Research Article
BibTex RIS Cite

SUBARAKNOİD KANAMA SONRASI GELİŞEN PULMONER YAĞ EMBOLİSİNDE DUCTUS THORACICUS'UN ROLÜ: ÖN DENEYSEL ÇALIŞMA

Year 2025, Volume: 88 Issue: 1, 14 - 19, 31.01.2025
https://doi.org/10.26650/IUITFD.1558394

Abstract

Amaç: Subaraknoid kanama, otonom sinir sistemi üzerindeki etkileri nedeniyle multisistemik bir hastalıktır. Subaraknoid kanamada intestinal sistem, lipid metabolizması ve duktus torasikus üzerindeki etkileri nedeniyle pulmoner dokular etkilenebilir. Bu çalışma, subaraknoid kanamadan sonra lipid emilim bozuklukları ile birlikte duktus torasikusun sempatik aktivasyonundan sonra pulmoner
yağ embolisinin patofizyolojisini göstermeyi amaçlamıştır.
Gereç ve Yöntem: Çalışmada kullanılan 24 erkek tavşandan beşi kontrol grubu (GI), beşi SHAM (GII) olarak seçildi ve SHAM grubunda sisterna magnaya 0,7 mL izotonik enjekte edildi. Çalışma grubunda (GIII) ise sisterna magnaya 0,7 mL otolog kan enjekte edildi. Deneklerin duodenum orta kısımlarındaki lenf damarları, juguler vene açılan torasik duktus kısımları ve pulmoner arterlerin terminal dalları incelendi ve sayıldı.
Bulgular: Duktus torasikus vazospazm indeks (VSI) değerleri ve pulmoner arterlerde yağ parçacıkları tarafından tıkanan dal sayıları: GI'de 1,65±0,22/3,21±0,54, GII'de 1,97±0,34/7,3±2,4 ve GIII'te 2,54±0,56/14,53±14,53 idi. GIII'te şiddetli duktus torasikus spazmı olan altı denekte, şilomikronlarla tıkanmış pulmoner arter sayısı daha yüksekti (p>0,00001). Gruplar arasındaki p değerleri: GI/ GII'de p>0,05; GII/GIII'te p<0,005 ve GI/GIII'te p<0,0001 idi.
Sonuç: Çalışmamız; subaraknoid kanama sonrası gelişen lipid metabolizması bozukluğunun, servikal ganglionlar, duktus torasikus spazmı ve pulmoner yağ embolisi ile ilişkisini araştıran ilk deneysel çalışmadır.

References

  • Sahin, MH, Akyuz E, Kadioglu HH. The Effects of Necrostatin-1 on Cerebral Vasospasm-Induced Subarachnoid Hemorrhage. Turk Neurosurg 2022;32(6):923-9. [CrossRef] google scholar
  • Garg R, Bar B. Systemic Complications Following Aneurysmal Subarachnoid Hemorrhage. Curr Neurol Neurosci Rep 2017;17(1):7. [CrossRef] google scholar
  • Davison DL, Terek M, Chawla LS. Neurogenic pulmonary edema. Crit Care 2012;16(2):212. [CrossRef] google scholar
  • Fontes RB, Aguiar PH, Zanetti MV, Andrade F, Mandel M, Teixeira MJ. Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol 2003;15(2):144-50. [CrossRef] google scholar
  • Zhang Y, Tian K, Wang Y, Zhang R, Shang J, Jiang W, et al. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome. Int J Mol Sci 2016;17(7):1183. [CrossRef] google scholar
  • Timon C, Keady C, Murphy CG. Fat Embolism Syndrome - A Qualitative Review of its Incidence, Presentation, Pathogenesis and Management. Malays Orthop J 2021;15(1):1-11. [CrossRef] google scholar
  • Mignini F, Sabbatini M, Cavallotti C, Cavallotti C. Analysis of nerve supply pattern in thoracic duct in young and elderly men. Lymphat Res Biol 2012;10(2):46-52. [CrossRef] google scholar
  • Telinius N, Baandrup U, Rumessen J, Pilegaard H, Hjortdal V, Aalkjaer C, et al. The human thoracic duct is functionally innervated by adrenergic nerves. Am J Physiol Heart Circ Physiol 2014;306(2):206-13. [CrossRef] google scholar
  • Johnson OW, Chick JFB, Chauhan NR, Fairchild AH, Fan CM, Stecker MS, et al. The thoracic duct: clinical importance, anatomic variation, imaging, and embolization. Eur Radiol 2016;26(8):2482-93. [CrossRef] google scholar
  • O’Hagan LA, Windsor JA, Phillips ARJ, Itkin M, Russell PS, Mirjalili SA. Anatomy of the lymphovenous valve of the thoracic duct in humans. J Anat 2020;236(6):1146-53. [CrossRef] google scholar
  • Frohlich E. Acute Respiratory Distress Syndrome: Focus on Viral Origin and Role of Pulmonary Lymphatics. Biomedicines 2021;9(11):1732. [CrossRef] google scholar
  • Kambouchner M, Bernaudin JF. Intralobular pulmonary lymphatic distribution in normal human lung using D2-40 antipodoplanin immunostaining. J Histochem Cytochem 2009;57(7):643-8. [CrossRef] google scholar
  • Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009;296(6):1183-94. [CrossRef] google scholar
  • Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020;17(3):169-83. [CrossRef] google scholar
  • Hokkanen K, Tirronen A, Yla-Herttuala S. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Curr Opin Lipidol 2019;30(5):370-6. [CrossRef] google scholar
  • Redgrave TG. Chylomicron metabolism. Biochem Soc Trans 2004;32(1):79-82. [CrossRef] google scholar
  • Levy D. The fat embolism syndrome. A review. Clin Orthop Relat Res 1990(261):281-6. [CrossRef] google scholar
  • Binkowska AM, Michalak G, Slotwinski R. Current views on the mechanisms of immune responses to trauma and infection. Cent Eur J Immunol 2015;40(2):206-16. [CrossRef] google scholar
  • Husebye EE, Lyberg T, Roise O. Bone marrow fat in the circulation: clinical entities and pathophysiological mechanisms. Injury 2006;37(4):8-18. [CrossRef] google scholar
  • Gurd AR. Fat embolism: an aid to diagnosis. J Bone Joint Surg Br 1970;52(4):732-7. [CrossRef] google scholar
  • Fulde GW, Harrison P. Fat embolism--a review. Arch Emerg Med 1991;8(4):233-9. [CrossRef] google scholar
  • Lozada-Martinez ID, Rodriguez-Gutierrez MM, Ospina-Rios J, Ortega-Sierra MG, Gonzalez-Herazo MA, Ortiz-Roncallo LM, et al. Neurogenic pulmonary edema in subarachnoid hemorrhage: relevant clinical concepts. Egypt J Neurosurg 2021;36(1):27. [CrossRef] google scholar
  • Busl KM, Bleck TP. Neurogenic Pulmonary Edema. Crit Care Med 2015;43(8):1710-5. [CrossRef] google scholar
  • Sedy J, Kunes J, Zicha J. Pathogenetic Mechanisms of Neurogenic Pulmonary Edema. J Neurotrauma 2015;32(15):1135-45. [CrossRef] google scholar
  • Chen Y, Guo L, Lang H, Hu X, Jing S, Luo M, et al. Effect of a Stellate Ganglion Block on Acute Lung Injury in Septic Rats. Inflammation 2018;41(5):1601-9. [CrossRef] google scholar
  • Zhang J, Nie Y, Pang Q, Zhang X, Wang Q, Tang J. Effects of stellate ganglion block on early brain injury in patients with subarachnoid hemorrhage: a randomised control trial. BMC Anesthesiol 2021;21(1):23. [CrossRef] google scholar
  • Dhandapani S, Aggarwal A, Srinivasan A, Meena R, Gaudihalli S, Singh H, et al. Serum lipid profile spectrum and delayed cerebral ischemia following subarachnoid hemorrhage: Is there a relation? Surg Neurol Int 2015;6(21):543-8. [CrossRef] google scholar
  • Pilitsis JG, Coplin WM, O’Regan MH, Wellwood JM, Diaz FG, Fairfax MR, et al. Free fatty acids in human cerebrospinal fluid following subarachnoid hemorrhage and their potential role in vasospasm: a preliminary observation. J Neurosurg 2002;97(2):272-9. [CrossRef] google scholar

ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY

Year 2025, Volume: 88 Issue: 1, 14 - 19, 31.01.2025
https://doi.org/10.26650/IUITFD.1558394

Abstract

Objective: Subarachnoid haemorrhage is a multisystemic disease due to its effects on the autonomic nervous system. Pulmonary tissues may be affected due to its effects on the intestinal system, lipid
metabolism, and ductus thoracicus in subarachnoid haemorrhage. This study demonstrate the pathophysiology of pulmonary fat embolism after sympathetic activation of the ductus thoracicus with lipid absorption disorders after subarachnoid haemorrhage.
Material and Methods: In the study, 24 male rabbits were used, of which five were selected as the control group (GI) and five as the SHAM group (GII). The SHAM group was injected with a 0.7 mL isotonic solution into the cisterna magna. The study group (GIII) was injected with 0.7 mL autologous blood into the cisterna magna. The lymphatic vessels in the middle sections of the duodenum, the thoracic duct portions opening into the jugular vein, and the terminal branches of the pulmonary arteries were examined and counted.
Results: The thoracic duct vasospasm index (VSI) values and numbers of branches occluded by fat particles in the pulmonary arteries were: 1.65±0.22/3.21±0.54 in GI, 1.97±0.34/7.3±2.4 in GII, and 2.54±0.56/14.53±14.53 in GIII. In the six subjects with severe thoracic duct spasm in GIII, the number of pulmonary arteries occluded with chylomicrons was higher (p>0.00001). P values among groups were: p> 0.05 in GI/GII; p<0.005 in GII/GIII and p<0.0001 in GI/GIII.
Conclusion: This is the first experimental study conducted on animals investigating the lipid metabolism disorder associated with subarachnoid haemorrhage affecting the cervical ganglia,
thoracic duct spasm, and pulmonary fat embolism.

References

  • Sahin, MH, Akyuz E, Kadioglu HH. The Effects of Necrostatin-1 on Cerebral Vasospasm-Induced Subarachnoid Hemorrhage. Turk Neurosurg 2022;32(6):923-9. [CrossRef] google scholar
  • Garg R, Bar B. Systemic Complications Following Aneurysmal Subarachnoid Hemorrhage. Curr Neurol Neurosci Rep 2017;17(1):7. [CrossRef] google scholar
  • Davison DL, Terek M, Chawla LS. Neurogenic pulmonary edema. Crit Care 2012;16(2):212. [CrossRef] google scholar
  • Fontes RB, Aguiar PH, Zanetti MV, Andrade F, Mandel M, Teixeira MJ. Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol 2003;15(2):144-50. [CrossRef] google scholar
  • Zhang Y, Tian K, Wang Y, Zhang R, Shang J, Jiang W, et al. The Effects of Aquaporin-1 in Pulmonary Edema Induced by Fat Embolism Syndrome. Int J Mol Sci 2016;17(7):1183. [CrossRef] google scholar
  • Timon C, Keady C, Murphy CG. Fat Embolism Syndrome - A Qualitative Review of its Incidence, Presentation, Pathogenesis and Management. Malays Orthop J 2021;15(1):1-11. [CrossRef] google scholar
  • Mignini F, Sabbatini M, Cavallotti C, Cavallotti C. Analysis of nerve supply pattern in thoracic duct in young and elderly men. Lymphat Res Biol 2012;10(2):46-52. [CrossRef] google scholar
  • Telinius N, Baandrup U, Rumessen J, Pilegaard H, Hjortdal V, Aalkjaer C, et al. The human thoracic duct is functionally innervated by adrenergic nerves. Am J Physiol Heart Circ Physiol 2014;306(2):206-13. [CrossRef] google scholar
  • Johnson OW, Chick JFB, Chauhan NR, Fairchild AH, Fan CM, Stecker MS, et al. The thoracic duct: clinical importance, anatomic variation, imaging, and embolization. Eur Radiol 2016;26(8):2482-93. [CrossRef] google scholar
  • O’Hagan LA, Windsor JA, Phillips ARJ, Itkin M, Russell PS, Mirjalili SA. Anatomy of the lymphovenous valve of the thoracic duct in humans. J Anat 2020;236(6):1146-53. [CrossRef] google scholar
  • Frohlich E. Acute Respiratory Distress Syndrome: Focus on Viral Origin and Role of Pulmonary Lymphatics. Biomedicines 2021;9(11):1732. [CrossRef] google scholar
  • Kambouchner M, Bernaudin JF. Intralobular pulmonary lymphatic distribution in normal human lung using D2-40 antipodoplanin immunostaining. J Histochem Cytochem 2009;57(7):643-8. [CrossRef] google scholar
  • Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiol Endocrinol Metab 2009;296(6):1183-94. [CrossRef] google scholar
  • Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020;17(3):169-83. [CrossRef] google scholar
  • Hokkanen K, Tirronen A, Yla-Herttuala S. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Curr Opin Lipidol 2019;30(5):370-6. [CrossRef] google scholar
  • Redgrave TG. Chylomicron metabolism. Biochem Soc Trans 2004;32(1):79-82. [CrossRef] google scholar
  • Levy D. The fat embolism syndrome. A review. Clin Orthop Relat Res 1990(261):281-6. [CrossRef] google scholar
  • Binkowska AM, Michalak G, Slotwinski R. Current views on the mechanisms of immune responses to trauma and infection. Cent Eur J Immunol 2015;40(2):206-16. [CrossRef] google scholar
  • Husebye EE, Lyberg T, Roise O. Bone marrow fat in the circulation: clinical entities and pathophysiological mechanisms. Injury 2006;37(4):8-18. [CrossRef] google scholar
  • Gurd AR. Fat embolism: an aid to diagnosis. J Bone Joint Surg Br 1970;52(4):732-7. [CrossRef] google scholar
  • Fulde GW, Harrison P. Fat embolism--a review. Arch Emerg Med 1991;8(4):233-9. [CrossRef] google scholar
  • Lozada-Martinez ID, Rodriguez-Gutierrez MM, Ospina-Rios J, Ortega-Sierra MG, Gonzalez-Herazo MA, Ortiz-Roncallo LM, et al. Neurogenic pulmonary edema in subarachnoid hemorrhage: relevant clinical concepts. Egypt J Neurosurg 2021;36(1):27. [CrossRef] google scholar
  • Busl KM, Bleck TP. Neurogenic Pulmonary Edema. Crit Care Med 2015;43(8):1710-5. [CrossRef] google scholar
  • Sedy J, Kunes J, Zicha J. Pathogenetic Mechanisms of Neurogenic Pulmonary Edema. J Neurotrauma 2015;32(15):1135-45. [CrossRef] google scholar
  • Chen Y, Guo L, Lang H, Hu X, Jing S, Luo M, et al. Effect of a Stellate Ganglion Block on Acute Lung Injury in Septic Rats. Inflammation 2018;41(5):1601-9. [CrossRef] google scholar
  • Zhang J, Nie Y, Pang Q, Zhang X, Wang Q, Tang J. Effects of stellate ganglion block on early brain injury in patients with subarachnoid hemorrhage: a randomised control trial. BMC Anesthesiol 2021;21(1):23. [CrossRef] google scholar
  • Dhandapani S, Aggarwal A, Srinivasan A, Meena R, Gaudihalli S, Singh H, et al. Serum lipid profile spectrum and delayed cerebral ischemia following subarachnoid hemorrhage: Is there a relation? Surg Neurol Int 2015;6(21):543-8. [CrossRef] google scholar
  • Pilitsis JG, Coplin WM, O’Regan MH, Wellwood JM, Diaz FG, Fairfax MR, et al. Free fatty acids in human cerebrospinal fluid following subarachnoid hemorrhage and their potential role in vasospasm: a preliminary observation. J Neurosurg 2002;97(2):272-9. [CrossRef] google scholar
There are 28 citations in total.

Details

Primary Language English
Subjects Health Services and Systems (Other)
Journal Section RESEARCH
Authors

Hakan Kına 0000-0002-9741-7720

Muhammet Elveren 0000-0002-9720-5605

Publication Date January 31, 2025
Submission Date September 30, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2025 Volume: 88 Issue: 1

Cite

APA Kına, H., & Elveren, M. (2025). ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY. Journal of Istanbul Faculty of Medicine, 88(1), 14-19. https://doi.org/10.26650/IUITFD.1558394
AMA Kına H, Elveren M. ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY. İst Tıp Fak Derg. January 2025;88(1):14-19. doi:10.26650/IUITFD.1558394
Chicago Kına, Hakan, and Muhammet Elveren. “ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY”. Journal of Istanbul Faculty of Medicine 88, no. 1 (January 2025): 14-19. https://doi.org/10.26650/IUITFD.1558394.
EndNote Kına H, Elveren M (January 1, 2025) ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY. Journal of Istanbul Faculty of Medicine 88 1 14–19.
IEEE H. Kına and M. Elveren, “ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY”, İst Tıp Fak Derg, vol. 88, no. 1, pp. 14–19, 2025, doi: 10.26650/IUITFD.1558394.
ISNAD Kına, Hakan - Elveren, Muhammet. “ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY”. Journal of Istanbul Faculty of Medicine 88/1 (January 2025), 14-19. https://doi.org/10.26650/IUITFD.1558394.
JAMA Kına H, Elveren M. ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY. İst Tıp Fak Derg. 2025;88:14–19.
MLA Kına, Hakan and Muhammet Elveren. “ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY”. Journal of Istanbul Faculty of Medicine, vol. 88, no. 1, 2025, pp. 14-19, doi:10.26650/IUITFD.1558394.
Vancouver Kına H, Elveren M. ROLE OF THE DUCTUS THORACICUS IN PULMONARY FAT EMBOLISM AFTER SUBARACHNOID HAEMORRHAGE: A PRELIMINARY EXPERIMENTAL STUDY. İst Tıp Fak Derg. 2025;88(1):14-9.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61