Research Article
BibTex RIS Cite

Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2

Year 2017, Volume: 17 Issue: 1, 3049 - 3055, 27.03.2017

Abstract

Carbon fiber electrodes (CFEs) are commonly used in detection
of neurotransmitters like dopamine. Besides, modification of these electrodes
with enzymes enables development of biosensors capable of local analysis. Here,
CFEs were fabricated using glass capillary tubes. Basically carbon fibers were
inserted into glass capillary tubes and then the tubes were pulled using a
micro-puller to insulate carbon fibers. 
Subsequently, the electrode surface was modified with Pt nanoparticles
to evaluate the potential of these electrodes in detection of O2 and
H2O2. In the future, these electrodes will be used for
construction of biosensors for detection of local ATP.

References

  • [1] A. Erdem, G. Congur, "Label-free voltammetric detection of MicroRNAs at multi-channel screen printed array of electrodes comparison to graphite sensors", Talanta, 118, 7-13, 2014.
  • [2] M. Sen, K. Ino, H. Shiku, T. Matsue, "Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device", Lab on a Chip, 12 (21), 4328-4335, 2012.
  • [3] M. Kaplan, T. Kilic, G. Guler, J. Mandli, A. Amine, M. Ozsoz, "A novel method for sensitive microRNA detection: Electropolymerization based doping", Biosens Bioelectron, 2016.
  • [4] J. Narang, C. Singhal, N. Malhotra, S. Narang, A. K. Pn, R. Gupta, R. Kansal, C. S. Pundir, "Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nano-composites", Biosens Bioelectron, 86, 566-74, 2016.
  • [5] K. Y. Inoue, M. Matsudaira, R. Kubo, M. Nakano, S. Yoshida, S. Matsuzaki, A. Suda, R. Kunikata, T. Kimura, R. Tsurumi, T. Shioya, K. Ino, H. Shiku, S. Satoh, M. Esashi, T. Matsue, "LSI-based amperometric sensor for bio-imaging and multi-point biosensing", Lab on a Chip, 12 (18), 3481-3490, 2012.
  • [6] K. Ino, Y. Kanno, T. Nishijo, T. Goto, T. Arai, Y. Takahashi, H. Shiku, T. Matsue, "Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device", Chem Commun (Camb), 48 (68), 8505-7, 2012.
  • [7] T. G. Drummond, M. G. Hill, J. K. Barton, "Electrochemical DNA sensors", Nat Biotechnol, 21 (10), 1192-1199, 2003.
  • [8] J. Wang, "From DNA biosensors to gene chips", Nucleic Acids Res, 28 (16), 3011-3016, 2000.
  • [9] G. S. Bang, S. Cho, B. G. Kim, "A novel electrochemical detection method for aptamer biosensors", Biosens Bioelectron, 21 (6), 863-870, 2005.
  • [10] H. Shiku, T. Shiraishi, H. Ohya, T. Matsue, H. Abe, H. Hoshi, M. Kobayashi, "Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy", Anal Chem, 73 (15), 3751-8, 2001.
  • [11] M. Sen, K. Ino, H. Shiku, T. Matsue, "A new electrochemical assay method for gene expression using HeLa cells with a secreted alkaline phosphatase (SEAP) reporter system", Biotechnol Bioeng, 109 (8), 2163-7, 2012.
  • [12] Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer, J. V. Macpherson, P. R. Unwin, A. J. Pollard, D. Roy, C. A. Clifford, H. Shiku, T. Matsue, D. Klenerman, Y. E. Korchev, "Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces", Angew Chem Int Ed Engl, 50 (41), 9638-42, 2011.
  • [13] M. Sen, Y. Takahashi, Y. Matsumae, Y. Horiguchi, A. Kumatani, K. Ino, H. Shiku, T. Matsue, "Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition", Anal Chem, 87 (6), 3484-9, 2015.
  • [14] P. Actis, S. Tokar, J. Clausmeyer, B. Babakinejad, S. Mikhaleva, R. Cornut, Y. Takahashi, A. Lopez Cordoba, P. Novak, A. I. Shevchuck, J. A. Dougan, S. G. Kazarian, P. V. Gorelkin, A. S. Erofeev, I. V. Yaminsky, P. R. Unwin, W. Schuhmann, D. Klenerman, D. A. Rusakov, E. V. Sviderskaya, Y. E. Korchev, "Electrochemical nanoprobes for single-cell analysis", ACS Nano, 8 (1), 875-84, 2014.
  • [15] R. Lin, P. L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon, "Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors", J Electrochem Soc, 156 (1), A7-A12, 2009.
  • [16] J. X. Wang, T. E. Springer, R. R. Adzic, "Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes", J Electrochem Soc, 153 (9), A1732-A1740, 2006.
  • [17] I. M. Taylor, E. M. Robbins, K. A. Catt, P. A. Cody, C. L. Happe, X. T. Cui, "Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes", Biosens Bioelectron, 2016.
  • [18] F. Vitale, S. R. Summerson, B. Aazhang, C. Kemere, M. Pasquali, "Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes", Acs Nano, 9 (4), 4465-74, 2015.
  • [19] G. Guitchounts, J. E. Markowitz, W. A. Liberti, T. J. Gardner, "A carbon-fiber electrode array for long-term neural recording", J Neural Eng, 10 (4), 046016, 2013.
  • [20] L. Qi, E. L. Thomas, S. H. White, S. K. Smith, C. A. Lee, L. R. Wilson, L. A. Sombers, "Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes", Anal Chem, 88 (16), 8129-36, 2016.
  • [21] M. L. Huffman, B. J. Venton, "Carbon-fiber microelectrodes for in vivo applications", Analyst, 134 (1), 18-24, 2009.
  • [22] M. D. Nguyen, B. J. Venton, "Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release", Comput Struct Biotechnol J, 13, 47-54, 2015.
  • [23] W. H. Oldenziel, B. H. Westerink, "Improving glutamate microsensors by optimizing the composition of the redox hydrogel", Anal Chem, 77 (17), 5520-8, 2005.
  • [24] W. H. Oldenziel, G. Dijkstra, T. I. Cremers, B. H. Westerink, "Evaluation of hydrogel-coated glutamate microsensors", Anal Chem, 78 (10), 3366-78, 2006.
  • [25] X. Lin, X. Jiang, L. Lu, "DNA deposition on carbon electrodes under controlled dc potentials", Biosens Bioelectron, 20 (9), 1709-17, 2005.
  • [26] P. Salazar, M. Martín, R. D. O’Neill, J. L. González-Mora, "Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization", Sensors and Actuators B: Chemical, 235, 117-125, 2016.
  • [27] J.-H. Kim, S. Cho, T.-S. Bae, Y.-S. Lee, "Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction", Sensors and Actuators B: Chemical, 197, 20-27, 2014.
  • [28] N. Dossi, R. Toniolo, A. Pizzariello, E. Carrilho, E. Piccin, S. Battiston, G. Bontempelli, "An electrochemical gas sensor based on paper supported room temperature ionic liquids", Lab Chip, 12 (1), 153-8, 2012.
  • [29] J. Tian, Q. Liu, C. Ge, Z. Xing, A. M. Asiri, A. O. Al-Youbi, X. Sun, "Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application", Nanoscale, 5 (19), 8921-4, 2013.
  • [30] W. Chen, S. Cai, Q. Q. Ren, W. Wen, Y. D. Zhao, "Recent advances in electrochemical sensing for hydrogen peroxide: a review", Analyst, 137 (1), 49-58, 2012.
  • [31] D. Liu, T. Chen, W. Zhu, L. Cui, A. M. Asiri, Q. Lu, X. Sun, "Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection", Nanotechnology, 27 (33), 33LT01, 2016.
Year 2017, Volume: 17 Issue: 1, 3049 - 3055, 27.03.2017

Abstract

References

  • [1] A. Erdem, G. Congur, "Label-free voltammetric detection of MicroRNAs at multi-channel screen printed array of electrodes comparison to graphite sensors", Talanta, 118, 7-13, 2014.
  • [2] M. Sen, K. Ino, H. Shiku, T. Matsue, "Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device", Lab on a Chip, 12 (21), 4328-4335, 2012.
  • [3] M. Kaplan, T. Kilic, G. Guler, J. Mandli, A. Amine, M. Ozsoz, "A novel method for sensitive microRNA detection: Electropolymerization based doping", Biosens Bioelectron, 2016.
  • [4] J. Narang, C. Singhal, N. Malhotra, S. Narang, A. K. Pn, R. Gupta, R. Kansal, C. S. Pundir, "Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nano-composites", Biosens Bioelectron, 86, 566-74, 2016.
  • [5] K. Y. Inoue, M. Matsudaira, R. Kubo, M. Nakano, S. Yoshida, S. Matsuzaki, A. Suda, R. Kunikata, T. Kimura, R. Tsurumi, T. Shioya, K. Ino, H. Shiku, S. Satoh, M. Esashi, T. Matsue, "LSI-based amperometric sensor for bio-imaging and multi-point biosensing", Lab on a Chip, 12 (18), 3481-3490, 2012.
  • [6] K. Ino, Y. Kanno, T. Nishijo, T. Goto, T. Arai, Y. Takahashi, H. Shiku, T. Matsue, "Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device", Chem Commun (Camb), 48 (68), 8505-7, 2012.
  • [7] T. G. Drummond, M. G. Hill, J. K. Barton, "Electrochemical DNA sensors", Nat Biotechnol, 21 (10), 1192-1199, 2003.
  • [8] J. Wang, "From DNA biosensors to gene chips", Nucleic Acids Res, 28 (16), 3011-3016, 2000.
  • [9] G. S. Bang, S. Cho, B. G. Kim, "A novel electrochemical detection method for aptamer biosensors", Biosens Bioelectron, 21 (6), 863-870, 2005.
  • [10] H. Shiku, T. Shiraishi, H. Ohya, T. Matsue, H. Abe, H. Hoshi, M. Kobayashi, "Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy", Anal Chem, 73 (15), 3751-8, 2001.
  • [11] M. Sen, K. Ino, H. Shiku, T. Matsue, "A new electrochemical assay method for gene expression using HeLa cells with a secreted alkaline phosphatase (SEAP) reporter system", Biotechnol Bioeng, 109 (8), 2163-7, 2012.
  • [12] Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer, J. V. Macpherson, P. R. Unwin, A. J. Pollard, D. Roy, C. A. Clifford, H. Shiku, T. Matsue, D. Klenerman, Y. E. Korchev, "Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces", Angew Chem Int Ed Engl, 50 (41), 9638-42, 2011.
  • [13] M. Sen, Y. Takahashi, Y. Matsumae, Y. Horiguchi, A. Kumatani, K. Ino, H. Shiku, T. Matsue, "Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition", Anal Chem, 87 (6), 3484-9, 2015.
  • [14] P. Actis, S. Tokar, J. Clausmeyer, B. Babakinejad, S. Mikhaleva, R. Cornut, Y. Takahashi, A. Lopez Cordoba, P. Novak, A. I. Shevchuck, J. A. Dougan, S. G. Kazarian, P. V. Gorelkin, A. S. Erofeev, I. V. Yaminsky, P. R. Unwin, W. Schuhmann, D. Klenerman, D. A. Rusakov, E. V. Sviderskaya, Y. E. Korchev, "Electrochemical nanoprobes for single-cell analysis", ACS Nano, 8 (1), 875-84, 2014.
  • [15] R. Lin, P. L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon, "Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors", J Electrochem Soc, 156 (1), A7-A12, 2009.
  • [16] J. X. Wang, T. E. Springer, R. R. Adzic, "Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes", J Electrochem Soc, 153 (9), A1732-A1740, 2006.
  • [17] I. M. Taylor, E. M. Robbins, K. A. Catt, P. A. Cody, C. L. Happe, X. T. Cui, "Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes", Biosens Bioelectron, 2016.
  • [18] F. Vitale, S. R. Summerson, B. Aazhang, C. Kemere, M. Pasquali, "Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes", Acs Nano, 9 (4), 4465-74, 2015.
  • [19] G. Guitchounts, J. E. Markowitz, W. A. Liberti, T. J. Gardner, "A carbon-fiber electrode array for long-term neural recording", J Neural Eng, 10 (4), 046016, 2013.
  • [20] L. Qi, E. L. Thomas, S. H. White, S. K. Smith, C. A. Lee, L. R. Wilson, L. A. Sombers, "Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes", Anal Chem, 88 (16), 8129-36, 2016.
  • [21] M. L. Huffman, B. J. Venton, "Carbon-fiber microelectrodes for in vivo applications", Analyst, 134 (1), 18-24, 2009.
  • [22] M. D. Nguyen, B. J. Venton, "Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release", Comput Struct Biotechnol J, 13, 47-54, 2015.
  • [23] W. H. Oldenziel, B. H. Westerink, "Improving glutamate microsensors by optimizing the composition of the redox hydrogel", Anal Chem, 77 (17), 5520-8, 2005.
  • [24] W. H. Oldenziel, G. Dijkstra, T. I. Cremers, B. H. Westerink, "Evaluation of hydrogel-coated glutamate microsensors", Anal Chem, 78 (10), 3366-78, 2006.
  • [25] X. Lin, X. Jiang, L. Lu, "DNA deposition on carbon electrodes under controlled dc potentials", Biosens Bioelectron, 20 (9), 1709-17, 2005.
  • [26] P. Salazar, M. Martín, R. D. O’Neill, J. L. González-Mora, "Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization", Sensors and Actuators B: Chemical, 235, 117-125, 2016.
  • [27] J.-H. Kim, S. Cho, T.-S. Bae, Y.-S. Lee, "Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction", Sensors and Actuators B: Chemical, 197, 20-27, 2014.
  • [28] N. Dossi, R. Toniolo, A. Pizzariello, E. Carrilho, E. Piccin, S. Battiston, G. Bontempelli, "An electrochemical gas sensor based on paper supported room temperature ionic liquids", Lab Chip, 12 (1), 153-8, 2012.
  • [29] J. Tian, Q. Liu, C. Ge, Z. Xing, A. M. Asiri, A. O. Al-Youbi, X. Sun, "Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application", Nanoscale, 5 (19), 8921-4, 2013.
  • [30] W. Chen, S. Cai, Q. Q. Ren, W. Wen, Y. D. Zhao, "Recent advances in electrochemical sensing for hydrogen peroxide: a review", Analyst, 137 (1), 49-58, 2012.
  • [31] D. Liu, T. Chen, W. Zhu, L. Cui, A. M. Asiri, Q. Lu, X. Sun, "Cobalt phosphide nanowires: an efficient electrocatalyst for enzymeless hydrogen peroxide detection", Nanotechnology, 27 (33), 33LT01, 2016.
There are 31 citations in total.

Details

Journal Section Articles
Authors

Mustafa Şen

Publication Date March 27, 2017
Published in Issue Year 2017 Volume: 17 Issue: 1

Cite

APA Şen, M. (2017). Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2. IU-Journal of Electrical & Electronics Engineering, 17(1), 3049-3055.
AMA Şen M. Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2. IU-Journal of Electrical & Electronics Engineering. March 2017;17(1):3049-3055.
Chicago Şen, Mustafa. “Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2”. IU-Journal of Electrical & Electronics Engineering 17, no. 1 (March 2017): 3049-55.
EndNote Şen M (March 1, 2017) Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2. IU-Journal of Electrical & Electronics Engineering 17 1 3049–3055.
IEEE M. Şen, “Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2”, IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 1, pp. 3049–3055, 2017.
ISNAD Şen, Mustafa. “Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2”. IU-Journal of Electrical & Electronics Engineering 17/1 (March 2017), 3049-3055.
JAMA Şen M. Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2. IU-Journal of Electrical & Electronics Engineering. 2017;17:3049–3055.
MLA Şen, Mustafa. “Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2”. IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 1, 2017, pp. 3049-55.
Vancouver Şen M. Fabrication of Ultamicro Carbon Fiber Electrode Probes for Detection of O2 and H2O2. IU-Journal of Electrical & Electronics Engineering. 2017;17(1):3049-55.