Research Article
BibTex RIS Cite

THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY

Year 2020, Volume: 83 Issue: 3, 184 - 192, 29.06.2020

Abstract

Objective: The aim of this study is to investigate how acute hyperglycaemic changes affect the choroid in patients with prediabetes. Material and Method: Each subject underwent a 75 g oral glucose tolerance test (OGTT) after overnight fasting. The measurement of choroidal thickness (ChT) was done with new generation spectral domain optical coherence tomography (SD-OCT). Results: Fasting Plasma Glucose (FPG) levels of the patients with only isolated Impaired Fasting Glucose (IGT) patients are higher (all p<0.0001). Mean insulin levels were also higher in patients with prediabetes than in healthy volunteers during the entire experiment (all p<0.0001). Changes in ChT differed between the groups, a transient increase was observed in the mean ChT as well as subfoveal, nasal and temporal locations at the 500 µm distance to fovea in prediabetes individuals. While the subfoveal ChT difference was 1.52±4.11 µm (range, -11.00/24.00 µm) in prediabetes, -0.22±1.74 µm (range -2.00/8.00 µm) in the control group at the first hour of the OGTT. A transient choroidal thickening occurred in the prediabetes group, while there was Conclusion: Detecting acute hyperglycemic changes with instant measurements may help us to better understand the effect of the disease on ocular structures.

References

  • 1. Smith-Palmer J, Brandle M, Trevisan R, Orsini FM, Liabat S, Valentine W. Assessment of the association between glycemic variability and diabetes related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract 2014;105:27384. [CrossRef]
  • 2. Abdul-Ghani M, Defronzo RA, Jayyousi A. Prediabetes and risk of diabetes and associated complications: Impaired fasting glucose versus impaired glucose tolerance: does it matter? Curr Opin Clin Nutr Metab Care 2016;19:394-9. [CrossRef]
  • 3. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: World Health Organization, 2006:1-50.
  • 4. Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 2009;148:445-50. [CrossRef]
  • 5. Zeng J, Li J, Liu R, et al. ChT in both eyes of patients with unilateral idiopathic macular hole. Ophthalmology 2012; 119:2328-33. [CrossRef]
  • 6. Dhoot DS, Huo S, Yuan A, et al. Evaluation of ChT in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 2013; 97:66-9. [CrossRef]
  • 7. Kim SW, Oh J, Kwon SS, et al. Comparison of ChT among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina 2011;31:1904-11. [CrossRef]
  • 8. Nagaoka T, Kitaya N, Sugawara R, et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 2004;88:1060-3. [CrossRef] 191 Choroidal thickness changes after OGTT İstanbul Tıp Fakültesi Dergisi • J Ist Faculty Med 2020;83(3):184-92
  • 9. Chen Q, Fan T, Wu Y, et al. Characteristics of Retinal Structural and Microvascular Alterations in Early Type 2 Diabetic Patients. Invest Opthal Vis Sci 2018;59:2110-8. [CrossRef]
  • 10. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol Metab 1979;237(3):214-23. [CrossRef]
  • 11. Cersosimo E, Solis-Herrera C, Trautmann ME, Malloy J, Triplitt CL. Assessment of pancreatic beta-cell function: review of methods and clinical applications. Curr Diabetes Rev 2014;10:2-42. [CrossRef]
  • 12. Klefter ON, Vilsboll T, Knop FK, et al. Retinal vascular and structural dynamics during acute hyperglycaemia. Acta Ophthalmol 2015;93:697-705. [CrossRef]
  • 13. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991;87:2246-52. [CrossRef]
  • 14. Su EN, Yu DY, Alder VA, Cringle SJ, Yu PK. Direct vasodilatory effect of insulin on isolated retinal arterioles. Invest Ophthalmol Vis Sci 1996;37:2634-44.
  • 15. Schmetterer L, Muller M, Fasching P, et al. Renal and ocular hemodynamic effects of insulin. Diabetes 1997;46:1868-74. [CrossRef]
  • 16. Polak K, Dallinger S, Polska E, et al. Effects of insulin on retinal and pulsatile choroidal blood flow in humans. Arch Ophthalmol 2000;118:55-9. [CrossRef]
  • 17. Laties AM. Central retinal artery innervation: absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 1967;77:405-409. [CrossRef]
  • 18. Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 1996;37:886-97.
  • 19. Jeppesen P, Knudsen ST, Poulsen PL, Mogensen CE, Schmitz, Bek T. Response of retinal arteriole diameter to increased blood pressure during acute hyperglycaemia. Acta Ophthalmol Scand 2007;85:280-6. [CrossRef]
  • 20. Wiemer NGM, Eekhoff EMW, Simsek S, et al. The effect of acute hyperglycemia on retinal thickness and ocular refraction in healthy subjects. Graefes Arch Clin Exp Ophthalmol 2008;246(5):703-8. [CrossRef]
  • 21. Tiedeman JS, Kirk SE, Srinivas S, Beach JM. Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 1998;105:31- 36. [CrossRef]
  • 22. Hardarson SH, Stefansson E. Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol 2012;96:560-3. [CrossRef]
  • 23. Khoobehi B, Firn K, Thompson H, Reinoso M, Beach J. Retinal arterial and venous oxygen saturation is altered in diabetic patients. Invest Ophthalmol Vis Sci 2013;54:7103-6. [CrossRef]
  • 24. Jorgensen CM, Hardarson SH, Bek T. The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy. Acta Ophthalmol 2014;92:34-9. [CrossRef]
  • 25. Garhofer G, Kopf A, Polska E et al. Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia. Curr Eye Res 2004;28:351-8. [CrossRef]
  • 26. Kida T, Harino S, Sugiyama T, Kitanishi K, Iwahashi Y, Ikeda T. Change in retinal arterial blood flow in the contralateral eye of retinal vein occlusion during glucose tolerance test. Graefe’s Arch Clin Exp Ophthalmol 2002;240(5):342-7. [CrossRef]
  • 27. Gilmore ED, Hudson C, Nrusimhadevara RK, et al. Retinal arteriolar hemodynamic response to an acute hyperglycemic provocation in early and sight-threatening diabetic retinopathy. Microvasc Res 2007;73(3):191-7. [CrossRef]
  • 28. Fallon TJ, Maxwell DL, Kohner EM. Autoregulation of retinal blood flow in diabetic retinopathy measured by the bluelight entoptic technique. Ophthalmology 1987;94:1410-5. [CrossRef]
  • 29. Sullivan PM, Parfitt VJ, Jagoe R, Newsom R, Kohner EM. Effect of meal on retinal blood flow in IDDM patients. Diabetes Care 1991;14:756-8. [CrossRef]
  • 30. Elbay A, Altinisik M, Dincyildiz A, et al. Are the effects of hemodialysis on ocular parameters similar during and after a hemodialysis session? Arq Bras Oftalmol 2017;80:290-5. [CrossRef]
  • 31. Chang IB, Lee JH, Kim JS. Changes in ChT in and Outside the Macula After Hemodialysis in Patients With End-Stage Renal Disease. Retina 2017;37:896-5. [CrossRef]
  • 32. Furushima M, Imaizumi M, Nakatsuka K. Changes in Refraction Caused by Induction of Acute Hyperglycemia in Healthy Volunteers. Jpn J Ophthalmol 1999;43(5):398-403. [CrossRef]
  • 33. Shiragami C, Shiraga F, Matsuo T, et al. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2002;240:436-42. [CrossRef]
  • 34. Sezer T, Altinisik M, Koytak IA, Ozdemir MH. The Choroid and Optical Coherence Tomography. Turk J Ophthalmol 2016;46(1):30-7. [CrossRef]
  • 35. Hidayat AA, Fine BS. Diabetic choroidopathy, light and electron microscopic observations of seven cases. Ophthalmology 1985;92:512-22. [CrossRef]
  • 36. Esmaeelpour M, Považay B, Hermann B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:5311-6. [CrossRef]
  • 37. Vujosevic S, Martini F, Cavarzeran F, et al. Macular and peripapillary ChT in diabetic patients. Retina 2012;32:1781- 90. [CrossRef]
  • 38. Tavares Ferreira J, Alves M, Dias-Santos A, et al. Retinal neurodegeneration in diabetic patients without diabetic retinopathy. Invest Ophthalmol Vis Sci 2016;57:6455-60. [CrossRef]
  • 39. Pierro L, Iuliano L, Cicinelli MV, Casalino G, Bandello F. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol 2017;27:346-51. [CrossRef]
  • 40. Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2016;254:873-9. [CrossRef]
  • 41. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015;35:2377-83. [CrossRef] 192
  • 42. Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS. ChT in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina 2012;32:563-8. [CrossRef]
  • 43. Querques G, Lattanzio R, Querques L, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 2012;53:6017-24. [CrossRef]
  • 44. Xu J, Xu L, Du KF, et al. Subfoveal ChT in diabetes and diabetic retinopathy. Ophthalmology 2013;120:2023-8. [CrossRef]
  • 45. Savage HI, Hendrix JW, Peterson DC, Young H, Wilkinson CP. Differences in pulsatile ocular blood flow among three classifications of diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45:4504-9. [CrossRef]
  • 46. Horváth H, Kovács I, Sándor GL, Czakó C, Mallár K, Récsán Z, et al. Choroidal thickness changes in non-treated eyes of patients with diabetes: swept-source optical coherence tomography study. Acta Diabetologica 2018;55:927-34. [CrossRef]
  • 47. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH. Changes in ChT in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci 2013;54:3378-84. [CrossRef]
  • 48. Yulek F, Ugurlu N, Onal ED, et al. Choroidal changes and duration of diabetes. Semin Ophthalmol 2014;29:80-4. [CrossRef]
  • 49. Kawagishi T, Nishizawa Y, Emoto M, et al. Impaired retinal artery blood flow in IDDM patients before clinical manifestations of diabetic retinopathy. Diabetes Care 1995;18:1544-9. [CrossRef]
  • 50. Shao L, Xu L, Chen CX, et al. Reproducibility of subfoveal ChT measurements with enhanced depth imaging by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:230-3. [CrossRef]

PREDİYABETİK HASTALARDA YAPILAN ORAL GLİKOZ TOLERANS TESTİ ESNASINDA KOROİD KALINLIĞININ ÖLÇÜLMESİ: SPEKTRAL DOMAİN OPTİK KOHERENS TOMOGRAFİ ÇALIŞMASI

Year 2020, Volume: 83 Issue: 3, 184 - 192, 29.06.2020

Abstract

Amaç: Akut hiperglisemik değişikliklerin prediyabetli hastalarda koroidi nasıl etkilediğini araştırmak. Gereç ve Yöntem: Hastalara en az 8 saat kalori alınmaması sonrası 75 g oral glukoz tolerans testi (OGTT) uygulandı. Koroid kalınlığı (ChT), yeni nesil spektral domain optik koherens tomografi (SD-OCT) ile ölçüldü. Bulgular: Koroid kalınlığındaki değişiklikler gruplar arasında farklılık göstermiştir. Prediyabetli bireylerde, foveaya 500 µm mesafedeki subfoveal, nazal ve temporal lokasyonların yanı sıra ortalama ChT’de geçici bir artış gözlenmiştir. OGTT’nin ilk saatinde; prediyabetik grupta subfoveal koroid kalınlığı farkı 1,52±4,11 µm (aralık, -11,00/24,00 µm) iken, kontrol grubunda subfoveal ChT farkı -0,22±1,74 µm (aralık -2,00/8,00 µm) olarak ölçüldü. Sonuç: Akut hiperglisemik değişikliklerin anlık ölçümlerle saptanması, hastalığın oküler yapılar üzerindeki etkisini daha iyi anlamamıza yardımcı olabilir.

References

  • 1. Smith-Palmer J, Brandle M, Trevisan R, Orsini FM, Liabat S, Valentine W. Assessment of the association between glycemic variability and diabetes related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract 2014;105:27384. [CrossRef]
  • 2. Abdul-Ghani M, Defronzo RA, Jayyousi A. Prediabetes and risk of diabetes and associated complications: Impaired fasting glucose versus impaired glucose tolerance: does it matter? Curr Opin Clin Nutr Metab Care 2016;19:394-9. [CrossRef]
  • 3. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva: World Health Organization, 2006:1-50.
  • 4. Fujiwara T, Imamura Y, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 2009;148:445-50. [CrossRef]
  • 5. Zeng J, Li J, Liu R, et al. ChT in both eyes of patients with unilateral idiopathic macular hole. Ophthalmology 2012; 119:2328-33. [CrossRef]
  • 6. Dhoot DS, Huo S, Yuan A, et al. Evaluation of ChT in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 2013; 97:66-9. [CrossRef]
  • 7. Kim SW, Oh J, Kwon SS, et al. Comparison of ChT among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina 2011;31:1904-11. [CrossRef]
  • 8. Nagaoka T, Kitaya N, Sugawara R, et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 2004;88:1060-3. [CrossRef] 191 Choroidal thickness changes after OGTT İstanbul Tıp Fakültesi Dergisi • J Ist Faculty Med 2020;83(3):184-92
  • 9. Chen Q, Fan T, Wu Y, et al. Characteristics of Retinal Structural and Microvascular Alterations in Early Type 2 Diabetic Patients. Invest Opthal Vis Sci 2018;59:2110-8. [CrossRef]
  • 10. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol Metab 1979;237(3):214-23. [CrossRef]
  • 11. Cersosimo E, Solis-Herrera C, Trautmann ME, Malloy J, Triplitt CL. Assessment of pancreatic beta-cell function: review of methods and clinical applications. Curr Diabetes Rev 2014;10:2-42. [CrossRef]
  • 12. Klefter ON, Vilsboll T, Knop FK, et al. Retinal vascular and structural dynamics during acute hyperglycaemia. Acta Ophthalmol 2015;93:697-705. [CrossRef]
  • 13. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991;87:2246-52. [CrossRef]
  • 14. Su EN, Yu DY, Alder VA, Cringle SJ, Yu PK. Direct vasodilatory effect of insulin on isolated retinal arterioles. Invest Ophthalmol Vis Sci 1996;37:2634-44.
  • 15. Schmetterer L, Muller M, Fasching P, et al. Renal and ocular hemodynamic effects of insulin. Diabetes 1997;46:1868-74. [CrossRef]
  • 16. Polak K, Dallinger S, Polska E, et al. Effects of insulin on retinal and pulsatile choroidal blood flow in humans. Arch Ophthalmol 2000;118:55-9. [CrossRef]
  • 17. Laties AM. Central retinal artery innervation: absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 1967;77:405-409. [CrossRef]
  • 18. Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 1996;37:886-97.
  • 19. Jeppesen P, Knudsen ST, Poulsen PL, Mogensen CE, Schmitz, Bek T. Response of retinal arteriole diameter to increased blood pressure during acute hyperglycaemia. Acta Ophthalmol Scand 2007;85:280-6. [CrossRef]
  • 20. Wiemer NGM, Eekhoff EMW, Simsek S, et al. The effect of acute hyperglycemia on retinal thickness and ocular refraction in healthy subjects. Graefes Arch Clin Exp Ophthalmol 2008;246(5):703-8. [CrossRef]
  • 21. Tiedeman JS, Kirk SE, Srinivas S, Beach JM. Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 1998;105:31- 36. [CrossRef]
  • 22. Hardarson SH, Stefansson E. Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol 2012;96:560-3. [CrossRef]
  • 23. Khoobehi B, Firn K, Thompson H, Reinoso M, Beach J. Retinal arterial and venous oxygen saturation is altered in diabetic patients. Invest Ophthalmol Vis Sci 2013;54:7103-6. [CrossRef]
  • 24. Jorgensen CM, Hardarson SH, Bek T. The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy. Acta Ophthalmol 2014;92:34-9. [CrossRef]
  • 25. Garhofer G, Kopf A, Polska E et al. Influence of exercise induced hyperlactatemia on retinal blood flow during normo- and hyperglycemia. Curr Eye Res 2004;28:351-8. [CrossRef]
  • 26. Kida T, Harino S, Sugiyama T, Kitanishi K, Iwahashi Y, Ikeda T. Change in retinal arterial blood flow in the contralateral eye of retinal vein occlusion during glucose tolerance test. Graefe’s Arch Clin Exp Ophthalmol 2002;240(5):342-7. [CrossRef]
  • 27. Gilmore ED, Hudson C, Nrusimhadevara RK, et al. Retinal arteriolar hemodynamic response to an acute hyperglycemic provocation in early and sight-threatening diabetic retinopathy. Microvasc Res 2007;73(3):191-7. [CrossRef]
  • 28. Fallon TJ, Maxwell DL, Kohner EM. Autoregulation of retinal blood flow in diabetic retinopathy measured by the bluelight entoptic technique. Ophthalmology 1987;94:1410-5. [CrossRef]
  • 29. Sullivan PM, Parfitt VJ, Jagoe R, Newsom R, Kohner EM. Effect of meal on retinal blood flow in IDDM patients. Diabetes Care 1991;14:756-8. [CrossRef]
  • 30. Elbay A, Altinisik M, Dincyildiz A, et al. Are the effects of hemodialysis on ocular parameters similar during and after a hemodialysis session? Arq Bras Oftalmol 2017;80:290-5. [CrossRef]
  • 31. Chang IB, Lee JH, Kim JS. Changes in ChT in and Outside the Macula After Hemodialysis in Patients With End-Stage Renal Disease. Retina 2017;37:896-5. [CrossRef]
  • 32. Furushima M, Imaizumi M, Nakatsuka K. Changes in Refraction Caused by Induction of Acute Hyperglycemia in Healthy Volunteers. Jpn J Ophthalmol 1999;43(5):398-403. [CrossRef]
  • 33. Shiragami C, Shiraga F, Matsuo T, et al. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2002;240:436-42. [CrossRef]
  • 34. Sezer T, Altinisik M, Koytak IA, Ozdemir MH. The Choroid and Optical Coherence Tomography. Turk J Ophthalmol 2016;46(1):30-7. [CrossRef]
  • 35. Hidayat AA, Fine BS. Diabetic choroidopathy, light and electron microscopic observations of seven cases. Ophthalmology 1985;92:512-22. [CrossRef]
  • 36. Esmaeelpour M, Považay B, Hermann B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:5311-6. [CrossRef]
  • 37. Vujosevic S, Martini F, Cavarzeran F, et al. Macular and peripapillary ChT in diabetic patients. Retina 2012;32:1781- 90. [CrossRef]
  • 38. Tavares Ferreira J, Alves M, Dias-Santos A, et al. Retinal neurodegeneration in diabetic patients without diabetic retinopathy. Invest Ophthalmol Vis Sci 2016;57:6455-60. [CrossRef]
  • 39. Pierro L, Iuliano L, Cicinelli MV, Casalino G, Bandello F. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol 2017;27:346-51. [CrossRef]
  • 40. Di G, Weihong Y, Xiao Z, et al. A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2016;254:873-9. [CrossRef]
  • 41. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015;35:2377-83. [CrossRef] 192
  • 42. Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS. ChT in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina 2012;32:563-8. [CrossRef]
  • 43. Querques G, Lattanzio R, Querques L, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 2012;53:6017-24. [CrossRef]
  • 44. Xu J, Xu L, Du KF, et al. Subfoveal ChT in diabetes and diabetic retinopathy. Ophthalmology 2013;120:2023-8. [CrossRef]
  • 45. Savage HI, Hendrix JW, Peterson DC, Young H, Wilkinson CP. Differences in pulsatile ocular blood flow among three classifications of diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45:4504-9. [CrossRef]
  • 46. Horváth H, Kovács I, Sándor GL, Czakó C, Mallár K, Récsán Z, et al. Choroidal thickness changes in non-treated eyes of patients with diabetes: swept-source optical coherence tomography study. Acta Diabetologica 2018;55:927-34. [CrossRef]
  • 47. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH. Changes in ChT in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci 2013;54:3378-84. [CrossRef]
  • 48. Yulek F, Ugurlu N, Onal ED, et al. Choroidal changes and duration of diabetes. Semin Ophthalmol 2014;29:80-4. [CrossRef]
  • 49. Kawagishi T, Nishizawa Y, Emoto M, et al. Impaired retinal artery blood flow in IDDM patients before clinical manifestations of diabetic retinopathy. Diabetes Care 1995;18:1544-9. [CrossRef]
  • 50. Shao L, Xu L, Chen CX, et al. Reproducibility of subfoveal ChT measurements with enhanced depth imaging by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:230-3. [CrossRef]
There are 50 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Eylem Çağıltay This is me 0000-0003-3901-4015

Muhammed Altınışık This is me 0000-0003-0239-0180

Sjaak Pouwels This is me 0000-0002-6390-7692

Nur Demir This is me 0000-0003-4764-1131

Fahrettin Akay This is me 0000-0001-9679-9379

Publication Date June 29, 2020
Submission Date November 29, 2019
Published in Issue Year 2020 Volume: 83 Issue: 3

Cite

APA Çağıltay, E., Altınışık, M., Pouwels, S., Demir, N., et al. (2020). THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY. Journal of Istanbul Faculty of Medicine, 83(3), 184-192.
AMA Çağıltay E, Altınışık M, Pouwels S, Demir N, Akay F. THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY. İst Tıp Fak Derg. June 2020;83(3):184-192.
Chicago Çağıltay, Eylem, Muhammed Altınışık, Sjaak Pouwels, Nur Demir, and Fahrettin Akay. “THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY”. Journal of Istanbul Faculty of Medicine 83, no. 3 (June 2020): 184-92.
EndNote Çağıltay E, Altınışık M, Pouwels S, Demir N, Akay F (June 1, 2020) THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY. Journal of Istanbul Faculty of Medicine 83 3 184–192.
IEEE E. Çağıltay, M. Altınışık, S. Pouwels, N. Demir, and F. Akay, “THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY”, İst Tıp Fak Derg, vol. 83, no. 3, pp. 184–192, 2020.
ISNAD Çağıltay, Eylem et al. “THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY”. Journal of Istanbul Faculty of Medicine 83/3 (June 2020), 184-192.
JAMA Çağıltay E, Altınışık M, Pouwels S, Demir N, Akay F. THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY. İst Tıp Fak Derg. 2020;83:184–192.
MLA Çağıltay, Eylem et al. “THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY”. Journal of Istanbul Faculty of Medicine, vol. 83, no. 3, 2020, pp. 184-92.
Vancouver Çağıltay E, Altınışık M, Pouwels S, Demir N, Akay F. THE MEASUREMENT OF THE CHOROIDAL THICKNESS DURING ORAL GLUCOSE TOLERANCE TESTS IN PREDIABETIC SUBJECTS: A SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY STUDY. İst Tıp Fak Derg. 2020;83(3):184-92.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61