Research Article
BibTex RIS Cite

The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer

Year 2024, , 215 - 222, 26.08.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1336667

Abstract

Background and Aims: :Poor prognosis in lung cancer is associated with tumor-associated macrophages (TAMs) that exhibit M2clike behaviours that support multiple pathways in the tumour microenvironment. The interplay between epigenetic modifications and the ubiquitin-proteasome pathway involves three key mechanisms: regulation of epigenetic enzymes by ubiquitin, interaction between ubiquitin and epigenetic modifiers, and epigenetic silencing of critical genes involved in cellular processes. Therefore, we investigated the effects of ixazomib, a proteasome inhibitor, on gene expression changes in epigenetic chromatin modification enzymes in a co-culture of M2c macrophages and A549 lung cancer cells.

Methods: The IC50 concentration of ixazomib was determined to be 2.19 μM using a real-time cell analyser. THP-1 monocytes were polarised into M0 macrophages with 100 ng/mL phorbol 12-myristate 13-acetate (PMA), rested, and then exposed to 1 mM hydrocortisone to becomeM2cmacrophages.A549cellswereseededinthelowerchamberofaco-cultureplate.M2cmacrophages were then co-cultured with A549 cells for 24 h with or without 2.19 μM ixazomib. After being isolated, mRNA was converted to cDNAand analysed using a gene panel with RT-PCR.

Results: The findings showed that 56 genes had exceptionally high expression levels (up to 1848-fold. Ixazomib downregulated these overexpressed genes.

Conclusion: Ixazomib effectively modulates the expression of genes involved in epigenetic chromatin modification in the lung cancer microenvironment, indicating its utility in lung cancer therapy. Further studies are needed to explore the combined use of epigenetic drugs and proteasome inhibitors.

Supporting Institution

Anadolu University

Project Number

2103S115

Thanks

This research was supported by Anadolu University Scientific Research Project Commission (Project number: 2103S115).

References

  • Atri, C., Guerfali, F.Z., & Laouini, D. (2018). Role of human macrophage polarization in inflammation during infectious dis-eases. International Journal of Molecular Sciences, 19(6), 1801. google scholar
  • Baardman, J., Licht, I., De Winther, M.P.J., & Van den Bossche, J. (2015). Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics, 7(7), 1155-64. google scholar
  • Bestor, T.H. (1992). Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. The EMBO Jour-nal, 11(7), 2611-7. google scholar
  • Bruinsma, C. F., Savelberg, S. M., Kool, M. J., Jolfaei, M. A., Van Woerden, G. M., Baarends, W. M., & Elgersma, Y. (2016). An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression. Human molecular ge-netics, 25(1), 1-8. google scholar
  • Chanput, W., Mes, J. J., & Wichers, H. J. (2014). THP-1 cell line: an in vitro cell model for immune modulation approach. International immunopharmacology, 23(1), 37-45. google scholar
  • Damaskos, C., Tomos, I., Garmpis, N., Karakatsani, A., Dimitroulis, D., Garmpi, A., ... & Tomos, P. (2018). Histone deacetylase in-hibitors as a novel targeted therapy against non-small cell lung cancer: where are we now and what should we expect?. Anti-cancer Research, 38(1), 37-43. google scholar
  • Dikmen, M., Canturk, Z., Tilki, E. K., & Engur, S. (2017). Evalua-tion of antiangiogenic and antimetastatic Effects of Penicillium chrysogenum Secondary Metabolites. Indian J Pharm Sci, 79(1), 49-57. google scholar
  • Dikmen, M., Öztürk, S. E., Cantürk, Z., Ceylan, G., Karaduman, A. B., & Yamaç, M. (2020). Anticancer and antimetastatic activity of Hypomyces chrysospermus, a cosmopolitan parasite in different human cancer cells. Molecular Biology Reports, 47, 3765-3778. google scholar
  • Engür-Öztürk, S., & Dikmen, M. (2022). Proteasome inhibitor im-munotherapy for the epithelial to mesenchymal transition: assess-ing the A549 lung cancer cell microenvironment and the role of M1, M2a and M2c ‘hydrocortisone-polarised’macrophages. Molecular Biology Reports, 49(6), 4777-4793. google scholar
  • Guerriero, J. L. (2018). Macrophages: the road less traveled, changing anticancer therapy. Trends in Molecular Medicine, 24(5), 472-489. google scholar
  • Hu, Y., He, M. Y., Zhu, L. F., Yang, C. C., Zhou, M. L., Wang, Q., ... & Liu, L. K. (2016). Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carci-noma. Journal of Experimental & Clinical Cancer Research, 35, 1-19. google scholar
  • Jin, K., Zhao, W., Xie, X., Pan, Y., Wang, K., & Zhang, H. (2018). MiR-520b restrains cell growth by targeting HDAC4 in lung cancer. Thoracic cancer, 9(10), 1249-1254. google scholar
  • Kaewpiboon, C., Srisuttee, R., Malilas, W., Moon, J., Oh, S., Jeong, H. G., ... & Chung, Y. H. (2015). Upregulation of Stat1-HDAC4 confers resistance to etoposide through enhanced multidrug resis-tance 1 expression in human A549 lung cancer cells. Molecular Medicine Reports, 11(3), 2315-2321. google scholar
  • Lee, H. C., Ramasamy, K., Macro, M., Davies, F. E., Abonour, R., van Rhee, F., ... & Leleu, X. (2024). Impact of prior lenalido-mide or proteasome inhibitor exposure on the effectiveness of ixa-zomib-lenalidomide-dexamethasone for relapsed/refractory mul-tiple myeloma: A pooled analysis from the INSURE study. Euro-pean Journal of Haematology, 1-11. google scholar
  • Levy, D., Kuo, A. J., Chang, Y., Schaefer, U., Kitson, C., Cheung, P., ... & Gozani, O. (2011). Lysine methylation of the NF-kB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kB signaling. Nature Immunology, 12(1), 29. google scholar
  • Lu, J., Cao, Q. I., Zheng, D., Sun, Y., Wang, C., Yu, X., ... & Wang, Y. (2013). Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney International, 84(4), 745-755. google scholar
  • Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Front biosci, 13(13), 453-461. google scholar
  • McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T., & Liu, W. F. (2013). Modulation of macrophage phenotype by cell shape. Pro- ceedings of the National Academy of Sciences, 110(43), 1725317258. google scholar
  • Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyl-transferases Dnmt3a and Dnmt3b are essential for de novo methy-lation and mammalian development. Cell, 99(3), 247-257. google scholar
  • Robertson, K. D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene, 20(24), 3139-3155. google scholar
  • Van den Bossche, J., Neele, A. E., Hoeksema, M. A., & De Winther, M. P. (2014). Macrophage polarization: the epigenetic point of view. Current opinion in lipidology, 25(5), 367-373. horyear-Author12007]aut google scholar
  • Xie, J., Wan, N., Liang, Z., Zhang, T., & Jiang, J. (2019). Ixazomib-the first oral proteasome inhibitor. Leukemia & Lymphoma, 60(3), 610-618. google scholar
  • Yao, Y., Xu, X. H., & Jin, L. (2019). Macrophage polarization in phys-iological and pathological pregnancy. Frontiers in immunology, 10, 434399. google scholar
  • Yerlikaya, A., Kanbur, E., Stanley, B. A., & Tümer, E. (2021). The ubiquitin-proteasome pathway and epigenetic modifications in cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 21(1), 20-32. google scholar
  • Zeng, L. S., Yang, X. Z., Wen, Y. F., Mai, S. J., Wang, M. H., Zhang, M. Y., ... & Wang, H. Y. (2016). Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY), 8(6), 1236. google scholar
  • Zhang, B., Yao, G., Zhang, Y., Gao, J., Yang, B., Rao, Z., & Gao, J. (2011). M2-polarized tumor-associated macrophages are associ-ated with poor prognoses resulting from accelerated lymphangio-genesis in lung adenocarcinoma. Clinics, 66(11), 1879-1886. google scholar
Year 2024, , 215 - 222, 26.08.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1336667

Abstract

Project Number

2103S115

References

  • Atri, C., Guerfali, F.Z., & Laouini, D. (2018). Role of human macrophage polarization in inflammation during infectious dis-eases. International Journal of Molecular Sciences, 19(6), 1801. google scholar
  • Baardman, J., Licht, I., De Winther, M.P.J., & Van den Bossche, J. (2015). Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics, 7(7), 1155-64. google scholar
  • Bestor, T.H. (1992). Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. The EMBO Jour-nal, 11(7), 2611-7. google scholar
  • Bruinsma, C. F., Savelberg, S. M., Kool, M. J., Jolfaei, M. A., Van Woerden, G. M., Baarends, W. M., & Elgersma, Y. (2016). An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression. Human molecular ge-netics, 25(1), 1-8. google scholar
  • Chanput, W., Mes, J. J., & Wichers, H. J. (2014). THP-1 cell line: an in vitro cell model for immune modulation approach. International immunopharmacology, 23(1), 37-45. google scholar
  • Damaskos, C., Tomos, I., Garmpis, N., Karakatsani, A., Dimitroulis, D., Garmpi, A., ... & Tomos, P. (2018). Histone deacetylase in-hibitors as a novel targeted therapy against non-small cell lung cancer: where are we now and what should we expect?. Anti-cancer Research, 38(1), 37-43. google scholar
  • Dikmen, M., Canturk, Z., Tilki, E. K., & Engur, S. (2017). Evalua-tion of antiangiogenic and antimetastatic Effects of Penicillium chrysogenum Secondary Metabolites. Indian J Pharm Sci, 79(1), 49-57. google scholar
  • Dikmen, M., Öztürk, S. E., Cantürk, Z., Ceylan, G., Karaduman, A. B., & Yamaç, M. (2020). Anticancer and antimetastatic activity of Hypomyces chrysospermus, a cosmopolitan parasite in different human cancer cells. Molecular Biology Reports, 47, 3765-3778. google scholar
  • Engür-Öztürk, S., & Dikmen, M. (2022). Proteasome inhibitor im-munotherapy for the epithelial to mesenchymal transition: assess-ing the A549 lung cancer cell microenvironment and the role of M1, M2a and M2c ‘hydrocortisone-polarised’macrophages. Molecular Biology Reports, 49(6), 4777-4793. google scholar
  • Guerriero, J. L. (2018). Macrophages: the road less traveled, changing anticancer therapy. Trends in Molecular Medicine, 24(5), 472-489. google scholar
  • Hu, Y., He, M. Y., Zhu, L. F., Yang, C. C., Zhou, M. L., Wang, Q., ... & Liu, L. K. (2016). Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carci-noma. Journal of Experimental & Clinical Cancer Research, 35, 1-19. google scholar
  • Jin, K., Zhao, W., Xie, X., Pan, Y., Wang, K., & Zhang, H. (2018). MiR-520b restrains cell growth by targeting HDAC4 in lung cancer. Thoracic cancer, 9(10), 1249-1254. google scholar
  • Kaewpiboon, C., Srisuttee, R., Malilas, W., Moon, J., Oh, S., Jeong, H. G., ... & Chung, Y. H. (2015). Upregulation of Stat1-HDAC4 confers resistance to etoposide through enhanced multidrug resis-tance 1 expression in human A549 lung cancer cells. Molecular Medicine Reports, 11(3), 2315-2321. google scholar
  • Lee, H. C., Ramasamy, K., Macro, M., Davies, F. E., Abonour, R., van Rhee, F., ... & Leleu, X. (2024). Impact of prior lenalido-mide or proteasome inhibitor exposure on the effectiveness of ixa-zomib-lenalidomide-dexamethasone for relapsed/refractory mul-tiple myeloma: A pooled analysis from the INSURE study. Euro-pean Journal of Haematology, 1-11. google scholar
  • Levy, D., Kuo, A. J., Chang, Y., Schaefer, U., Kitson, C., Cheung, P., ... & Gozani, O. (2011). Lysine methylation of the NF-kB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kB signaling. Nature Immunology, 12(1), 29. google scholar
  • Lu, J., Cao, Q. I., Zheng, D., Sun, Y., Wang, C., Yu, X., ... & Wang, Y. (2013). Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney International, 84(4), 745-755. google scholar
  • Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Front biosci, 13(13), 453-461. google scholar
  • McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T., & Liu, W. F. (2013). Modulation of macrophage phenotype by cell shape. Pro- ceedings of the National Academy of Sciences, 110(43), 1725317258. google scholar
  • Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyl-transferases Dnmt3a and Dnmt3b are essential for de novo methy-lation and mammalian development. Cell, 99(3), 247-257. google scholar
  • Robertson, K. D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene, 20(24), 3139-3155. google scholar
  • Van den Bossche, J., Neele, A. E., Hoeksema, M. A., & De Winther, M. P. (2014). Macrophage polarization: the epigenetic point of view. Current opinion in lipidology, 25(5), 367-373. horyear-Author12007]aut google scholar
  • Xie, J., Wan, N., Liang, Z., Zhang, T., & Jiang, J. (2019). Ixazomib-the first oral proteasome inhibitor. Leukemia & Lymphoma, 60(3), 610-618. google scholar
  • Yao, Y., Xu, X. H., & Jin, L. (2019). Macrophage polarization in phys-iological and pathological pregnancy. Frontiers in immunology, 10, 434399. google scholar
  • Yerlikaya, A., Kanbur, E., Stanley, B. A., & Tümer, E. (2021). The ubiquitin-proteasome pathway and epigenetic modifications in cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 21(1), 20-32. google scholar
  • Zeng, L. S., Yang, X. Z., Wen, Y. F., Mai, S. J., Wang, M. H., Zhang, M. Y., ... & Wang, H. Y. (2016). Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY), 8(6), 1236. google scholar
  • Zhang, B., Yao, G., Zhang, Y., Gao, J., Yang, B., Rao, Z., & Gao, J. (2011). M2-polarized tumor-associated macrophages are associ-ated with poor prognoses resulting from accelerated lymphangio-genesis in lung adenocarcinoma. Clinics, 66(11), 1879-1886. google scholar
There are 26 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Original Article
Authors

Elif Kaya Tilki 0000-0003-2122-5324

Selin Engür Öztürk 0000-0003-1534-8117

Project Number 2103S115
Publication Date August 26, 2024
Submission Date August 2, 2023
Published in Issue Year 2024

Cite

APA Kaya Tilki, E., & Engür Öztürk, S. (2024). The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer. İstanbul Journal of Pharmacy, 54(2), 215-222. https://doi.org/10.26650/IstanbulJPharm.2024.1336667
AMA Kaya Tilki E, Engür Öztürk S. The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer. iujp. August 2024;54(2):215-222. doi:10.26650/IstanbulJPharm.2024.1336667
Chicago Kaya Tilki, Elif, and Selin Engür Öztürk. “The Proteasome Inhibitor Ixazomib Targets Epigenetic Chromatin Modification Enzymes Upregulated by m2c Macrophage Polarisation in Lung Cancer”. İstanbul Journal of Pharmacy 54, no. 2 (August 2024): 215-22. https://doi.org/10.26650/IstanbulJPharm.2024.1336667.
EndNote Kaya Tilki E, Engür Öztürk S (August 1, 2024) The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer. İstanbul Journal of Pharmacy 54 2 215–222.
IEEE E. Kaya Tilki and S. Engür Öztürk, “The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer”, iujp, vol. 54, no. 2, pp. 215–222, 2024, doi: 10.26650/IstanbulJPharm.2024.1336667.
ISNAD Kaya Tilki, Elif - Engür Öztürk, Selin. “The Proteasome Inhibitor Ixazomib Targets Epigenetic Chromatin Modification Enzymes Upregulated by m2c Macrophage Polarisation in Lung Cancer”. İstanbul Journal of Pharmacy 54/2 (August 2024), 215-222. https://doi.org/10.26650/IstanbulJPharm.2024.1336667.
JAMA Kaya Tilki E, Engür Öztürk S. The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer. iujp. 2024;54:215–222.
MLA Kaya Tilki, Elif and Selin Engür Öztürk. “The Proteasome Inhibitor Ixazomib Targets Epigenetic Chromatin Modification Enzymes Upregulated by m2c Macrophage Polarisation in Lung Cancer”. İstanbul Journal of Pharmacy, vol. 54, no. 2, 2024, pp. 215-22, doi:10.26650/IstanbulJPharm.2024.1336667.
Vancouver Kaya Tilki E, Engür Öztürk S. The proteasome inhibitor ixazomib targets epigenetic chromatin modification enzymes upregulated by m2c macrophage polarisation in lung cancer. iujp. 2024;54(2):215-22.