Research Article
BibTex RIS Cite

TÜRK ÇOCUKLARINDA YAŞ, CİNSİYET VE SOSYO-EKONOMİK DURUMUNUN SERUM DEMİR, VİTAMİN B-12 VE FOLİK ASİT KONSANTRASYONLARI ÜZERİNDEKİ ETKİLERİ: KESİTSEL BİR ÇALIŞMA

Year 2022, Volume: 85 Issue: 4, 572 - 580, 28.10.2022
https://doi.org/10.26650/IUITFD.1031447

Abstract

Amaç: Bu çalışmanın amacı, pediyatrik yaş gruplarında; yaş, cinsiyet ve sosyo-ekonomik durumun (SED) B12 vitamini, folik asit, demir ve ferritin konsantrasyonlarına etkisi, bu parametrelerin hemoglobin (Hb), hematokrit (Hct), ortalama eritrosit hacmi (MCV) , RDW gibi kan sayımı parametreleri arasındaki ilişkisinin saptanmasıdır. Gereç ve Yöntem: Çalışma 30504 venöz kan örneğinden oluştu (%54,5 kız, %45,5 erkek). Çalışma grupları; grup I: 1-6 yaş (n=3.870), grup II: 7-12 yaş (n=11.019), grup III: 13-18 yaş (n=15.615). Serum B12 vitamini, folik asit, ferritin, demir, demir bağlama kapasitesi (TDBK), Beckman Coulter’ın DXI 800 analizörü kullanılarak, tam kan sayımı Sysmex XE 2100 hematoloji cihazında çalışıldı. Bulgular: Kız ve erkek çocuklarının yaş grupları arasında Hb, Hct, MCV, RDW düzeyleri anlamlı olarak farklı bulundu (tüm parametreler için, p<0.001). Hb ve Hct düzeyleri 13-18 yaş grubu erkek çocuklarında en yüksek seviyede olup, aynı yaş grubundaki kız çocuklarına göre anlamlı olarak daha yüksekti (p<0.001). Demir eksikliği prevalansı, kız çocuklarda %12,3, erkek çocuklarda %4,2 idi. Serum folik asit ve B12 vitamin konsantrasyonlarında yaş grupları içerisinde yaşla azalma görüldü (sırasıyla r=-0,480, p<0,001; r=-0,377, p<0,001). Kız ve erkek çocuklarında, B12 vitamin eksikliği prevalansı sırasıyla %27,1 ve %28,3 iken, folik asit eksikliği prevalansı %6,0 ve %6,8 olarak bulundu. Demir, TDBK ve ferritin düzeylerinde yüksek ve orta SED arasında anlamlı farklılıklar görüldü (p<0,001, tüm parametreler için). Sonuç: Bu çalışmanın sonuçları, ferritin, B12 vitamini, folik asit düzeylerinin mental, emosyonal ve metabolik gelişimlerindeki rolleri nedeniyle çocukluk çağı ve ergenlikte izlenmesinin klinik uygulamaya katkıları açısından önem taşımaktadır. Ancak, bu nutrientleri ülke genelinde Türk çocuk ve ergenlerindeki temsil edebilecek daha geniş ve çok merkezli çalışmalara ihtiyaç vardır.

References

  • 1. Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Topolski R. The prevalence of Vit-B12 deficiency in patients with type 2 diabetes: a cross-sectional study. J Am Board Fam Med 2009;22(5):528-34. [CrossRef] google scholar
  • 2. Barnabe A, Morandi Alessio AC, Bittar LF, Moreas Mazetto B, Bicudo AM, de Paula EV, et al. Folate, Vit-B12 and Homocysteine status in the post-folic acid fortification era in different subgroups of Brazilian population attended to at a public health care center. Nutr J 2015;14:19. [CrossRef] google scholar
  • 3. Homocysteine studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002;288(16):2015-22. [CrossRef] google scholar
  • 4. Baines M, Kredan MB, Usher J, Davison A, Higgins G, Taylor W, et al. The association of homocysteine and its determinants MTHFR genotype, folate, Vit-B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 2007;40(3):730-6. [CrossRef] google scholar
  • 5. Stover PJ. Physiology of folate and Vit-B12 in health and disease. Nutr Rev 2004;62(6Pt 2):S3-12. [CrossRef] google scholar
  • 6. Kerr MA, Livingstone B, Bates CJ, Bradbury I, Scott JM, Ward M, et al. Folate, related B vitamins, and homocysteine in childhood and adolescence: Potential implications for disease risk in later life. Pediatrics 2009;123(2):627-35. [CrossRef] google scholar
  • 7. Hogeveen M, van Beynum I, van Rooij A, Kluijymams L, den Heijer M, Blom H. Methylmalonic acid values in healthy Dutch children. Eur J Nutr 2008;47(1):26-31. [CrossRef] google scholar
  • 8. Ganji V, Kafai MR. Trends in serum folate, RBC folate, and circulating total homocysteine concentrations in the United States: analysis of data from National Health and Nutrition Examination Surveys, 1988-1994,1999-2000, and 2001-2002. J Nutr 2006;136(1):153-8. [CrossRef] google scholar
  • 9. Nokes C, van den Bosch C, Bundy DAP. The effects of iron deficiency and anemia on mental and motor performance, educational achievement and behavior in children: An annotated bibliography. A Report of the International Nutritional Anemia Consultative Group. Printed April 1998 in the United States of America. Available from: URL: https://ilsi.org/researchfoundation/wp-content/uploads/ sites/5/2016/04/INACG_The_Effects_of_Iron_Deficiency.pdf google scholar
  • 10. World Health Organization. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Vitamin and Mineral Nutrition Information System. Geneva, WHO, 2011 (WHO/NMH/NHD/ MNM/11.2). Available from: URL: http://www.who.int/ vmnis/indicators/serum ferritin.pdf google scholar
  • 11. Şeker M, Bakiş Ç, Dizeci B. Human Development Index-Districts (HDI-D) 2017 Transitioning from consumer to human. Cizge Tanıtım & Matbaacılık; Istanbul: 2018, p.35-42. Available from:URL: https://ingev.org/raporlar/HDI-D-2017-ENG.pdf google scholar
  • 12. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency.: A meta-analysis. Am J Clin Nutr 2010;92(3):546-55. [CrossRef] google scholar
  • 13. Urrechaga E, Izquierdo-Âlvarez S, Llorente MT, Escanero JF. Prevalence of iron deficiency in healthy adolescents. Ann Nutr Disord & Ther 2016;3(2):1036. google scholar
  • 14. UNICEF. State of the world’s children. New York: United Nations Press; 2005. Available from: URL: https://www. unicef.org/media/84801/file/SOWC-2005.pdf google scholar
  • 15. Karakurt N, Terzi O. Prevalence of Anemia among children in a single University Hospital. Izmir Dr Behcet Uz Cocuk Hast Dergisi 2019;9(2):155-9. [CrossRef] google scholar
  • 16. Pektas E, Aral YZ, Yenisey C. The prevalence of Anemia and nutritional aneamia in Primary School children in the City of Aydin. Meandros Med Dent J 2015;16:97-107. [CrossRef] google scholar
  • 17. National Center for Health Statistics. Documentation, codebook, and frequencies. Laboratory component. Ferritin and transferrin receptor. National Health and Nutrition Examination Survey. 2003-2004. Available from:URL: https:// wwwn.cdc.gov/nchs/nhanes/2003-2004/L06TFR_C.htm google scholar
  • 18. Oh HL, Lee JA, Kim AH, Lim JS. Reference values for serum ferritin and percentage of transferrin saturation in Korean children and adolescents. Blood Res 2018;53(1):18-24. [CrossRef] google scholar
  • 19. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014;123(5):615-24. [CrossRef] google scholar
  • 20. MacDonald I, Gibney M. Core concepts of nutrition. In: Gibney M, Roche H, editors. Nutrition and Metabolism. Oxford; Blackwell Science; 2003. p:1-4. [CrossRef] google scholar
  • 21. Van Beynum IM, den Heijer M, Thomas CM, Afman I, Oppenraay-van E D, Blom HJ. Total homocysteine and its predictors in Dutch children. Am J Clin Nutr 2005;81(5):1110-6. [CrossRef] google scholar
  • 22. Gonzalez-Gross M, Benser J, Breidenassel C, Albers U, Huybrechts I, ValtunaJ, et al on behalf of the HELENA study. Gender and age influence blood folate, Vit-B12, vitamin B6 and homocysteine levels in European adolescents: Helena Study. Nutr Res 2012;32(11):817-26. [CrossRef] google scholar
  • 23. Moreno LA, Gottrand F, Huybrechts I, Reiz JR, Gonzalez-Gross M, De Henauw S, et al Nutrition and lifestyle in European Adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Adv Nutr 2014;5(5):615S-23S. [CrossRef] google scholar
  • 24. Dhonukshe-Rutten RAM, de Vries JHM, de Bree A, van der Put N, van Staveren WA, de Groot LCPGM. Dietary intake and status of folate and Vit12 and their association with homocysteine and cardiovascular disease in European populations. Eur J Clin Nutr 2009;63(1):18-30. [CrossRef] google scholar
  • 25. Akin F, Yavuz H, Bodur S, Kiyici A. Vit-B12 levels of subjects aged 0-24 year(s) in Konya, Turkey. J Health Popul Nutr 2014;32(4):615-22. google scholar
  • 26. Green R. Indicators for assessing folate and Vit-B12 status and for monitoring the efficacy of intervention strategies. Am J Clin Nutr 2011;94(2):666S-72S. [CrossRef] google scholar
  • 27. Dhonukshe-Rutten RA, van Dusseldorp M, Scheede J, de Groot LCPGM, van Staveren WA. Low bone density and bone mineral content are associated with low cobalamin status in adolescents. Eur J Nut 2005;44(6):341-7. [CrossRef] google scholar
  • 28. Satman I, Omer B, Tutuncu Y, Kalaca S, Gedik S, Dinccag N, et al. TURDEP-II Study Group. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol 2013;28(2):169-80. [CrossRef] google scholar
  • 29. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, et al. Reduction in neural- tube defects after folic acid fortification in Canada. N Engl J Med 2007;357(2):135-42. [CrossRef] google scholar
  • 30. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 2007;369(9576):1876-82. [CrossRef] google scholar
  • 31. Bazzano LA, Reynolds K, Holder KN, He J. Effect of Folic acid supplementation on Risk of Cardiovascular Diseases:a meta-analysis of randomized controlled trials. JAMA 2006;296(22):2720-6. [CrossRef] google scholar

THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY

Year 2022, Volume: 85 Issue: 4, 572 - 580, 28.10.2022
https://doi.org/10.26650/IUITFD.1031447

Abstract

Objective: The aim of this study is to evaluate the effects of age, sex, and socio-economic status (SES) on concentrations of vitamin B12 (vit-B12), folate, iron, and ferritin through the pediatric age span, and to show the relationship of these nutrients with blood count parameters such as hemoglobin (Hb), hematocrit (Hct), mean corpuscular volume (MCV), and red cell distribution (RDW). Material and Method: The study comprised of 30,504 venous blood samples (54.5% of girls and 45.5% of boys). The study group was stratified; group I: 1-6 years (n=3,870), group II: 7-12 years (n=11,019), and group III: 13-18 years (n=15,615). Serum vit-B12, folate, ferritin, iron and total iron-binding capacity (TIBC) were measured using a Beckman Coulter DXI 800, and the blood count was analyzed using a Sysmex XE 2100 analyzer. Results: The Hb, Hct, MCV, and RDW levels were significantly different between the age groups of boys and girls (p<0.001, for all). Hb and Hct were the highest in boys aged 13-18 years, and higher than those of girls in the same age group (p<0.001). The MCV and RDW were also significantly different across the age groups (p<0.001). The iron deficiency prevalences were 12.3% and 4.2% for the girls and boys respectively. Serum folate and vit-B12 showed decrement with age across the age groups. The prevalences of vit-B12 deficiency were 27.1% and 28.3% and 6.0% and 6.8% for folate deficiency for girls and boys. Iron, TIBC ,and ferritin levels were significantly different between the high and medium SES. Conclusion: The results of this study are important in that the monitorization of ferritin, vit-B12, and folate levels greatly contribute to clinical practice because of the roles of vit-B12, folate, and iron in mental, emotional, and metabolic development. However, there is a need for larger and multicenter studies that can represent the nutrients of Turkish children and adolescents nationwide.

References

  • 1. Pflipsen MC, Oh RC, Saguil A, Seehusen DA, Topolski R. The prevalence of Vit-B12 deficiency in patients with type 2 diabetes: a cross-sectional study. J Am Board Fam Med 2009;22(5):528-34. [CrossRef] google scholar
  • 2. Barnabe A, Morandi Alessio AC, Bittar LF, Moreas Mazetto B, Bicudo AM, de Paula EV, et al. Folate, Vit-B12 and Homocysteine status in the post-folic acid fortification era in different subgroups of Brazilian population attended to at a public health care center. Nutr J 2015;14:19. [CrossRef] google scholar
  • 3. Homocysteine studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002;288(16):2015-22. [CrossRef] google scholar
  • 4. Baines M, Kredan MB, Usher J, Davison A, Higgins G, Taylor W, et al. The association of homocysteine and its determinants MTHFR genotype, folate, Vit-B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 2007;40(3):730-6. [CrossRef] google scholar
  • 5. Stover PJ. Physiology of folate and Vit-B12 in health and disease. Nutr Rev 2004;62(6Pt 2):S3-12. [CrossRef] google scholar
  • 6. Kerr MA, Livingstone B, Bates CJ, Bradbury I, Scott JM, Ward M, et al. Folate, related B vitamins, and homocysteine in childhood and adolescence: Potential implications for disease risk in later life. Pediatrics 2009;123(2):627-35. [CrossRef] google scholar
  • 7. Hogeveen M, van Beynum I, van Rooij A, Kluijymams L, den Heijer M, Blom H. Methylmalonic acid values in healthy Dutch children. Eur J Nutr 2008;47(1):26-31. [CrossRef] google scholar
  • 8. Ganji V, Kafai MR. Trends in serum folate, RBC folate, and circulating total homocysteine concentrations in the United States: analysis of data from National Health and Nutrition Examination Surveys, 1988-1994,1999-2000, and 2001-2002. J Nutr 2006;136(1):153-8. [CrossRef] google scholar
  • 9. Nokes C, van den Bosch C, Bundy DAP. The effects of iron deficiency and anemia on mental and motor performance, educational achievement and behavior in children: An annotated bibliography. A Report of the International Nutritional Anemia Consultative Group. Printed April 1998 in the United States of America. Available from: URL: https://ilsi.org/researchfoundation/wp-content/uploads/ sites/5/2016/04/INACG_The_Effects_of_Iron_Deficiency.pdf google scholar
  • 10. World Health Organization. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Vitamin and Mineral Nutrition Information System. Geneva, WHO, 2011 (WHO/NMH/NHD/ MNM/11.2). Available from: URL: http://www.who.int/ vmnis/indicators/serum ferritin.pdf google scholar
  • 11. Şeker M, Bakiş Ç, Dizeci B. Human Development Index-Districts (HDI-D) 2017 Transitioning from consumer to human. Cizge Tanıtım & Matbaacılık; Istanbul: 2018, p.35-42. Available from:URL: https://ingev.org/raporlar/HDI-D-2017-ENG.pdf google scholar
  • 12. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency.: A meta-analysis. Am J Clin Nutr 2010;92(3):546-55. [CrossRef] google scholar
  • 13. Urrechaga E, Izquierdo-Âlvarez S, Llorente MT, Escanero JF. Prevalence of iron deficiency in healthy adolescents. Ann Nutr Disord & Ther 2016;3(2):1036. google scholar
  • 14. UNICEF. State of the world’s children. New York: United Nations Press; 2005. Available from: URL: https://www. unicef.org/media/84801/file/SOWC-2005.pdf google scholar
  • 15. Karakurt N, Terzi O. Prevalence of Anemia among children in a single University Hospital. Izmir Dr Behcet Uz Cocuk Hast Dergisi 2019;9(2):155-9. [CrossRef] google scholar
  • 16. Pektas E, Aral YZ, Yenisey C. The prevalence of Anemia and nutritional aneamia in Primary School children in the City of Aydin. Meandros Med Dent J 2015;16:97-107. [CrossRef] google scholar
  • 17. National Center for Health Statistics. Documentation, codebook, and frequencies. Laboratory component. Ferritin and transferrin receptor. National Health and Nutrition Examination Survey. 2003-2004. Available from:URL: https:// wwwn.cdc.gov/nchs/nhanes/2003-2004/L06TFR_C.htm google scholar
  • 18. Oh HL, Lee JA, Kim AH, Lim JS. Reference values for serum ferritin and percentage of transferrin saturation in Korean children and adolescents. Blood Res 2018;53(1):18-24. [CrossRef] google scholar
  • 19. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014;123(5):615-24. [CrossRef] google scholar
  • 20. MacDonald I, Gibney M. Core concepts of nutrition. In: Gibney M, Roche H, editors. Nutrition and Metabolism. Oxford; Blackwell Science; 2003. p:1-4. [CrossRef] google scholar
  • 21. Van Beynum IM, den Heijer M, Thomas CM, Afman I, Oppenraay-van E D, Blom HJ. Total homocysteine and its predictors in Dutch children. Am J Clin Nutr 2005;81(5):1110-6. [CrossRef] google scholar
  • 22. Gonzalez-Gross M, Benser J, Breidenassel C, Albers U, Huybrechts I, ValtunaJ, et al on behalf of the HELENA study. Gender and age influence blood folate, Vit-B12, vitamin B6 and homocysteine levels in European adolescents: Helena Study. Nutr Res 2012;32(11):817-26. [CrossRef] google scholar
  • 23. Moreno LA, Gottrand F, Huybrechts I, Reiz JR, Gonzalez-Gross M, De Henauw S, et al Nutrition and lifestyle in European Adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Adv Nutr 2014;5(5):615S-23S. [CrossRef] google scholar
  • 24. Dhonukshe-Rutten RAM, de Vries JHM, de Bree A, van der Put N, van Staveren WA, de Groot LCPGM. Dietary intake and status of folate and Vit12 and their association with homocysteine and cardiovascular disease in European populations. Eur J Clin Nutr 2009;63(1):18-30. [CrossRef] google scholar
  • 25. Akin F, Yavuz H, Bodur S, Kiyici A. Vit-B12 levels of subjects aged 0-24 year(s) in Konya, Turkey. J Health Popul Nutr 2014;32(4):615-22. google scholar
  • 26. Green R. Indicators for assessing folate and Vit-B12 status and for monitoring the efficacy of intervention strategies. Am J Clin Nutr 2011;94(2):666S-72S. [CrossRef] google scholar
  • 27. Dhonukshe-Rutten RA, van Dusseldorp M, Scheede J, de Groot LCPGM, van Staveren WA. Low bone density and bone mineral content are associated with low cobalamin status in adolescents. Eur J Nut 2005;44(6):341-7. [CrossRef] google scholar
  • 28. Satman I, Omer B, Tutuncu Y, Kalaca S, Gedik S, Dinccag N, et al. TURDEP-II Study Group. Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol 2013;28(2):169-80. [CrossRef] google scholar
  • 29. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, et al. Reduction in neural- tube defects after folic acid fortification in Canada. N Engl J Med 2007;357(2):135-42. [CrossRef] google scholar
  • 30. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 2007;369(9576):1876-82. [CrossRef] google scholar
  • 31. Bazzano LA, Reynolds K, Holder KN, He J. Effect of Folic acid supplementation on Risk of Cardiovascular Diseases:a meta-analysis of randomized controlled trials. JAMA 2006;296(22):2720-6. [CrossRef] google scholar
There are 31 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section RESEARCH
Authors

Hacer Eroglu Iclı 0000-0002-9775-1710

Arif Murat Kaytaz 0000-0001-8355-8285

Emre Akkaya 0000-0002-3117-4359

Evin Ademoğlu 0000-0003-2933-3119

Sema Genc 0000-0002-2577-9263

Publication Date October 28, 2022
Submission Date December 2, 2021
Published in Issue Year 2022 Volume: 85 Issue: 4

Cite

APA Eroglu Iclı, H., Kaytaz, A. M., Akkaya, E., Ademoğlu, E., et al. (2022). THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY. Journal of Istanbul Faculty of Medicine, 85(4), 572-580. https://doi.org/10.26650/IUITFD.1031447
AMA Eroglu Iclı H, Kaytaz AM, Akkaya E, Ademoğlu E, Genc S. THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY. İst Tıp Fak Derg. October 2022;85(4):572-580. doi:10.26650/IUITFD.1031447
Chicago Eroglu Iclı, Hacer, Arif Murat Kaytaz, Emre Akkaya, Evin Ademoğlu, and Sema Genc. “THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY”. Journal of Istanbul Faculty of Medicine 85, no. 4 (October 2022): 572-80. https://doi.org/10.26650/IUITFD.1031447.
EndNote Eroglu Iclı H, Kaytaz AM, Akkaya E, Ademoğlu E, Genc S (October 1, 2022) THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY. Journal of Istanbul Faculty of Medicine 85 4 572–580.
IEEE H. Eroglu Iclı, A. M. Kaytaz, E. Akkaya, E. Ademoğlu, and S. Genc, “THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY”, İst Tıp Fak Derg, vol. 85, no. 4, pp. 572–580, 2022, doi: 10.26650/IUITFD.1031447.
ISNAD Eroglu Iclı, Hacer et al. “THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY”. Journal of Istanbul Faculty of Medicine 85/4 (October 2022), 572-580. https://doi.org/10.26650/IUITFD.1031447.
JAMA Eroglu Iclı H, Kaytaz AM, Akkaya E, Ademoğlu E, Genc S. THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY. İst Tıp Fak Derg. 2022;85:572–580.
MLA Eroglu Iclı, Hacer et al. “THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY”. Journal of Istanbul Faculty of Medicine, vol. 85, no. 4, 2022, pp. 572-80, doi:10.26650/IUITFD.1031447.
Vancouver Eroglu Iclı H, Kaytaz AM, Akkaya E, Ademoğlu E, Genc S. THE IMPACT OF AGE, SEX, AND SOCIO-ECONOMIC STATUS ON SERUM VITAMIN B12, FOLATE CONCENTRATION AND IRON STATUS IN TURKISH CHILDREN: A CROSS-SECTIONAL STUDY. İst Tıp Fak Derg. 2022;85(4):572-80.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61