BibTex RIS Cite

Broadband Matching via Reflection Coefficient Modeling

Year 2016, Volume: 16 Issue: 2, 3043 - 3047, 23.09.2016

Abstract

In this paper, a practical method is presented to design broadband matching networks via reflection coefficient modeling. In the proposed algorithm, reflection function values () at sample frequencies are optimized to get the desired gain level. At the same time, the corresponding reflection coefficient values () are calculated and modeled. Then matching network topology and element values are obtained via the formed reflection coefficient expression. An example is presented to explain the usage of the new method.

References

  • H. J. Carlin, “A new approach to gain-bandwidth problems”, IEEE Trans. CAS, 23, 170-5, 1977.
  • H. J. Carlin, P. P. Civalleri, “Wideband Circuit Design”, CRC Pres LLC, 1998.
  • H. J. Carlin, B. S. Yarman, “The double matching problem:Analytic and real frequency solutions”, IEEE Trans. Circuits and Systems, 30, 15-28, 1983.
  • H. J. Carlin, “Parametric representation of brune functions”, Int. J. Circuit Theory and Appl., 7, 113-9, 1979.
  • B. S. Yarman, “A simplified real frequency technique for broadband matching complex generator to complex loads”, RCA Review, 43, 529-41, 1982.
  • B. S. Yarman, H. J. Carlin, “A simplified real frequency technique applied to broadband multistage microwave amplifiers”, IEEE Trans. MTT, 30, 2216-22, 1982.
  • M. Şengül, “Design of practical broadband matching networks with lumped elements”, IEEE Trans. CAS-II:Express Briefs, 60(9), 552-6, 2013.
  • B. S. Yarman, M. Şengül, A. Kılınç, “Design of practical matching networks with lumped elements via modeling”, IEEE Trans. CASI: Regular Papers, 54(8), 1829-37, 2007.
  • M. Şengül, “Modeling based real frequency technique”, Int, J. Electron. Commun. (AEU), 62(2), 77-80, 2008.
  • M. Şengül, B. S. Yarman, C. Volmer, M. Hein, “Design of distributed element RF filters via reflectamce data modeling”, Int, J. Electron. Commun. (AEU), 62, 483-9, 2008.
  • M. Şengül, “Synthesis of resistively terminated LC ladder Networks”, İstanbul University-J. Electrical-Electronics Eng., 11(2), 1407-12, 2011.
  • W. C. Yengst, “Procedures of modern networks synthesis”, The Macmillian Company, 1964.
  • R. M. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances”, J. Franklin Inst., 249, 57-83, 1950.
  • D. C. Youla, “A new theory of broadband matching”, IEEE Trans. Circuit Theory, 11, 30-50, 1964.
  • AWR, Microwave Office of Applied Wave Research Inc., www.appwave.com.
Year 2016, Volume: 16 Issue: 2, 3043 - 3047, 23.09.2016

Abstract

References

  • H. J. Carlin, “A new approach to gain-bandwidth problems”, IEEE Trans. CAS, 23, 170-5, 1977.
  • H. J. Carlin, P. P. Civalleri, “Wideband Circuit Design”, CRC Pres LLC, 1998.
  • H. J. Carlin, B. S. Yarman, “The double matching problem:Analytic and real frequency solutions”, IEEE Trans. Circuits and Systems, 30, 15-28, 1983.
  • H. J. Carlin, “Parametric representation of brune functions”, Int. J. Circuit Theory and Appl., 7, 113-9, 1979.
  • B. S. Yarman, “A simplified real frequency technique for broadband matching complex generator to complex loads”, RCA Review, 43, 529-41, 1982.
  • B. S. Yarman, H. J. Carlin, “A simplified real frequency technique applied to broadband multistage microwave amplifiers”, IEEE Trans. MTT, 30, 2216-22, 1982.
  • M. Şengül, “Design of practical broadband matching networks with lumped elements”, IEEE Trans. CAS-II:Express Briefs, 60(9), 552-6, 2013.
  • B. S. Yarman, M. Şengül, A. Kılınç, “Design of practical matching networks with lumped elements via modeling”, IEEE Trans. CASI: Regular Papers, 54(8), 1829-37, 2007.
  • M. Şengül, “Modeling based real frequency technique”, Int, J. Electron. Commun. (AEU), 62(2), 77-80, 2008.
  • M. Şengül, B. S. Yarman, C. Volmer, M. Hein, “Design of distributed element RF filters via reflectamce data modeling”, Int, J. Electron. Commun. (AEU), 62, 483-9, 2008.
  • M. Şengül, “Synthesis of resistively terminated LC ladder Networks”, İstanbul University-J. Electrical-Electronics Eng., 11(2), 1407-12, 2011.
  • W. C. Yengst, “Procedures of modern networks synthesis”, The Macmillian Company, 1964.
  • R. M. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances”, J. Franklin Inst., 249, 57-83, 1950.
  • D. C. Youla, “A new theory of broadband matching”, IEEE Trans. Circuit Theory, 11, 30-50, 1964.
  • AWR, Microwave Office of Applied Wave Research Inc., www.appwave.com.
There are 15 citations in total.

Details

Journal Section Erratum
Authors

Metin Şengül

Publication Date September 23, 2016
Published in Issue Year 2016 Volume: 16 Issue: 2

Cite

APA Şengül, M. (2016). Broadband Matching via Reflection Coefficient Modeling. IU-Journal of Electrical & Electronics Engineering, 16(2), 3043-3047.
AMA Şengül M. Broadband Matching via Reflection Coefficient Modeling. IU-Journal of Electrical & Electronics Engineering. September 2016;16(2):3043-3047.
Chicago Şengül, Metin. “Broadband Matching via Reflection Coefficient Modeling”. IU-Journal of Electrical & Electronics Engineering 16, no. 2 (September 2016): 3043-47.
EndNote Şengül M (September 1, 2016) Broadband Matching via Reflection Coefficient Modeling. IU-Journal of Electrical & Electronics Engineering 16 2 3043–3047.
IEEE M. Şengül, “Broadband Matching via Reflection Coefficient Modeling”, IU-Journal of Electrical & Electronics Engineering, vol. 16, no. 2, pp. 3043–3047, 2016.
ISNAD Şengül, Metin. “Broadband Matching via Reflection Coefficient Modeling”. IU-Journal of Electrical & Electronics Engineering 16/2 (September 2016), 3043-3047.
JAMA Şengül M. Broadband Matching via Reflection Coefficient Modeling. IU-Journal of Electrical & Electronics Engineering. 2016;16:3043–3047.
MLA Şengül, Metin. “Broadband Matching via Reflection Coefficient Modeling”. IU-Journal of Electrical & Electronics Engineering, vol. 16, no. 2, 2016, pp. 3043-7.
Vancouver Şengül M. Broadband Matching via Reflection Coefficient Modeling. IU-Journal of Electrical & Electronics Engineering. 2016;16(2):3043-7.