Research Article
BibTex RIS Cite

Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase

Year 2023, , 314 - 319, 28.12.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1068742

Abstract

Background and Aims: The use of Moringa oleifera as nutraceuticals in alternative medicine has received tremendous attention in recent years. Its diverse bioactive composition, multipurpose benefits and ease of cultivation give it a superior advantage over other herbs.

Methods: Fresh leaves and roots were obtained from M. oleifera grown in northwestern Nigeria. The inhibitory effect of M. oleifera extracts on the activities of neuraminidase, xanthine oxidase, and adenosine deaminase were determined.

Results: The present study explored the aqueous, methanol, and hexane extract of M. oleifera leaves and roots for the inhibition of neuraminidase, xanthine oxidase, and adenosine deaminase. In comparison to quercetin (Half maximum inhibitory concentration (IC50) = 14.28 ± 2.30 μg/mL), aqueous (IC50= 0.12 ± 0.01 μg/mL) and methanol (IC50 = 0.57 ± 0.13 μg/mL) the extract of the moringa root strongly inhibited neuraminidase activity. The enzyme was moderately inhibited by aqueous (IC50 = 89.56 ± 9.77 μg/mL) and hexane (IC50 = 104.33 ± 3.39 μg/mL) extracts of the plant leaf. The inhibition of xanthine oxidase by aqueous (IC50 = 7543.86 ± 1127.19 μg/mL), and methanol (IC50 = 1779.48 ± 126.50 μg/mL) leaf extracts were far below that of a standard inhibitor - allopurinol (IC50 = 0.88 ± 0.01 μg/mL). Amongst the extracts used, only the hexane extract of the moringa leaf (IC50 = 4580.38 ± 75.69 μg/mL) inhibited adenosine deaminase and was less effective than erythro-9-(2-Hydroxy-3-nonyl)-adenine hydrochloride (EHNA) (IC50 = 53.00 ± 1.83 μg/mL).

Conclusion: The findings suggest that moringa roots and leaves can be an excellent source of agents against microbial infection and viral induced respiratory syndrome. The extracts may also attenuate influenza A infection, the progression of oxidative stress, cancer, inflammation, diabetes, cardiac failure, and coronary artery disease, since they have an effect on neuraminidase, xanthine oxidase, adenosine deaminase, and possibly superoxide levels.

References

  • Abdullahi, A., Hamzah, R.U., Jigam, A.A., Yahya, A., Kabiru, A.Y., Muhammad, H...... Kolo, M.Z. (2012). Inhibitory activ- google scholar
  • ity of xanthine oxidase by fractions. Crateva adansonii. Jour-nal of Acute Disease, 1,126-129. https://doi.org/10.1016/S2221-6189(13)60029-3 google scholar
  • Ajagun-Ogunleye, M.O., & Ebuehi O.A.T. (2020). Evaluation of the anti-aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. Journal of Food Biochem-istry, 44, e13426. https://doi.org/10.1111/jfbc.13426 google scholar
  • Athira Nair D., & James, T.J. (2020). Computational screen-ing of phytocompounds from Moringa oleifera leaf as po-tential inhibitors of SARS-CoV-2 Mpro. Research Square. https://doi.org/10.21203/rs.3.rs-71018/v1 google scholar
  • Bennett, R. N., Mellon, F. A., Foidl, N., Pratt, J. H., Dupont, M. google scholar
  • S., Perkins, L..... Kroon, P.A. (2003). Profiling glucosinolatesand phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. Journal of Agriculture and Food Chemistry, 51(12), 3546-3553. google scholar
  • Blackburn, M.R., & Kellems, R.E. (2005). Adenosine deaminase deficiency: metabolic basis of immune deficiency and pul-monary inflammation. Advances in Immunology, 86, 1-41. doi:10.1016/S0065-2776(04)86001-2 google scholar
  • Blum, U., & Schwedt, G. (1998). Inhibition behavior of phosphatase, phosphodiesterase I and adenosine deaminase as tools for trace metal analysis and speciation, Analytica Chimica Acta, 360, 101108. google scholar
  • Dahot, M.U. (1998). Antimicrobial activity of Moringa oleifera leaves. Journal of Islamic Academy of Sciences, 11(1), 27-32. google scholar
  • Durak, I., Biri, H., Devrim, E., Sozen, S., & Avci, A. (2004). Aqueous extract of Urtica dioica makes significant inhibition on adeno-sine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biology & Therapy, 3(9), 855-857. doi: 10.4161/cbt.3.9.1038 google scholar
  • Elgamily, H., Moussa, A., Elboraey, A., EL-Sayed, H., Al-Moghazy, M., & Abdalla, A. (2016). Microbiological assessment of Moringa oleifera extracts and its incorporation in novel dental remedies against some oral pathogens. Open Access Macedonian Journal of Medical Sciences, 4(4), 585-590. doi:10.3889/oamjms.2016.132 google scholar
  • Fouad, E.A., Abu Elnaga, A.S.M., & Kandil, M.M. (2019) An-tibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess, Veterinary World, 12(6), 802-808. doi: 10.14202/vetworld.2019.802-808 google scholar
  • Gulati, S., Smith, D. F., Cummings, R.D., Couch, R.B., Griesemer, S.B., St George, K., Webster R.G..... Air G. M. (2013). Hu-man H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no appar-ent consequences for disease or spread. PLoS One, 8, e66325. https://doi.org/10.1371/journal.pone.0066325 google scholar
  • Hodas, F., Zorzenon, M.R.T., & Milani, P.G. (2021). Moringa oleifera potential as a functional food and a natural food additive: a bio-Chemical approach. Anais da Academia Brasileira de Ciencias, 93(4): e20210571. doi: 10.1590/0001-3765202120210571. google scholar
  • Jo, S., Kim, S., Shin, D.H., & Kim, M.S. (2020). Inhibi-tion of SARSCoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35, 145-151. https://doi.org/10.1080/14756366.2019.1690480 google scholar
  • Jung, I.L. (2014). Soluble extract from Moringa oleifera leaves with a new anticancer activity. PloS One, 9(4), e95492. https://doi.org/10.1371/journal.pone.0095492 google scholar
  • Khor, K.Z., Lim, V., Moses, E.J., & Abdul Samad, N. (2018). The in vitro and in vivo anticancer properties of Moringa oleifera. Evidence-Based Complementary and Alternative Medicine, Arti-cle ID 1071243. https://doi.org/10.1155/2018/1071243 google scholar
  • Kilany, M. (2016). Inhibition of human pathogenic bac-teria by Moringa oleifera cultivated in Jazan (King-dom of Saudi Arabia) and study of synergy to amox-icillin. Egyptian Pharmaceutical Journal, 15, 38-42.http://www.epj.eg.net/text.asp?2016/15/1/38/184029 google scholar
  • Lin, M.H., Moses, D.C., Hsieh, C.H., Cheng, S.C., Chen, Y.H., Sun, C.Y..... Chou, C.Y. (2018). Disulfiram caninhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research, 150, 155-163. https://doi.org/10.1016/j.antiviral.2017.12.015 google scholar
  • Magaji, U.F., Sacan, O., & Yanardag, R. (2020). Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. South African Journal of Botany, 128, 225-230. https://doi.org/10.1016/j.sajb.2019.11.024 google scholar
  • McAuley, J.L., Corcilius, L., Tan, H.X., Payne, R.J., McGuckin, M. A., & Brown, L. E. (2017). The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunology, 10, 1581-1593. https://doi.org/10.1038/mi.2017.16 google scholar
  • Moriwaki, Y., Yamamoto, T., & Higashino, K. (1999). Enzymes in-volved in purine metabolism-a review of histochemical localiza-tion and functional implications. Histology and Histopathology, 14(4), 1321-1340. google scholar
  • Myers, R.W., Lee, R.T., Lee, Y.C., Thomas, G.H., Reynolds, L.W., & Uchida, Y. (1980). The synthesis of 4-methylumbelliferyl a-ketoside of N-acetylneuraminic acid and its use in a fluorometric assay for neuraminidase. Analytical Biochemistry, 101(1), 166174. https://doi.org/10.1016/0003-2697(80)90056-1 google scholar
  • Pandey, A., Pandey, R.D., Tripathi, P., Gupta, P.P., Haider, J., Bhatt, S..... Singh A.V. (2012). Moringa oleifera Lam. (Sahi-jan) - a plant with a plethora of diverse. Therapeutic benefits: an updated retrospection. Medicinal Aromatic Plants, 1, 101. doi:10.4172/map.1000101 google scholar
  • Penislusshiyan, S., Chitra, L., Ancy, I., Kumaradhas, P., & Palvannan, T. (2020). Novel antioxidant astaxanthin-s-allyl cysteine biconju-gate diminished oxidative stress and mitochondrial dysfunction to triumph diabetes in rat model. Life Sciences, 245, 117367. doi: 10.1016/j.lfs.2020.117367. google scholar
  • Rechreche, H., Abbes, A. & Iovanna, J.L. (2020). Induction of antiox-idant mechanisms in lung during experimental pancreatitis in rats. Indian Journal of Experimental Biology, 58, 297-305. google scholar
  • Rothe, B., Rothe, B., Roggentin, P., & Schauer, R. (1991). The sialidase gene from Clostridium septicum: cloning, sequencing, expression in Escherichia coli and identification of conserved sequences in sialidases and other proteins. Molecular and General Genetics, 226(1-2), 190-197. https://doi.org/10.1007/BF00273603 google scholar
  • Solnier, J., & Fladerer, J.P. (2020). Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochemistry Reviews,20,773-795. doi:10.1007/s11101-020-09720-6 google scholar
  • Yumita, A., Suganda, A.G., & Sukandar, E.Y. (2014). Xanthine oxi-dase inhibitory activity of some Indonesian medicinal plants and active fraction of selected plants. International Journal of Phar-macy and Pharmaceutical Sciences, 5(2), 293-296. google scholar
Year 2023, , 314 - 319, 28.12.2023
https://doi.org/10.26650/IstanbulJPharm.2023.1068742

Abstract

References

  • Abdullahi, A., Hamzah, R.U., Jigam, A.A., Yahya, A., Kabiru, A.Y., Muhammad, H...... Kolo, M.Z. (2012). Inhibitory activ- google scholar
  • ity of xanthine oxidase by fractions. Crateva adansonii. Jour-nal of Acute Disease, 1,126-129. https://doi.org/10.1016/S2221-6189(13)60029-3 google scholar
  • Ajagun-Ogunleye, M.O., & Ebuehi O.A.T. (2020). Evaluation of the anti-aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. Journal of Food Biochem-istry, 44, e13426. https://doi.org/10.1111/jfbc.13426 google scholar
  • Athira Nair D., & James, T.J. (2020). Computational screen-ing of phytocompounds from Moringa oleifera leaf as po-tential inhibitors of SARS-CoV-2 Mpro. Research Square. https://doi.org/10.21203/rs.3.rs-71018/v1 google scholar
  • Bennett, R. N., Mellon, F. A., Foidl, N., Pratt, J. H., Dupont, M. google scholar
  • S., Perkins, L..... Kroon, P.A. (2003). Profiling glucosinolatesand phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. Journal of Agriculture and Food Chemistry, 51(12), 3546-3553. google scholar
  • Blackburn, M.R., & Kellems, R.E. (2005). Adenosine deaminase deficiency: metabolic basis of immune deficiency and pul-monary inflammation. Advances in Immunology, 86, 1-41. doi:10.1016/S0065-2776(04)86001-2 google scholar
  • Blum, U., & Schwedt, G. (1998). Inhibition behavior of phosphatase, phosphodiesterase I and adenosine deaminase as tools for trace metal analysis and speciation, Analytica Chimica Acta, 360, 101108. google scholar
  • Dahot, M.U. (1998). Antimicrobial activity of Moringa oleifera leaves. Journal of Islamic Academy of Sciences, 11(1), 27-32. google scholar
  • Durak, I., Biri, H., Devrim, E., Sozen, S., & Avci, A. (2004). Aqueous extract of Urtica dioica makes significant inhibition on adeno-sine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biology & Therapy, 3(9), 855-857. doi: 10.4161/cbt.3.9.1038 google scholar
  • Elgamily, H., Moussa, A., Elboraey, A., EL-Sayed, H., Al-Moghazy, M., & Abdalla, A. (2016). Microbiological assessment of Moringa oleifera extracts and its incorporation in novel dental remedies against some oral pathogens. Open Access Macedonian Journal of Medical Sciences, 4(4), 585-590. doi:10.3889/oamjms.2016.132 google scholar
  • Fouad, E.A., Abu Elnaga, A.S.M., & Kandil, M.M. (2019) An-tibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess, Veterinary World, 12(6), 802-808. doi: 10.14202/vetworld.2019.802-808 google scholar
  • Gulati, S., Smith, D. F., Cummings, R.D., Couch, R.B., Griesemer, S.B., St George, K., Webster R.G..... Air G. M. (2013). Hu-man H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no appar-ent consequences for disease or spread. PLoS One, 8, e66325. https://doi.org/10.1371/journal.pone.0066325 google scholar
  • Hodas, F., Zorzenon, M.R.T., & Milani, P.G. (2021). Moringa oleifera potential as a functional food and a natural food additive: a bio-Chemical approach. Anais da Academia Brasileira de Ciencias, 93(4): e20210571. doi: 10.1590/0001-3765202120210571. google scholar
  • Jo, S., Kim, S., Shin, D.H., & Kim, M.S. (2020). Inhibi-tion of SARSCoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35, 145-151. https://doi.org/10.1080/14756366.2019.1690480 google scholar
  • Jung, I.L. (2014). Soluble extract from Moringa oleifera leaves with a new anticancer activity. PloS One, 9(4), e95492. https://doi.org/10.1371/journal.pone.0095492 google scholar
  • Khor, K.Z., Lim, V., Moses, E.J., & Abdul Samad, N. (2018). The in vitro and in vivo anticancer properties of Moringa oleifera. Evidence-Based Complementary and Alternative Medicine, Arti-cle ID 1071243. https://doi.org/10.1155/2018/1071243 google scholar
  • Kilany, M. (2016). Inhibition of human pathogenic bac-teria by Moringa oleifera cultivated in Jazan (King-dom of Saudi Arabia) and study of synergy to amox-icillin. Egyptian Pharmaceutical Journal, 15, 38-42.http://www.epj.eg.net/text.asp?2016/15/1/38/184029 google scholar
  • Lin, M.H., Moses, D.C., Hsieh, C.H., Cheng, S.C., Chen, Y.H., Sun, C.Y..... Chou, C.Y. (2018). Disulfiram caninhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research, 150, 155-163. https://doi.org/10.1016/j.antiviral.2017.12.015 google scholar
  • Magaji, U.F., Sacan, O., & Yanardag, R. (2020). Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. South African Journal of Botany, 128, 225-230. https://doi.org/10.1016/j.sajb.2019.11.024 google scholar
  • McAuley, J.L., Corcilius, L., Tan, H.X., Payne, R.J., McGuckin, M. A., & Brown, L. E. (2017). The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunology, 10, 1581-1593. https://doi.org/10.1038/mi.2017.16 google scholar
  • Moriwaki, Y., Yamamoto, T., & Higashino, K. (1999). Enzymes in-volved in purine metabolism-a review of histochemical localiza-tion and functional implications. Histology and Histopathology, 14(4), 1321-1340. google scholar
  • Myers, R.W., Lee, R.T., Lee, Y.C., Thomas, G.H., Reynolds, L.W., & Uchida, Y. (1980). The synthesis of 4-methylumbelliferyl a-ketoside of N-acetylneuraminic acid and its use in a fluorometric assay for neuraminidase. Analytical Biochemistry, 101(1), 166174. https://doi.org/10.1016/0003-2697(80)90056-1 google scholar
  • Pandey, A., Pandey, R.D., Tripathi, P., Gupta, P.P., Haider, J., Bhatt, S..... Singh A.V. (2012). Moringa oleifera Lam. (Sahi-jan) - a plant with a plethora of diverse. Therapeutic benefits: an updated retrospection. Medicinal Aromatic Plants, 1, 101. doi:10.4172/map.1000101 google scholar
  • Penislusshiyan, S., Chitra, L., Ancy, I., Kumaradhas, P., & Palvannan, T. (2020). Novel antioxidant astaxanthin-s-allyl cysteine biconju-gate diminished oxidative stress and mitochondrial dysfunction to triumph diabetes in rat model. Life Sciences, 245, 117367. doi: 10.1016/j.lfs.2020.117367. google scholar
  • Rechreche, H., Abbes, A. & Iovanna, J.L. (2020). Induction of antiox-idant mechanisms in lung during experimental pancreatitis in rats. Indian Journal of Experimental Biology, 58, 297-305. google scholar
  • Rothe, B., Rothe, B., Roggentin, P., & Schauer, R. (1991). The sialidase gene from Clostridium septicum: cloning, sequencing, expression in Escherichia coli and identification of conserved sequences in sialidases and other proteins. Molecular and General Genetics, 226(1-2), 190-197. https://doi.org/10.1007/BF00273603 google scholar
  • Solnier, J., & Fladerer, J.P. (2020). Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochemistry Reviews,20,773-795. doi:10.1007/s11101-020-09720-6 google scholar
  • Yumita, A., Suganda, A.G., & Sukandar, E.Y. (2014). Xanthine oxi-dase inhibitory activity of some Indonesian medicinal plants and active fraction of selected plants. International Journal of Phar-macy and Pharmaceutical Sciences, 5(2), 293-296. google scholar
There are 29 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Umar Faruk Magaji 0000-0002-4009-481X

Özlem Saçan 0000-0001-6503-4613

Refiye Yanardağ 0000-0003-4185-4363

Publication Date December 28, 2023
Submission Date February 5, 2022
Published in Issue Year 2023

Cite

APA Magaji, U. F., Saçan, Ö., & Yanardağ, R. (2023). Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase. İstanbul Journal of Pharmacy, 53(3), 314-319. https://doi.org/10.26650/IstanbulJPharm.2023.1068742
AMA Magaji UF, Saçan Ö, Yanardağ R. Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase. iujp. December 2023;53(3):314-319. doi:10.26650/IstanbulJPharm.2023.1068742
Chicago Magaji, Umar Faruk, Özlem Saçan, and Refiye Yanardağ. “Inhibitory Potentials of Moringa Oleifera on Activities of Neuraminidase, Xanthine Oxidase and Adenosine Deaminase”. İstanbul Journal of Pharmacy 53, no. 3 (December 2023): 314-19. https://doi.org/10.26650/IstanbulJPharm.2023.1068742.
EndNote Magaji UF, Saçan Ö, Yanardağ R (December 1, 2023) Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase. İstanbul Journal of Pharmacy 53 3 314–319.
IEEE U. F. Magaji, Ö. Saçan, and R. Yanardağ, “Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase”, iujp, vol. 53, no. 3, pp. 314–319, 2023, doi: 10.26650/IstanbulJPharm.2023.1068742.
ISNAD Magaji, Umar Faruk et al. “Inhibitory Potentials of Moringa Oleifera on Activities of Neuraminidase, Xanthine Oxidase and Adenosine Deaminase”. İstanbul Journal of Pharmacy 53/3 (December 2023), 314-319. https://doi.org/10.26650/IstanbulJPharm.2023.1068742.
JAMA Magaji UF, Saçan Ö, Yanardağ R. Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase. iujp. 2023;53:314–319.
MLA Magaji, Umar Faruk et al. “Inhibitory Potentials of Moringa Oleifera on Activities of Neuraminidase, Xanthine Oxidase and Adenosine Deaminase”. İstanbul Journal of Pharmacy, vol. 53, no. 3, 2023, pp. 314-9, doi:10.26650/IstanbulJPharm.2023.1068742.
Vancouver Magaji UF, Saçan Ö, Yanardağ R. Inhibitory potentials of Moringa oleifera on activities of neuraminidase, xanthine oxidase and adenosine deaminase. iujp. 2023;53(3):314-9.