Research Article
BibTex RIS Cite

GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS

Year 2022, Volume: 85 Issue: 2, 216 - 222, 24.03.2022
https://doi.org/10.26650/IUITFD.1051730

Abstract

Objective: The aim of this study was to evaluate the GenoType®MTBDRplus test for detection of rifampicin (RIF) resistance in MDR Mycobacterium tuberculosis complex strains. Materials and Methods: Twenty-five multidrug-resistant (MDR) Mycobacterium tuberculosis clinical strains were used, gene mutations causing RIF resistance were investigated by GenoType®MTBDRplus and the results were compared with the results of the BACTEC 460 TB system. The strain was sequenced if there was no mutation and absence Wild Type (WT). Mycobacterium tuberculosis ATCC 35838 was used as a quality control (QC) strain. Results: There was 96% compliance between the GenoType®MTBDRplus and BACTEC 460 TB system for the finding of RIF resistance. The most frequent mutation zone in MDR strains was rpoB S531L promotor zone (13 strains, 52%). The other rpoB gene mutations were H526Y (three strains, 12%) and H526D (three strains, 12%), while five strains (20%) had Δ2-Δ5 mutations in the wild type probes. There was no mutation in only one strain (4%) by GenoType®MTBDRplus but it was found to be as resistant to rifampicin by the BACTEC 460 TB system. This strain was sequenced and detected to have triple mutations. Mutations were found on codons 489, 493, and 503. Conclusion: GenoType®MTBDRplus showed good compatibility with the BACTEC 460 TB system in detecting rifampicin resistance, and it was thought that GenoType®MTBDRplus could be an effective and reliable test for RIF susceptibility testing in MDRTB patients, providing a significant advantage in technical time.

Supporting Institution

Istanbul University Scientific Research Projects Unit

Project Number

21970

References

  • 1. Pfyffer GE. Mycobacterium: general characteristics, laboratory detection, and staining procedures. Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, DW Warnock DW, editors. Manual of clinical microbiology. Washington: ASM Press; 2015. p.536-69. [CrossRef]
  • 2. Dawson KL, Bell A, Kawakami RP, Coley K, Yates G, Collins DM. Transmission of Mycobacterium orygis (M. tuberculosis complex species) from a tuberculosis patient a dairy cow in New Zealand. J Clin Microbiol 2012;50:3136-8. [CrossRef]
  • 3. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, et al. Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis 2012;18:653-5. [CrossRef]
  • 4. World Health Organization (WHO), Global Tuberculosis Report 2020. Available from: https://www.who.int/ publications/i/item/9789240013131.
  • 5. Republic of Turkey Ministry of Health, General Directorate of Public Health, Combating Tuberculosis in Turkey, 2020 Report. Available from: https://hsgm.saglik.gov.tr/ depo/kurumsal/yayinlarimiz/Raporlar/Turkiyede_Verem_ Savasi_2020_Raporu.pdf (Document in Turkish).
  • 6. World Health Organization (WHO), Treatment of Tuberculosis Guidelines 4th ed. WHO/HTM/TB/2009.420 Available from: https://apps.who.int/iris/bitstream/ handle/10665/44165/9789241547833_eng.pdf
  • 7. National Department of Health. National tuberculosis management guidelines 2014. South Africa: Fiswicks; 2014. Available from: https://www.tbonline.info /media/ uploads/documents /national_tuberculosis_management_ guidelines_%282014 %29.pdf.
  • 8. Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001;14(4):836- 71. [CrossRef]
  • 9. Caws M, Drobniewski FA. Molecular techniques in the diagnosis of Mycobacterium tuberculosis and the detection of drug resistance. Ann N Y Acad Sci 2001;953:138-45. [CrossRef]
  • 10. GenoTypeMTBDRplus, VER 2.0, Instructions for Use, IFU- 304A-02, Hain Lifesciences GmbH, Germany 2012. Available from: https://www.hain-lifescience.de/en/instructions-foruse. html
  • 11. Tadesse M, Aragaw D, Dimah B, Efa F, Abdella K, Kebede W, et al. Drug resistance-conferring mutations in Mycobacterium tuberculosis from pulmonary tuberculosis patients in Southwest Ethiopia. Int J Mycobacteriol 2016;5(2):185-91. [CrossRef]
  • 12. N’guessan K, Assi JS, Ouassa T, Ahui-Brou JM, Tehe A, Sow MK, et al. Assessment of the genotype MTBDRplus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d’Ivoire. Eur J Microbiol Immunol (Bp) 2014;4(3):166-73. [CrossRef]
  • 13. Hillemann D, Rüsch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 2007;45(8):2635-40. [CrossRef]
  • 14. Saeed Zaker B, Abolfazl F, Khaled S, Farid A, Ali K, Alireza Hadizadeh T, et al. Frequency and molecular characterization of rifampicin-resistance in rpoB region of multiple drug resistance [MDR] isolates from tuberculosis patients in southern endemic region of Iran. Iran J Biotechnol 2007;5(4):212-8.
  • 15. European Bioinformatics Institute (EMBL-EBI), Clustal Omega Multiple Sequence Alignment Web Server (Online). Available from: https://www.ebi.ac.uk/Tools/msa/clustalo/
  • 16. Omer ZB, Mekonnen Y, Worku A, Zewde A, Medhin G, Mohammed T, et al. Evaluation of the GenoType MTBDRplus assay for detection of rifampicin-and isoniazidresistant Mycobacterium tuberculosis isolates in central Ethiopia. Int J Mycobacteriol 2016;5(4):475-81. [CrossRef]
  • 17. Siddiqui S, Brooks MB, Malik AA, Fuad J, Nazish A, Bano S, et al. Evaluation of GenoType MTBDR plus for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Karachi, Pakistan. PloS one 2019;14(8):e0221485. [CrossRef]
  • 18. Meaza A, Kebede A, Yaregal Z, Dagne Z, Moga S, Yenew B, et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis 2017;17(1):280. [CrossRef]
  • 19. Abanda NN, Djieugoué JY, Lim E, Pefura-Yone EW, Mbacham WF, Vernet G, et al. Diagnostic accuracy and usefulness of the Genotype MTBDRplus assay in diagnosing multidrug-resistant tuberculosis in Cameroon: A crosssectional study. BMC Infect Dis 2017;17(1):379. [CrossRef]
  • 20. Jian J, Yang X, Yang J, Chen L. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drugresistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist 2018;1:1627-34. [CrossRef]
  • 21. Meaza A, Kebede A, Yaregal Z, Dagne Z, Moga S, Yenew B, et al. Evaluation of genotype MTBDR plus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis 2017;17(1):1-8. [CrossRef]
  • 22. Singh BK, Sharma R, Kodan P, Soneja M, Jorwal P, Nischal N, et al. Diagnostic evaluation of non-Interpretable results associated with rpoB gene in Genotype MTBDRplus Ver 2.0. Tuberc Respir Dis (Seoul) 2020;83(4):289-94. [CrossRef]
  • 23. Maurya AK, Singh AK, Kant S, Umrao J, Kumar M, Kushwaha RAS, et al. Use of GenoType® MTBDRplus assay to assess drug resistance and mutation patterns of multidrugresistant tuberculosis isolates in northern India. Indian J Med Microbiol 2013;31(3):230-6. [CrossRef]
  • 24. Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low-and high-level resistance. J Clin Microbiol 2006;44(10):3659-64. [CrossRef]
  • 25. Lacoma A, Garcia-Sierra N, Prat C, Ruiz-Manzano J, Haba L, Rosés S, et al. GenoType MTBDR plus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol 2008;46(11):3660-7. [CrossRef]
  • 26. Cavusoglu C, Turhan A, Akinci P. Soyler I. Evaluation of the Genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates. J Clin Microbiol 2006;44(7):2338-42. [CrossRef]
  • 27. Kambli P, Ajbani K, Sadani M, Nikam C, Shetty A, Udwadia Z, et al. Defining multidrug-resistant tuberculosis: correlating GenoType MTBDRplus assay results with minimum inhibitory concentrations. Diagn Microbiol Infect Dis 2015;82(1):49-53. [CrossRef]
  • 28. Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015;10(2):e0117771 doi: 10.1371/journal.pone.0117771 [CrossRef]
  • 29. Singhal R, Myneedu VP, Arora J, Singh N, Bhalla M, Verma A, et al. Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDRplus assay. Indian J Med Microbiol 2015;33(5):46. [CrossRef]
  • 30. Bang D, Andersen SR, Vasiliauskienė E, Rasmussen, EM. Performance of the GenoType MTBDRplus assay (v2. 0) and a new extended GenoType MTBDRsl assay (v2. 0) for the molecular detection of multi-and extensively drug-resistant Mycobacterium tuberculosis on isolates primarily from Lithuania. Diagn Microbiol Infect Dis 2016;86(4):377-81. [CrossRef]
  • 31. Ennassiri W, Jaouhari S, Sabouni R, Cherki W, Charof R, Filali-Maltouf A, et al. Analysis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis isolates in Morocco using GenoType® MTBDRplus assay. J Glob Antimicrob Resist 2018;12:197-201. [CrossRef]
  • 32. Karimi H, En-Nanai L, Oudghiri A, Chaoui I, Laglaoui A, Bourkadi JE, et al. Performance of GenoType® MTBDRplus assay in the diagnosis of drug-resistant tuberculosis in Tangier, Morocco. J Glob Antimicrob Resist 2018;12:63-7. [CrossRef]
  • 33. Yadav RN, Singh BK, Sharma SK, Sharma R, Soneja M, Sreenivas V, et al. Comparative evaluation of GenoType MTBDR plus line probe assay with solid culture method in early diagnosis of multidrug resistant tuberculosis (MDR-TB) at a tertiary care centre in India. PloS One 2013;8(9):e72036. [CrossRef]
  • 34. Vashistha H, Hanif M, Chopra KK, Khanna A, Shrivastava D. Band pattern analysis of mutations in rifampicin resistance strain of Mycobacterium tuberculosis by Line Probe Assay in patients from Delhi, India. Indian J Tuberc 2017;64(3):212- 8. [CrossRef]
  • 35. Imperiale BR, Zumárraga MJ, Weltman G, Zudiker R, Cataldi ÁA, Morcillo NS. First evaluation in Argentina of the GenoType® MTBDRplus assay for multidrug-resistant Mycobacterium tuberculosis detection from clinical isolates and specimens. Rev Argent Microbiol 2012;44(4):283-9.
  • 36. Miotto P, Saleri N, Dembelé M, Ouedraogo M, Badoum G, Pinsi G, et al. Molecular detection of rifampin and isoniazid resistance to guide chronic TB patient management in Burkina Faso. BMC Infect Dis 2009;9(1):142. [CrossRef]

ÇOĞUL İLACA DİRENÇLİ MYCOBACTERİUM TUBERCULOSİS KOMPLEKS SUŞLARINDA RİFAMPİSİNİN GEN MUTASYON PATERNLERİ

Year 2022, Volume: 85 Issue: 2, 216 - 222, 24.03.2022
https://doi.org/10.26650/IUITFD.1051730

Abstract

Amaç: Bu çalışmada, çoğul ilaca dirençli (ÇİD) Mycobacterium tuberculosis kompleks suşlarında rifampisin (RIF) direncinin saptanmasında GenoType®MTBDRplus testinin değerlendirilmesi amaçlanmıştır. Gereç ve Yöntem: Yirmi beş ÇİD Mycobacterium tuberculosis klinik suşu kullanılmış, RIF direncine neden olan gen mutasyonları GenoType®MTBDRplus ile araştırılmış ve sonuçlar BACTEC 460 TB sistemi sonuçları ile karşılaştırılmıştır. Eğer mutasyon veya Vahşi Tip (VT) bandı yoksa suş sekanslanmıştır. Kalite kontrol (QC) suşu olarak Mycobacterium tuberculosis ATCC 35838 kullanılmıştır. Bulgular: Rifampisin direncinin saptanmasında GenoType®MTBDRplus ve BACTEC 460 TB sistemi arasında %96 uyum bulunmuştur. ÇİD suşlarda mutasyonun en sık rpoB S531L promotor bölgede (13 suş, %52) olduğu görülmüştür. Diğer rpoB gen mutasyonları H526Y (üç suş, %12) ve H526D (üç suş, %12) bölgesinde iken, beş suşta (%20) vahşi tip problarında Δ2-Δ5 mutasyonları saptanmıştır. Bir suşta (%4) GenoType®MTBDRplus ile mutasyon bulunamamış, ancak BACTEC 460 TB sistemi ile rifampisine dirençli olduğu belirlenmiştir. Bu suş sekanslanmış, 489, 493 ve 503 kodonlarında üçlü mutasyona sahip olduğu tespit edilmiştir. Sonuç: Rifampisin direncinin saptanmasında GenoType®MTBDRplus, BACTEC 460 TB sistemi ile iyi uyum göstermiştir ve ÇİDTB hastalarında RIF duyarlılık testi için GenoType®MTBDRplus’ın etkili ve güvenilir bir test olabileceği ve bunun teknik zaman açısından da önemli bir avantaj sağlayacağı düşünülmüştür.

Project Number

21970

References

  • 1. Pfyffer GE. Mycobacterium: general characteristics, laboratory detection, and staining procedures. Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, DW Warnock DW, editors. Manual of clinical microbiology. Washington: ASM Press; 2015. p.536-69. [CrossRef]
  • 2. Dawson KL, Bell A, Kawakami RP, Coley K, Yates G, Collins DM. Transmission of Mycobacterium orygis (M. tuberculosis complex species) from a tuberculosis patient a dairy cow in New Zealand. J Clin Microbiol 2012;50:3136-8. [CrossRef]
  • 3. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, et al. Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis 2012;18:653-5. [CrossRef]
  • 4. World Health Organization (WHO), Global Tuberculosis Report 2020. Available from: https://www.who.int/ publications/i/item/9789240013131.
  • 5. Republic of Turkey Ministry of Health, General Directorate of Public Health, Combating Tuberculosis in Turkey, 2020 Report. Available from: https://hsgm.saglik.gov.tr/ depo/kurumsal/yayinlarimiz/Raporlar/Turkiyede_Verem_ Savasi_2020_Raporu.pdf (Document in Turkish).
  • 6. World Health Organization (WHO), Treatment of Tuberculosis Guidelines 4th ed. WHO/HTM/TB/2009.420 Available from: https://apps.who.int/iris/bitstream/ handle/10665/44165/9789241547833_eng.pdf
  • 7. National Department of Health. National tuberculosis management guidelines 2014. South Africa: Fiswicks; 2014. Available from: https://www.tbonline.info /media/ uploads/documents /national_tuberculosis_management_ guidelines_%282014 %29.pdf.
  • 8. Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001;14(4):836- 71. [CrossRef]
  • 9. Caws M, Drobniewski FA. Molecular techniques in the diagnosis of Mycobacterium tuberculosis and the detection of drug resistance. Ann N Y Acad Sci 2001;953:138-45. [CrossRef]
  • 10. GenoTypeMTBDRplus, VER 2.0, Instructions for Use, IFU- 304A-02, Hain Lifesciences GmbH, Germany 2012. Available from: https://www.hain-lifescience.de/en/instructions-foruse. html
  • 11. Tadesse M, Aragaw D, Dimah B, Efa F, Abdella K, Kebede W, et al. Drug resistance-conferring mutations in Mycobacterium tuberculosis from pulmonary tuberculosis patients in Southwest Ethiopia. Int J Mycobacteriol 2016;5(2):185-91. [CrossRef]
  • 12. N’guessan K, Assi JS, Ouassa T, Ahui-Brou JM, Tehe A, Sow MK, et al. Assessment of the genotype MTBDRplus assay for rifampin and isoniazid resistance detection on sputum samples in Cote d’Ivoire. Eur J Microbiol Immunol (Bp) 2014;4(3):166-73. [CrossRef]
  • 13. Hillemann D, Rüsch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 2007;45(8):2635-40. [CrossRef]
  • 14. Saeed Zaker B, Abolfazl F, Khaled S, Farid A, Ali K, Alireza Hadizadeh T, et al. Frequency and molecular characterization of rifampicin-resistance in rpoB region of multiple drug resistance [MDR] isolates from tuberculosis patients in southern endemic region of Iran. Iran J Biotechnol 2007;5(4):212-8.
  • 15. European Bioinformatics Institute (EMBL-EBI), Clustal Omega Multiple Sequence Alignment Web Server (Online). Available from: https://www.ebi.ac.uk/Tools/msa/clustalo/
  • 16. Omer ZB, Mekonnen Y, Worku A, Zewde A, Medhin G, Mohammed T, et al. Evaluation of the GenoType MTBDRplus assay for detection of rifampicin-and isoniazidresistant Mycobacterium tuberculosis isolates in central Ethiopia. Int J Mycobacteriol 2016;5(4):475-81. [CrossRef]
  • 17. Siddiqui S, Brooks MB, Malik AA, Fuad J, Nazish A, Bano S, et al. Evaluation of GenoType MTBDR plus for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Karachi, Pakistan. PloS one 2019;14(8):e0221485. [CrossRef]
  • 18. Meaza A, Kebede A, Yaregal Z, Dagne Z, Moga S, Yenew B, et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis 2017;17(1):280. [CrossRef]
  • 19. Abanda NN, Djieugoué JY, Lim E, Pefura-Yone EW, Mbacham WF, Vernet G, et al. Diagnostic accuracy and usefulness of the Genotype MTBDRplus assay in diagnosing multidrug-resistant tuberculosis in Cameroon: A crosssectional study. BMC Infect Dis 2017;17(1):379. [CrossRef]
  • 20. Jian J, Yang X, Yang J, Chen L. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drugresistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist 2018;1:1627-34. [CrossRef]
  • 21. Meaza A, Kebede A, Yaregal Z, Dagne Z, Moga S, Yenew B, et al. Evaluation of genotype MTBDR plus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis 2017;17(1):1-8. [CrossRef]
  • 22. Singh BK, Sharma R, Kodan P, Soneja M, Jorwal P, Nischal N, et al. Diagnostic evaluation of non-Interpretable results associated with rpoB gene in Genotype MTBDRplus Ver 2.0. Tuberc Respir Dis (Seoul) 2020;83(4):289-94. [CrossRef]
  • 23. Maurya AK, Singh AK, Kant S, Umrao J, Kumar M, Kushwaha RAS, et al. Use of GenoType® MTBDRplus assay to assess drug resistance and mutation patterns of multidrugresistant tuberculosis isolates in northern India. Indian J Med Microbiol 2013;31(3):230-6. [CrossRef]
  • 24. Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W. Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low-and high-level resistance. J Clin Microbiol 2006;44(10):3659-64. [CrossRef]
  • 25. Lacoma A, Garcia-Sierra N, Prat C, Ruiz-Manzano J, Haba L, Rosés S, et al. GenoType MTBDR plus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol 2008;46(11):3660-7. [CrossRef]
  • 26. Cavusoglu C, Turhan A, Akinci P. Soyler I. Evaluation of the Genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates. J Clin Microbiol 2006;44(7):2338-42. [CrossRef]
  • 27. Kambli P, Ajbani K, Sadani M, Nikam C, Shetty A, Udwadia Z, et al. Defining multidrug-resistant tuberculosis: correlating GenoType MTBDRplus assay results with minimum inhibitory concentrations. Diagn Microbiol Infect Dis 2015;82(1):49-53. [CrossRef]
  • 28. Ali A, Hasan Z, McNerney R, Mallard K, Hill-Cawthorne G, Coll F, et al. Whole genome sequencing based characterization of extensively drug-resistant Mycobacterium tuberculosis isolates from Pakistan. PLoS One 2015;10(2):e0117771 doi: 10.1371/journal.pone.0117771 [CrossRef]
  • 29. Singhal R, Myneedu VP, Arora J, Singh N, Bhalla M, Verma A, et al. Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDRplus assay. Indian J Med Microbiol 2015;33(5):46. [CrossRef]
  • 30. Bang D, Andersen SR, Vasiliauskienė E, Rasmussen, EM. Performance of the GenoType MTBDRplus assay (v2. 0) and a new extended GenoType MTBDRsl assay (v2. 0) for the molecular detection of multi-and extensively drug-resistant Mycobacterium tuberculosis on isolates primarily from Lithuania. Diagn Microbiol Infect Dis 2016;86(4):377-81. [CrossRef]
  • 31. Ennassiri W, Jaouhari S, Sabouni R, Cherki W, Charof R, Filali-Maltouf A, et al. Analysis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis isolates in Morocco using GenoType® MTBDRplus assay. J Glob Antimicrob Resist 2018;12:197-201. [CrossRef]
  • 32. Karimi H, En-Nanai L, Oudghiri A, Chaoui I, Laglaoui A, Bourkadi JE, et al. Performance of GenoType® MTBDRplus assay in the diagnosis of drug-resistant tuberculosis in Tangier, Morocco. J Glob Antimicrob Resist 2018;12:63-7. [CrossRef]
  • 33. Yadav RN, Singh BK, Sharma SK, Sharma R, Soneja M, Sreenivas V, et al. Comparative evaluation of GenoType MTBDR plus line probe assay with solid culture method in early diagnosis of multidrug resistant tuberculosis (MDR-TB) at a tertiary care centre in India. PloS One 2013;8(9):e72036. [CrossRef]
  • 34. Vashistha H, Hanif M, Chopra KK, Khanna A, Shrivastava D. Band pattern analysis of mutations in rifampicin resistance strain of Mycobacterium tuberculosis by Line Probe Assay in patients from Delhi, India. Indian J Tuberc 2017;64(3):212- 8. [CrossRef]
  • 35. Imperiale BR, Zumárraga MJ, Weltman G, Zudiker R, Cataldi ÁA, Morcillo NS. First evaluation in Argentina of the GenoType® MTBDRplus assay for multidrug-resistant Mycobacterium tuberculosis detection from clinical isolates and specimens. Rev Argent Microbiol 2012;44(4):283-9.
  • 36. Miotto P, Saleri N, Dembelé M, Ouedraogo M, Badoum G, Pinsi G, et al. Molecular detection of rifampin and isoniazid resistance to guide chronic TB patient management in Burkina Faso. BMC Infect Dis 2009;9(1):142. [CrossRef]
There are 36 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Esra Yıldırım Servi 0000-0001-5094-5828

Meltem Uzun 0000-0001-6740-5262

Project Number 21970
Publication Date March 24, 2022
Submission Date December 31, 2021
Published in Issue Year 2022 Volume: 85 Issue: 2

Cite

APA Yıldırım Servi, E., & Uzun, M. (2022). GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS. Journal of Istanbul Faculty of Medicine, 85(2), 216-222. https://doi.org/10.26650/IUITFD.1051730
AMA Yıldırım Servi E, Uzun M. GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS. İst Tıp Fak Derg. March 2022;85(2):216-222. doi:10.26650/IUITFD.1051730
Chicago Yıldırım Servi, Esra, and Meltem Uzun. “GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS”. Journal of Istanbul Faculty of Medicine 85, no. 2 (March 2022): 216-22. https://doi.org/10.26650/IUITFD.1051730.
EndNote Yıldırım Servi E, Uzun M (March 1, 2022) GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS. Journal of Istanbul Faculty of Medicine 85 2 216–222.
IEEE E. Yıldırım Servi and M. Uzun, “GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS”, İst Tıp Fak Derg, vol. 85, no. 2, pp. 216–222, 2022, doi: 10.26650/IUITFD.1051730.
ISNAD Yıldırım Servi, Esra - Uzun, Meltem. “GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS”. Journal of Istanbul Faculty of Medicine 85/2 (March 2022), 216-222. https://doi.org/10.26650/IUITFD.1051730.
JAMA Yıldırım Servi E, Uzun M. GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS. İst Tıp Fak Derg. 2022;85:216–222.
MLA Yıldırım Servi, Esra and Meltem Uzun. “GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS”. Journal of Istanbul Faculty of Medicine, vol. 85, no. 2, 2022, pp. 216-22, doi:10.26650/IUITFD.1051730.
Vancouver Yıldırım Servi E, Uzun M. GENE MUTATION PATTERNS OF RIFAMPICIN IN MULTIDRUGRESISTANT MYCOBACTERIUM TUBERCULOSIS COMPLEX STRAINS. İst Tıp Fak Derg. 2022;85(2):216-22.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61