA. Mechanisms of probiotic actions - A review. Int J Med Microbiol 2010;300(1):57-62. [CrossRef]
  • 3. Bajaj BK, Claes IJJ, Lebeer S. Functional mechanisms of probiotics. J Microbiol Biotechnol Food Sci 2015;4(4):321-7. [CrossRef]
  • 4. Food and Agriculture Organization of The United Nations, Food and Nutritions Paper, Probiotics in food health and nutritional properties and guidelines for evaluation. In: Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, 1-4 October 2001. p. 1-33. Available from: http://www.fao.org/3/a0512e/ a0512e.pdf
  • 5. Morelli L, Zonenenschain D, Del Piano M, Cognein P. Utilization of the intestinal tract as a delivery system for urogenital probiotics. J Clin Gastroenterol 2004;38(Suppl 6):107-10. [CrossRef]
  • 6. Meurman JH, Stamatova I. Probiotics: Contributions to oral health. Oral Dis 2007;13(5):443-51. [CrossRef]
  • 7. Sullivan Å, Nord CE. Probiotics and gastrointestinal diseases. J Infect Med 2005;257:78-92. [CrossRef]
  • 8. Allos BM. Campylobacter jejuni infections: Update on emerging issues and trends. Clin Infect Dis 2001;32(8):1201- 6. [CrossRef]
  • 9. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global epidemiology of campylobacter infection. Clin Microbiol Rev 2015;28(3):687-720. [CrossRef]
  • 10. Nishiyama K, Seto Y, Yoshioka K, Kakuda T, Takai S, Yamamoto Y, et al. Lactobacillus gasseri sbt2055 reduces infection by and colonization of campylobacter jejuni. PLoS One 2014;9(9):1-9. [CrossRef]
  • 11. Mohan V. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur J Clin Microbiol Infect Dis 2015;34(8):1503-13. [CrossRef]
  • 12. Gümüş D, Yüksek FK, Bilgin M, Camadan FD, Küçüker MA. In Vitro Effects of Various Probiotic Products on Growth and Biofilm Formation of Clinical UPEC Strains. Acta Biol Marisiensis 2020;3(1):5-14. [CrossRef]
  • 13. Kalaycı Yüksek F, Gümüş D, Gündoğan Gİ, Anğ Küçüker M. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2021;78(1):125-32. [CrossRef]
  • 14. Chen X, Liu XM, Tian F, Zhang Q, Zhang HP, Zhang H, et al. Antagonistic activities of Lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J Food Sci 2012;77(1):9-14. [CrossRef]
  • 15. Campana R, Federici S, Ciandrini E, Baffone W. Antagonistic activity of lactobacillus acidophilus ATCC 4356 on the growth and adhesion/invasion characteristics of Human Campylobacter jejuni. Curr Microbiol 2012;64(4):371-8. [CrossRef]
  • 16. Parolin C, Marangoni A, Laghi L, Foschi C, Palomino RAÑ, Calonghi N, et al. Isolation of vaginal lactobacilli and characterization of anti-candida activity. PLoS One 2015;10(6):1-17. [CrossRef] 17. Forestier C, De Champs C, Vatoux C, Joly B. Probiotic activities of Lactobacillus casei rhamnosus: In vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol 2001;152(2):167-73. [CrossRef]
  • 18. Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, et al. Antimicrobial activity of lactobacillus species against carbapenem-resistant enterobacteriaceae. Front Microbiol 2019;10:789. [CrossRef]
  • 19. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 2018;22(3):1972-83. [CrossRef]
  • 20. Lua YA, Lin PP, Hsieh YM, Tsai CC. Lactic acid bacteria inhibit the growth of Vibrio parahaemolyticus and the invasion of Caco-2 cells. ScienceAsia 2019;45(6):562-71. [CrossRef]
  • 21. Karska-Wysocki B, Bazo M, Smoragiewicz W. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 2010;165(8):674-86. [CrossRef]
  • 22. Nigam A, Kumar A, Hv M, Bhola N. In-vitro Screening of antibacterial activity of lactic acid bacteria against common enteric pathogens. J Biomed Sci 2012;1(4):1-6.
  • 23. Saha S, Tomaro-Duchesneau C, Rodes L, Malhotra M, Tabrizian M, Prakash S. Investigation of probiotic bacteria as dental caries and periodontal disease biotherapeutics. Benef Microbes 2014;5(4):447-60. [CrossRef]
  • 24. Haddad N, Maillart G, Garénaux A, Jugiau F, Federighi M, Cappelier JM. Adhesion ability of Campylobacter jejuni to Ht-29 cells increases with the augmentation of oxidant agent concentration. Curr Microbiol 2010;61(6):500-5. [CrossRef]
  • 25. Xi D, Alter T, Einspanier R, Sharbati S, Gölz G. Campylobacter jejuni genes Cj1492c and Cj1507c are involved in host cell adhesion and invasion. Gut Pathog 2020;12(1):1-11. [CrossRef]
  • 26. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J immunological Methods 1983;65:55-63. [CrossRef]
  • 27. Shahbazi Y, Mozaffarzogh M. Antimicrobial Effects of Lactobacillus acidophilus and Lactobacillus reuteri against Campylobacter jejuni in Fresh and Roasted Chicken Breast Fillets. J Human, Environ Heal Promot 2019;5(3):110-5. [CrossRef]
  • 28. Bratz K, Gölz G, Janczyk P, Nöckler K, Alter T. Analysis of in vitro and in vivo effects of probiotics against Campylobacter spp. Berl Munch Tierarztl Wochenschr 2015;128(3-4):155-62.
  • 29. Wang G, Zhao Y, Tian F, Jin X, Chen H, Liu X, et al. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 2014;44:49-57. [CrossRef]
  • 30. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D, et al. Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 2010;141(Suppl.):S98-108. [CrossRef]
  • 31. Lehri B, Seddon AM, Karlyshev A V. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 2017;8(8):1753-60. [CrossRef]
  • 32. Taha-Abdelaziz K, Astill J, Kulkarni RR, Read LR, Najarian A, Farber JM, et al. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci Rep 2019;9(1):1-15. [CrossRef]
  • 33. Salaheen S, White B, Bequette BJ, Biswas D. Peanut fractions boost the growth of Lactobacillus casei that alters the interactions between Campylobacter jejuni and host epithelial cells. Food Res Int 2014;62:1141-6. [CrossRef]
  • 34. Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. On adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020;16(1):1-14. [CrossRef]
  • 35. Cresci GAM, Mayor PC, Thompson SA. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure. FEMS Microbiol Lett 2017;364(6):3-8. [CrossRef]
  • 36. Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, et al. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 2017;247:9-17. [CrossRef]
  • 37. Wine E, Gareau MG, Johnson-Henry K, Sherman PM. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol Lett 2009;300(1):146-52. [CrossRef]
  • 38. Cean A, Stef L, Simiz E, Julean C, Dumitrescu G, Vasile A, et al. Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne Pathog Dis 2015;12(2):122-30. [CrossRef]
  • 39. Chen ZY, Hsieh YM, Huang CC, Tsai CC. Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules 2017;22(1):107. [CrossRef]
  • 40. Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M. Effects of lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cell proliferation in comparison with a commercial strain. Iran J Basic Med Sci 2014;17(10):815-9.
  • 41. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY. Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 2014;28:29-36.

THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE

Year 2022, , 197 - 204, 24.03.2022
https://doi.org/10.26650/IUITFD.984009

Abstract

Objective: Lactobacilli are the most commonly used probiotics. We examined the influence of cell-free supernatants (CFSs) of Lactobacillus acidophilus (La), L. fermentum (Lf), L. plantarum (Lp) and L. rhamnosus (Lr) on growth, adhesion and invasion of C. jejuni 81116 and RM1221 in human adenocarcinoma colon cells (HT-29). We also analyzed the influences of CFSs, C. jejuni and their combinations on HT-29 cell viability. Materials and Methods: Growth and adhesive-invasive bacteria counts were determined using the spectrophotometric method and colony counting method, respectively. We used methyl thiazolyl diphenyl-tetrazolium bromide (MTT) assay for detection of HT-29 cell viability. Results: During two and four hours of incubation, the growth of RM1221 was significantly decreased (p<0.0001) with the effects of the tested CFSs, while the decrease in growth of the 81116 strain was only significant (p<0.05) in the presence of La and Lp. All CFSs except La reduced the growth of both C. jejuni isolates at 24 hours of incubation. The adhesion of C. jejuni 81116 was significantly (p<0.0001) reduced in the presence of all CFSs. La and Lr statistically significantly (p<0.05 and p<0.005, respectively) reduced the adhesion of C. jejuni RM1221. Invasion of C. jejuni strains was shown not to be affected in presence of all CFSs. C. jejuni and each CFSs were found to influence the HT-29 viability differently. Conclusion: Our results suggest that CFSs have suppressive effects on the growth and adhesive properties of C. jejuni in a time-dependent manner. The viability of HT-29 depends on incubation time and which strain is tested.

References

  • 1. Sullivan Å, Nord CE. Probiotics in human infections. J Antimicrob Chemother 2002;50(5):625-7. [CrossRef]
  • 2. Oelschlaeger TA. Mechanisms of probiotic actions - A review. Int J Med Microbiol 2010;300(1):57-62. [CrossRef]
  • 3. Bajaj BK, Claes IJJ, Lebeer S. Functional mechanisms of probiotics. J Microbiol Biotechnol Food Sci 2015;4(4):321-7. [CrossRef]
  • 4. Food and Agriculture Organization of The United Nations, Food and Nutritions Paper, Probiotics in food health and nutritional properties and guidelines for evaluation. In: Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, 1-4 October 2001. p. 1-33. Available from: http://www.fao.org/3/a0512e/ a0512e.pdf
  • 5. Morelli L, Zonenenschain D, Del Piano M, Cognein P. Utilization of the intestinal tract as a delivery system for urogenital probiotics. J Clin Gastroenterol 2004;38(Suppl 6):107-10. [CrossRef]
  • 6. Meurman JH, Stamatova I. Probiotics: Contributions to oral health. Oral Dis 2007;13(5):443-51. [CrossRef]
  • 7. Sullivan Å, Nord CE. Probiotics and gastrointestinal diseases. J Infect Med 2005;257:78-92. [CrossRef]
  • 8. Allos BM. Campylobacter jejuni infections: Update on emerging issues and trends. Clin Infect Dis 2001;32(8):1201- 6. [CrossRef]
  • 9. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global epidemiology of campylobacter infection. Clin Microbiol Rev 2015;28(3):687-720. [CrossRef]
  • 10. Nishiyama K, Seto Y, Yoshioka K, Kakuda T, Takai S, Yamamoto Y, et al. Lactobacillus gasseri sbt2055 reduces infection by and colonization of campylobacter jejuni. PLoS One 2014;9(9):1-9. [CrossRef]
  • 11. Mohan V. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation. Eur J Clin Microbiol Infect Dis 2015;34(8):1503-13. [CrossRef]
  • 12. Gümüş D, Yüksek FK, Bilgin M, Camadan FD, Küçüker MA. In Vitro Effects of Various Probiotic Products on Growth and Biofilm Formation of Clinical UPEC Strains. Acta Biol Marisiensis 2020;3(1):5-14. [CrossRef]
  • 13. Kalaycı Yüksek F, Gümüş D, Gündoğan Gİ, Anğ Küçüker M. Cell-Free Lactobacillus sp Supernatants Modulate Staphylococcus aureus Growth, Adhesion and Invasion to Human Osteoblast (HOB) Cells. Curr Microbiol 2021;78(1):125-32. [CrossRef]
  • 14. Chen X, Liu XM, Tian F, Zhang Q, Zhang HP, Zhang H, et al. Antagonistic activities of Lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J Food Sci 2012;77(1):9-14. [CrossRef]
  • 15. Campana R, Federici S, Ciandrini E, Baffone W. Antagonistic activity of lactobacillus acidophilus ATCC 4356 on the growth and adhesion/invasion characteristics of Human Campylobacter jejuni. Curr Microbiol 2012;64(4):371-8. [CrossRef]
  • 16. Parolin C, Marangoni A, Laghi L, Foschi C, Palomino RAÑ, Calonghi N, et al. Isolation of vaginal lactobacilli and characterization of anti-candida activity. PLoS One 2015;10(6):1-17. [CrossRef] 17. Forestier C, De Champs C, Vatoux C, Joly B. Probiotic activities of Lactobacillus casei rhamnosus: In vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol 2001;152(2):167-73. [CrossRef]
  • 18. Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, et al. Antimicrobial activity of lactobacillus species against carbapenem-resistant enterobacteriaceae. Front Microbiol 2019;10:789. [CrossRef]
  • 19. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cell Mol Med 2018;22(3):1972-83. [CrossRef]
  • 20. Lua YA, Lin PP, Hsieh YM, Tsai CC. Lactic acid bacteria inhibit the growth of Vibrio parahaemolyticus and the invasion of Caco-2 cells. ScienceAsia 2019;45(6):562-71. [CrossRef]
  • 21. Karska-Wysocki B, Bazo M, Smoragiewicz W. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 2010;165(8):674-86. [CrossRef]
  • 22. Nigam A, Kumar A, Hv M, Bhola N. In-vitro Screening of antibacterial activity of lactic acid bacteria against common enteric pathogens. J Biomed Sci 2012;1(4):1-6.
  • 23. Saha S, Tomaro-Duchesneau C, Rodes L, Malhotra M, Tabrizian M, Prakash S. Investigation of probiotic bacteria as dental caries and periodontal disease biotherapeutics. Benef Microbes 2014;5(4):447-60. [CrossRef]
  • 24. Haddad N, Maillart G, Garénaux A, Jugiau F, Federighi M, Cappelier JM. Adhesion ability of Campylobacter jejuni to Ht-29 cells increases with the augmentation of oxidant agent concentration. Curr Microbiol 2010;61(6):500-5. [CrossRef]
  • 25. Xi D, Alter T, Einspanier R, Sharbati S, Gölz G. Campylobacter jejuni genes Cj1492c and Cj1507c are involved in host cell adhesion and invasion. Gut Pathog 2020;12(1):1-11. [CrossRef]
  • 26. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J immunological Methods 1983;65:55-63. [CrossRef]
  • 27. Shahbazi Y, Mozaffarzogh M. Antimicrobial Effects of Lactobacillus acidophilus and Lactobacillus reuteri against Campylobacter jejuni in Fresh and Roasted Chicken Breast Fillets. J Human, Environ Heal Promot 2019;5(3):110-5. [CrossRef]
  • 28. Bratz K, Gölz G, Janczyk P, Nöckler K, Alter T. Analysis of in vitro and in vivo effects of probiotics against Campylobacter spp. Berl Munch Tierarztl Wochenschr 2015;128(3-4):155-62.
  • 29. Wang G, Zhao Y, Tian F, Jin X, Chen H, Liu X, et al. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 2014;44:49-57. [CrossRef]
  • 30. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D, et al. Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 2010;141(Suppl.):S98-108. [CrossRef]
  • 31. Lehri B, Seddon AM, Karlyshev A V. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 2017;8(8):1753-60. [CrossRef]
  • 32. Taha-Abdelaziz K, Astill J, Kulkarni RR, Read LR, Najarian A, Farber JM, et al. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci Rep 2019;9(1):1-15. [CrossRef]
  • 33. Salaheen S, White B, Bequette BJ, Biswas D. Peanut fractions boost the growth of Lactobacillus casei that alters the interactions between Campylobacter jejuni and host epithelial cells. Food Res Int 2014;62:1141-6. [CrossRef]
  • 34. Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. On adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020;16(1):1-14. [CrossRef]
  • 35. Cresci GAM, Mayor PC, Thompson SA. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure. FEMS Microbiol Lett 2017;364(6):3-8. [CrossRef]
  • 36. Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, et al. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 2017;247:9-17. [CrossRef]
  • 37. Wine E, Gareau MG, Johnson-Henry K, Sherman PM. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol Lett 2009;300(1):146-52. [CrossRef]
  • 38. Cean A, Stef L, Simiz E, Julean C, Dumitrescu G, Vasile A, et al. Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne Pathog Dis 2015;12(2):122-30. [CrossRef]
  • 39. Chen ZY, Hsieh YM, Huang CC, Tsai CC. Inhibitory effects of probiotic Lactobacillus on the growth of human colonic carcinoma cell line HT-29. Molecules 2017;22(1):107. [CrossRef]
  • 40. Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M. Effects of lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cell proliferation in comparison with a commercial strain. Iran J Basic Med Sci 2014;17(10):815-9.
  • 41. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY. Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 2014;28:29-36.
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Fatma Kalaycı Yüksek 0000-0002-0028-5646

Defne Gümüş 0000-0003-4070-6924

Varol Güler 0000-0002-8726-330X

Aysun Uyanık Öcal 0000-0001-5255-0133

Mine Anğ Küçüker 0000-0001-8978-219X

Publication Date March 24, 2022
Submission Date August 17, 2021
Published in Issue Year 2022

Cite

APA Kalaycı Yüksek, F., Gümüş, D., Güler, V., Uyanık Öcal, A., et al. (2022). THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE. Journal of Istanbul Faculty of Medicine, 85(2), 197-204. https://doi.org/10.26650/IUITFD.984009
AMA Kalaycı Yüksek F, Gümüş D, Güler V, Uyanık Öcal A, Anğ Küçüker M. THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE. İst Tıp Fak Derg. March 2022;85(2):197-204. doi:10.26650/IUITFD.984009
Chicago Kalaycı Yüksek, Fatma, Defne Gümüş, Varol Güler, Aysun Uyanık Öcal, and Mine Anğ Küçüker. “THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE”. Journal of Istanbul Faculty of Medicine 85, no. 2 (March 2022): 197-204. https://doi.org/10.26650/IUITFD.984009.
EndNote Kalaycı Yüksek F, Gümüş D, Güler V, Uyanık Öcal A, Anğ Küçüker M (March 1, 2022) THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE. Journal of Istanbul Faculty of Medicine 85 2 197–204.
IEEE F. Kalaycı Yüksek, D. Gümüş, V. Güler, A. Uyanık Öcal, and M. Anğ Küçüker, “THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE”, İst Tıp Fak Derg, vol. 85, no. 2, pp. 197–204, 2022, doi: 10.26650/IUITFD.984009.
ISNAD Kalaycı Yüksek, Fatma et al. “THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE”. Journal of Istanbul Faculty of Medicine 85/2 (March 2022), 197-204. https://doi.org/10.26650/IUITFD.984009.
JAMA Kalaycı Yüksek F, Gümüş D, Güler V, Uyanık Öcal A, Anğ Küçüker M. THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE. İst Tıp Fak Derg. 2022;85:197–204.
MLA Kalaycı Yüksek, Fatma et al. “THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE”. Journal of Istanbul Faculty of Medicine, vol. 85, no. 2, 2022, pp. 197-04, doi:10.26650/IUITFD.984009.
Vancouver Kalaycı Yüksek F, Gümüş D, Güler V, Uyanık Öcal A, Anğ Küçüker M. THE INFLUENCES OF LACTOBACILLUS CELL-FREE SUPERNATANTS ON GROWTH AND VIRULENCE PROPERTIES OF CAMPYLOBACTER JEJUNI IN HUMAN ADENOCARCINOMA (HT-29) CELL CULTURE. İst Tıp Fak Derg. 2022;85(2):197-204.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61