Research Article
BibTex RIS Cite

Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay

Year 2024, , 20 - 31, 30.04.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1372602

Abstract

Background and Aims: The aim of this study was to prolong the anesthetic effect of lidocaine (LC) in the oral cavity for use in the treatment of oral mucositis and to compare the in vitro characteristics of the film formulations prepared by using either chitosan extracted from Metapenaeus stebbingi (M. stebbingi) or commercial chitosan.

Methods: In this study, the in vitro properties of the film formulations extracted and prepared with commercial chitosan were successfully compared with the addition of different types and amounts of plasticizer and cross-linking agent. In the evaluation of the formulations, different parameters such as structure, thickness, degree of swelling, moisture content, drug content, texture profile analysis, release kinetics according to the in vitro drug release, and cytotoxicity evaluation were taken into consideration.

Results: Films prepared using chitosan extracted with 5% glycerol addition showed the highest strength and lowest elongation properties compared to other films (p<0.05). The thickness of the films varied between 500-1400 µm in all formulations. While it was observed that formulations prepared with medium molecular weight commercial chitosan had high surface roughness, the lowest swelling degree was observed for these formulations (77.41 ± 3.65-84.76 ± 6.34). The highest degree of swelling was calculated for the formulations prepared with extracted chitosan (137.23 ± 7.86). The in vitro dissolution rate results demonstrated that the increase in the molecular weight of chitosan caused a decrease in the release rate of lidocaine, while at the same time, formulations with added crosslinking agents exhibited a slower release profile. Cytotoxicity studies revealed cell viability at different polymer concentrations.

Conclusion: All the in vitro characterization results showed that extracted chitosan from M. stebbingi shells can be a good alternative for pharmaceutical use.

References

  • Abdul Rasool, B. K., Mohammed, A. A., & Salem, Y. Y. (2021). The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DD-Solver through skin penetration studies. Scientia Pharmaceutica, 89(3), 33. https://doi.org/10.3390/scipharm89030033 google scholar
  • Abouhussein, D., El Nabarawi, M. A., Shalaby, S. H., & Abd El-Bary, A. (2020). Cetylpyridinium chloride chitosan blended mu-coadhesive buccal films for treatment of pediatric oral diseases. Journal of Drug Delivery Science and Technology, 57, 101676.https://doi.org/10.1016/j.jddst.2020.101676 google scholar
  • Al-Nemrawi, N. K., Alsharif, S. S., Alzoubi, K. H., & Alkhatib, R. Q. (2019). Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Phar-maceutical Development and Technology, 24(8), 967-974. https://doi.org/10.1080/10837450.2019.1619183 google scholar
  • Alopaeus, J. F., Hellfritzsch, M., Gutowski, T., ScherlieB, R., Almeida, A., Sarmento, B., Skalko-Basnet, N., & Tho, I. (2020). Mucoadhe-sive buccal films based on a graft co-polymer-A mucin-retentive hydrogel scaffold. European Journal of Pharmaceutical Sciences, 142, 105142. https://doi.org/10.1016/j.ejps.2019.105142 google scholar
  • Anwar, S., Zaman, M., Raja, M. A. G., Mahmood, A., & Am-jad, M. W. (2020). Rosuvastatin, Perindopril and Ezetim-ibe loaded instant release buccal films: Development and in vitro characterization. Journal of Applied Biomedicine, 18(4). https://doi.org/10.32725/jab.2020.015 google scholar
  • Bao, Y., Zhang, H., Luan, Q., Zheng, M., Tang, H., & Huang, F. (2018). Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydrate Polymers, 184, 66-73. https://doi.org/10.1016/j.carbpol.2017.12.051 google scholar
  • Brown, T. J., & Gupta, A. (2020). Management of cancer ther-apy-associated oral mucositis. JCO Oncology Practice, 16(3), 103-109. https://doi.org/10.1200/JOP.19.00652 google scholar
  • Cafaggi, S., Leardi, R., Parodi, B., Caviglioli, G., Russo, E., & Bignardi, G. (2005). Preparation and evaluation of a chitosan salt-poloxamer 407 based matrix for buccal drug delivery. Journal of Controlled Release, 102(1), 159-169. https://doi.org/10.1016/j.jconrel.2004.09.019 google scholar
  • Chang, K. L. B., Tsai, G., Lee, J., & Fu, W. R. (1997). Heteroge-neous N-deacetylation of chitin in alkaline solution. Carbohy-drate Research, 303(3), 327-332. https://doi.org/10.1016/S0008-6215(97)00179-1 google scholar
  • Calvo, N. L., Svetaz, L. A., Alvarez, V. A., Quiroga, A. D., Lamas, M. C., & Leonardi, D. (2019). Chitosan-hydroxypropyl methylcellulose tioconazole films: A promising alternative dosage form for the treatment of vaginal candidi-asis. International Journal of Pharmaceutics, 556, 181-191. https://doi.org/10.1016Zj.ijphaim.2018.12.011 google scholar
  • Cevher, E., Taha, M., Orlu, M., & Araman, A. (2008). Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivatives. Drug Delivery, 15(1), 57-67. https://doi.org/10.1080/10717540701829234 google scholar
  • Çevikelli, T., Güven, U. M., & Öztürk, A. A. (2024). Metronida-zole Loaded Novel Microemulsion Formulation for Topical De-livery and Characterization With Validated New UPLC Method. Fabad Journal of Pharmaceutical Sciences, 49(1), 111-128. https://doi.org/10.55262/fabadeczacilik.1359138 google scholar
  • Demirtürk, E., Nemutlu, E., Şahin, S., & Öner, L. (2020). Development and validation of an HPLC method for determination of rofecoxib in bovine serum albumin microspheres. Turkish Journal of Chem-istry, 44(3), 647-655. https://doi.org/10.3906/kim-1912-45 google scholar
  • Elad, S., Yarom, N., Zadik, Y., Kuten-Shorrer, M., & Sonis, S. T. (2022). The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies.CA: A Cancer Journal for Clinicians, 72(1), 57-77. https://doi.org/10.3322/caac.21704 google scholar
  • Escalona-Rayo, C. F., Serrano-Castaneda, P., Lopez-Cervantes, M., & Escobar-Chavez, J. J. (2020). Optimization of unidirectional mucoadhesive buccal patches based on chitosan and pluronic® F-127 for metoprolol controlled release: In vitro and ex vivo evaluations. Journal of Pharmaceutical Innovation, 15, 556-568.https://doi.org/10.1007/s12247-019-09401-8 google scholar
  • Gök, M. K. (2019). In vitro evaluation of synergistic effect of pri-mary and tertiary amino groups in chitosan used as a non-viral gene carrier system. European Polymer Journal, 115, 375-383. https://doi.org/10.1016/j.eurpolymj.2019.03.048 google scholar
  • Gök, M. K., Demir, K., Cevher, E., Özgümüş, S., & Pabuc-cuoğlu, S. (2019). Effect of the linear aliphatic amine functionalization on in vitro transfection efficiency of chi-tosan nanoparticles. Carbohydrate Polymers, 207, 580-587. https://doi.org/10.1016/j.carbpol.2018.12.013 google scholar
  • Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05. google scholar
  • Hosseinjani, H., Hadjibabaie, M., Gholami, K., Javadi, M., Radfar, M., Jahangard-Rafsanjani, Z., Hosseinjani, E., Shabani, N., Vaezi, M., & Ghavamzadeh, A. (2017). The efficacy of erythropoietin mouthwash in prevention of oral mucositis in patients undergo-ing autologous hematopoietic SCT: a double-blind, randomized, placebo-controlled trial. Hematological Oncology, 35(1), 106112. https://doi.org/10.1002/hon.2250 google scholar
  • Jillani, U., Mudassir, J., Arshad, M. S., Mehta, P., Alyassin, Y., Nazari, K., Yousef, B., Patel, M., Zaman, A., & Sayed, E. (2022). Design and evaluation of agarose based buccal films containing zolmitrip-tan succinate: Application of physical and chemical enhancement approaches. Journal of Drug Delivery Science and Technology, 69, 103041. https://doi.org/10.1016/j.jddst.2021.103041 google scholar
  • Karki, S., Kim, H., Na, S.-J., Shin, D., Jo, K., & Lee, J. (2016). Thin films as an emerging platform for drug deliv-ery. Asian Journal of Pharmaceutical Sciences, 11(5), 559-574. https://doi.org/10.1016/j.ajps.2016.05.004 google scholar
  • Kassem, A. A., Ismail, F. A., Naggar, V. F., & Aboul-magd, E. (2015). Preparation and evaluation of periodon-tal films based on polyelectrolyte complex formation. Phar-maceutical Development and Technology, 20(3), 297-305. https://doi.org/10.3109/10837450.2013.862262 google scholar
  • Khade, A., Gadge, G., & Mahajan, U. (2020). An overview on natural polymer based mucoadhesive buccal films for controlled drug de-livery. International Journal of Pharmacy Research & Technology (UPRT), 10(1), 48-57. https://doi.Org/10.21276/irjps.2019.6.1.7 google scholar
  • Kottke, D., Majid, H., Breitkreutz, J., & Burckhardt, B. B. (2020). Development and evaluation of mucoadhesive buccal dosage forms of lidocaine hydrochloride by ex-vivo permeation stud-ies. International Journal of Pharmaceutics, 581, 119293. https://doi.Org/10.1016/j.ypharm.2020.119293 google scholar
  • Krochta, J. M. (2002). Proteins as raw materials for films and coatings: definitions, current status, and oppor-tunities. Protein-based Films and Coatings, 1, 1-40.https://doi.org/10.1201/9781420031980.ch1 google scholar
  • Küçükgülmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., & Kadak, A. E. (2011). Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chemistry, 126(3), 1144-1148. https://doi.org/10.1016/j.foodchem.2010.11.148 google scholar
  • Kumar, A., Naik, P. K., Pradhan, D., Ghosh, G., & Rath, G. (2020). Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook. Pharmaceutical Development and Technology, 25(7), 797-814. https://doi.org/10.1080/10837450.2020.1753771 google scholar
  • Kumar, A., Vimal, A., & Kumar, A. (2016). Why Chitosan? From properties to perspective of mucosal drug delivery. Interna-tional Journal of Biological Macromolecules, 91, 615-622. https://doi.org/10.1016/j.ybiomac.2016.05.054 google scholar
  • Kumria, R., Al-Dhubiab, B. E., Shah, J., & Nair, A. B. (2018). Formu-lation and evaluation of chitosan-based buccal bioadhesive films of zolmitriptan. Journal of Pharmaceutical Innovation, 13, 133-143. https://doi.org/10.1007/s12247-018-9312-6 google scholar
  • Mahdizadeh Barzoki, Z., Emam-Djomeh, Z., Mortazavian, E., Ak-bar Moosavi-Movahedi, A., & Rafiee Tehrani, M. (2016). Formulation, in vitro evaluation and kinetic analysis of chi-tosan-gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles. Journal of Microencapsulation, 33(7), 613-624. https://doi.org/10.1080/02652048.2016.1234513 google scholar
  • Malenovic, A., Medenica, M., Ivanovic, D., Jancic, B., & Markovic, S. (2005). Development and validation of RP-HPLC method for cetrimonium bromide and lidocaine determination. Il Farmaco, 60(2), 157-161. https://doi.org/10.1016/j.farmac.2004.11.004 google scholar
  • Morales, J. O., & McConville, J. T. (2011). Manufacture and characterization of mucoadhesive buccal films. European Jour-nal of Pharmaceutics and Biopharmaceutics, 77(2), 187-199. https://doi.org/10.1016/j.ejpb.2010.11.023 google scholar
  • Pilicheva, B., Uzunova, Y., & Marudova, M. (2022). Polyelectrolyte Multilayer Films as a Potential Buccal Platform for Drug Delivery. Polymers, 14(4), 734. https://doi.org/10.3390/polym14040734 google scholar
  • Preis, M., Knop, K., & Breitkreutz, J. (2014). Mechani-cal strength test for orodispersible and buccal films. In-ternational Journal of Pharmaceutics, 461(1-2), 22-29. https://doi.org/10.1016/j.ypharm.2013.11.033 google scholar
  • Pulito, C., Cristaudo, A., Porta, C. L., Zapperi, S., Blandino, G., Mor-rone, A., & Strano, S. (2020). Oral mucositis: the hidden side of cancer therapy. Journal of Experimental & Clinical Cancer Research, 39, 1-15. https://doi.org/10.1186/s13046-020-01715-7 google scholar
  • Radha, D., Lal, J. S., & Devaky, K. (2022). Chitosan-based films in drug delivery applications. Starch-Starke, 74(7-8), 2100237. https://doi.org/10.1002/star.202100237 google scholar
  • Sakloetsakun, D., Preechagoon, D., Bernkop-Schnürch, A., & Pong-janyakul, T. (2016). Chitosan-gum arabic polyelectrolyte complex films: Physicochemical, mechanical and mucoadhesive properties. Pharmaceutical Development and Technology, 21(5), 590-599. https://doi.org/10.3109/10837450.2015.1035727 google scholar
  • Sakwanichol, J., Sungthongjeen, S., & Puttipipatkhachorn, S. (2019). Preparation and characterization of chitosan aque-ous dispersion as a pharmaceutical film forming material. Journal of Drug Delivery Science and Technology, 54, 101230. https://doi.org/10.1016/j.jddst.2019.101230 google scholar
  • Shariatinia, Z. (2019). Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 263, 131-194. https://doi.org/10.1016/j.cis.2018.11.008 google scholar
  • Silva, F. C., Marto, J. M., Salgado, A., Machado, P., Silva, A. N., & Almeida, A. J. (2017). Nystatin and lidocaine pastilles for the local treatment of oral mucositis. Phar-maceutical Development and Technology, 22(2), 266-274. https://doi.org/10.1080/10837450.2016.1221424 google scholar
  • Sun, W., Chen, G., Wang, F., Qin, Y., Wang, Z., Nie, J., & Ma, G. (2018). Polyelectrolyte-complex multilayer mem-brane with gradient porous structure based on natural poly-mers for wound care. Carbohydrate Polymers, 181, 183-190. https://doi.org/10.1016/j.carbpol.2017.10.068 google scholar
  • Şenel, S., İkinci, G., Kaş, S., Yousefi-Rad, A., Sargon, M., & Hıncal, A. (2000). Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. International Journal of Pharmaceutics, 193(2), 197-203. https://doi.org/10.1016/S0378-5173(99)00334-8 google scholar
  • Tolaimate, A., Desbrieres, J., Rhazi, M., Alagui, A., Vincendon, M., & Vottero, P. (2000). On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41(7), 2463-2469. https://doi.org/10.1016/S0032-3861(99)00400-0 google scholar
  • Wang, J., & Kinsella, J. (1976). Functional properties of novel proteins: Alfalfa leaf protein. Journal of Food Science, 41(2), 286-292. https://doi.org/10.1111/j.1365-2621.1976.tb00602.x google scholar
  • Wang, Q. Z., Chen, X. G., Liu, N., Wang, S. X., Liu, C. S., Meng, X. H., & Liu, C. G. (2006). Protonation con-stants of chitosan with different molecular weight and de-gree of deacetylation. Carbohydrate Polymers, 65(2), 194-201. https://doi.org/10.1016/j.carbpol.2006.01.001 google scholar
  • Yaşayan, G., Karaca, G., Akgüner, Z. P., & Bal Öztürk, A. (2021). Chi-tosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(9), 623-635. https://doi.org/10.1080/00914037.2020.1740993 google scholar
  • Yeddes, W., Djebali, K., Wannes, W. A., Horchani-Naifer, K., Ham-mami, M., Younes, I., & Tounsi, M. S. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface method-ology. International Journal of Biological Macromolecules, 154, 92-103. https:ZZdoi.org/10.1016Zj.ijbiomac.2020.03.092 google scholar
  • Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, proper-ties and applications. Marine Drugs, 13(3), 1133-1174. https://doi.org/10.3390/md13031133 google scholar
Year 2024, , 20 - 31, 30.04.2024
https://doi.org/10.26650/IstanbulJPharm.2024.1372602

Abstract

References

  • Abdul Rasool, B. K., Mohammed, A. A., & Salem, Y. Y. (2021). The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DD-Solver through skin penetration studies. Scientia Pharmaceutica, 89(3), 33. https://doi.org/10.3390/scipharm89030033 google scholar
  • Abouhussein, D., El Nabarawi, M. A., Shalaby, S. H., & Abd El-Bary, A. (2020). Cetylpyridinium chloride chitosan blended mu-coadhesive buccal films for treatment of pediatric oral diseases. Journal of Drug Delivery Science and Technology, 57, 101676.https://doi.org/10.1016/j.jddst.2020.101676 google scholar
  • Al-Nemrawi, N. K., Alsharif, S. S., Alzoubi, K. H., & Alkhatib, R. Q. (2019). Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Phar-maceutical Development and Technology, 24(8), 967-974. https://doi.org/10.1080/10837450.2019.1619183 google scholar
  • Alopaeus, J. F., Hellfritzsch, M., Gutowski, T., ScherlieB, R., Almeida, A., Sarmento, B., Skalko-Basnet, N., & Tho, I. (2020). Mucoadhe-sive buccal films based on a graft co-polymer-A mucin-retentive hydrogel scaffold. European Journal of Pharmaceutical Sciences, 142, 105142. https://doi.org/10.1016/j.ejps.2019.105142 google scholar
  • Anwar, S., Zaman, M., Raja, M. A. G., Mahmood, A., & Am-jad, M. W. (2020). Rosuvastatin, Perindopril and Ezetim-ibe loaded instant release buccal films: Development and in vitro characterization. Journal of Applied Biomedicine, 18(4). https://doi.org/10.32725/jab.2020.015 google scholar
  • Bao, Y., Zhang, H., Luan, Q., Zheng, M., Tang, H., & Huang, F. (2018). Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities. Carbohydrate Polymers, 184, 66-73. https://doi.org/10.1016/j.carbpol.2017.12.051 google scholar
  • Brown, T. J., & Gupta, A. (2020). Management of cancer ther-apy-associated oral mucositis. JCO Oncology Practice, 16(3), 103-109. https://doi.org/10.1200/JOP.19.00652 google scholar
  • Cafaggi, S., Leardi, R., Parodi, B., Caviglioli, G., Russo, E., & Bignardi, G. (2005). Preparation and evaluation of a chitosan salt-poloxamer 407 based matrix for buccal drug delivery. Journal of Controlled Release, 102(1), 159-169. https://doi.org/10.1016/j.jconrel.2004.09.019 google scholar
  • Chang, K. L. B., Tsai, G., Lee, J., & Fu, W. R. (1997). Heteroge-neous N-deacetylation of chitin in alkaline solution. Carbohy-drate Research, 303(3), 327-332. https://doi.org/10.1016/S0008-6215(97)00179-1 google scholar
  • Calvo, N. L., Svetaz, L. A., Alvarez, V. A., Quiroga, A. D., Lamas, M. C., & Leonardi, D. (2019). Chitosan-hydroxypropyl methylcellulose tioconazole films: A promising alternative dosage form for the treatment of vaginal candidi-asis. International Journal of Pharmaceutics, 556, 181-191. https://doi.org/10.1016Zj.ijphaim.2018.12.011 google scholar
  • Cevher, E., Taha, M., Orlu, M., & Araman, A. (2008). Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivatives. Drug Delivery, 15(1), 57-67. https://doi.org/10.1080/10717540701829234 google scholar
  • Çevikelli, T., Güven, U. M., & Öztürk, A. A. (2024). Metronida-zole Loaded Novel Microemulsion Formulation for Topical De-livery and Characterization With Validated New UPLC Method. Fabad Journal of Pharmaceutical Sciences, 49(1), 111-128. https://doi.org/10.55262/fabadeczacilik.1359138 google scholar
  • Demirtürk, E., Nemutlu, E., Şahin, S., & Öner, L. (2020). Development and validation of an HPLC method for determination of rofecoxib in bovine serum albumin microspheres. Turkish Journal of Chem-istry, 44(3), 647-655. https://doi.org/10.3906/kim-1912-45 google scholar
  • Elad, S., Yarom, N., Zadik, Y., Kuten-Shorrer, M., & Sonis, S. T. (2022). The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies.CA: A Cancer Journal for Clinicians, 72(1), 57-77. https://doi.org/10.3322/caac.21704 google scholar
  • Escalona-Rayo, C. F., Serrano-Castaneda, P., Lopez-Cervantes, M., & Escobar-Chavez, J. J. (2020). Optimization of unidirectional mucoadhesive buccal patches based on chitosan and pluronic® F-127 for metoprolol controlled release: In vitro and ex vivo evaluations. Journal of Pharmaceutical Innovation, 15, 556-568.https://doi.org/10.1007/s12247-019-09401-8 google scholar
  • Gök, M. K. (2019). In vitro evaluation of synergistic effect of pri-mary and tertiary amino groups in chitosan used as a non-viral gene carrier system. European Polymer Journal, 115, 375-383. https://doi.org/10.1016/j.eurpolymj.2019.03.048 google scholar
  • Gök, M. K., Demir, K., Cevher, E., Özgümüş, S., & Pabuc-cuoğlu, S. (2019). Effect of the linear aliphatic amine functionalization on in vitro transfection efficiency of chi-tosan nanoparticles. Carbohydrate Polymers, 207, 580-587. https://doi.org/10.1016/j.carbpol.2018.12.013 google scholar
  • Guideline, I. H. T. (2005). Validation of analytical procedures: text and methodology. Q2 (R1), 1(20), 05. google scholar
  • Hosseinjani, H., Hadjibabaie, M., Gholami, K., Javadi, M., Radfar, M., Jahangard-Rafsanjani, Z., Hosseinjani, E., Shabani, N., Vaezi, M., & Ghavamzadeh, A. (2017). The efficacy of erythropoietin mouthwash in prevention of oral mucositis in patients undergo-ing autologous hematopoietic SCT: a double-blind, randomized, placebo-controlled trial. Hematological Oncology, 35(1), 106112. https://doi.org/10.1002/hon.2250 google scholar
  • Jillani, U., Mudassir, J., Arshad, M. S., Mehta, P., Alyassin, Y., Nazari, K., Yousef, B., Patel, M., Zaman, A., & Sayed, E. (2022). Design and evaluation of agarose based buccal films containing zolmitrip-tan succinate: Application of physical and chemical enhancement approaches. Journal of Drug Delivery Science and Technology, 69, 103041. https://doi.org/10.1016/j.jddst.2021.103041 google scholar
  • Karki, S., Kim, H., Na, S.-J., Shin, D., Jo, K., & Lee, J. (2016). Thin films as an emerging platform for drug deliv-ery. Asian Journal of Pharmaceutical Sciences, 11(5), 559-574. https://doi.org/10.1016/j.ajps.2016.05.004 google scholar
  • Kassem, A. A., Ismail, F. A., Naggar, V. F., & Aboul-magd, E. (2015). Preparation and evaluation of periodon-tal films based on polyelectrolyte complex formation. Phar-maceutical Development and Technology, 20(3), 297-305. https://doi.org/10.3109/10837450.2013.862262 google scholar
  • Khade, A., Gadge, G., & Mahajan, U. (2020). An overview on natural polymer based mucoadhesive buccal films for controlled drug de-livery. International Journal of Pharmacy Research & Technology (UPRT), 10(1), 48-57. https://doi.Org/10.21276/irjps.2019.6.1.7 google scholar
  • Kottke, D., Majid, H., Breitkreutz, J., & Burckhardt, B. B. (2020). Development and evaluation of mucoadhesive buccal dosage forms of lidocaine hydrochloride by ex-vivo permeation stud-ies. International Journal of Pharmaceutics, 581, 119293. https://doi.Org/10.1016/j.ypharm.2020.119293 google scholar
  • Krochta, J. M. (2002). Proteins as raw materials for films and coatings: definitions, current status, and oppor-tunities. Protein-based Films and Coatings, 1, 1-40.https://doi.org/10.1201/9781420031980.ch1 google scholar
  • Küçükgülmez, A., Celik, M., Yanar, Y., Sen, D., Polat, H., & Kadak, A. E. (2011). Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chemistry, 126(3), 1144-1148. https://doi.org/10.1016/j.foodchem.2010.11.148 google scholar
  • Kumar, A., Naik, P. K., Pradhan, D., Ghosh, G., & Rath, G. (2020). Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook. Pharmaceutical Development and Technology, 25(7), 797-814. https://doi.org/10.1080/10837450.2020.1753771 google scholar
  • Kumar, A., Vimal, A., & Kumar, A. (2016). Why Chitosan? From properties to perspective of mucosal drug delivery. Interna-tional Journal of Biological Macromolecules, 91, 615-622. https://doi.org/10.1016/j.ybiomac.2016.05.054 google scholar
  • Kumria, R., Al-Dhubiab, B. E., Shah, J., & Nair, A. B. (2018). Formu-lation and evaluation of chitosan-based buccal bioadhesive films of zolmitriptan. Journal of Pharmaceutical Innovation, 13, 133-143. https://doi.org/10.1007/s12247-018-9312-6 google scholar
  • Mahdizadeh Barzoki, Z., Emam-Djomeh, Z., Mortazavian, E., Ak-bar Moosavi-Movahedi, A., & Rafiee Tehrani, M. (2016). Formulation, in vitro evaluation and kinetic analysis of chi-tosan-gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles. Journal of Microencapsulation, 33(7), 613-624. https://doi.org/10.1080/02652048.2016.1234513 google scholar
  • Malenovic, A., Medenica, M., Ivanovic, D., Jancic, B., & Markovic, S. (2005). Development and validation of RP-HPLC method for cetrimonium bromide and lidocaine determination. Il Farmaco, 60(2), 157-161. https://doi.org/10.1016/j.farmac.2004.11.004 google scholar
  • Morales, J. O., & McConville, J. T. (2011). Manufacture and characterization of mucoadhesive buccal films. European Jour-nal of Pharmaceutics and Biopharmaceutics, 77(2), 187-199. https://doi.org/10.1016/j.ejpb.2010.11.023 google scholar
  • Pilicheva, B., Uzunova, Y., & Marudova, M. (2022). Polyelectrolyte Multilayer Films as a Potential Buccal Platform for Drug Delivery. Polymers, 14(4), 734. https://doi.org/10.3390/polym14040734 google scholar
  • Preis, M., Knop, K., & Breitkreutz, J. (2014). Mechani-cal strength test for orodispersible and buccal films. In-ternational Journal of Pharmaceutics, 461(1-2), 22-29. https://doi.org/10.1016/j.ypharm.2013.11.033 google scholar
  • Pulito, C., Cristaudo, A., Porta, C. L., Zapperi, S., Blandino, G., Mor-rone, A., & Strano, S. (2020). Oral mucositis: the hidden side of cancer therapy. Journal of Experimental & Clinical Cancer Research, 39, 1-15. https://doi.org/10.1186/s13046-020-01715-7 google scholar
  • Radha, D., Lal, J. S., & Devaky, K. (2022). Chitosan-based films in drug delivery applications. Starch-Starke, 74(7-8), 2100237. https://doi.org/10.1002/star.202100237 google scholar
  • Sakloetsakun, D., Preechagoon, D., Bernkop-Schnürch, A., & Pong-janyakul, T. (2016). Chitosan-gum arabic polyelectrolyte complex films: Physicochemical, mechanical and mucoadhesive properties. Pharmaceutical Development and Technology, 21(5), 590-599. https://doi.org/10.3109/10837450.2015.1035727 google scholar
  • Sakwanichol, J., Sungthongjeen, S., & Puttipipatkhachorn, S. (2019). Preparation and characterization of chitosan aque-ous dispersion as a pharmaceutical film forming material. Journal of Drug Delivery Science and Technology, 54, 101230. https://doi.org/10.1016/j.jddst.2019.101230 google scholar
  • Shariatinia, Z. (2019). Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 263, 131-194. https://doi.org/10.1016/j.cis.2018.11.008 google scholar
  • Silva, F. C., Marto, J. M., Salgado, A., Machado, P., Silva, A. N., & Almeida, A. J. (2017). Nystatin and lidocaine pastilles for the local treatment of oral mucositis. Phar-maceutical Development and Technology, 22(2), 266-274. https://doi.org/10.1080/10837450.2016.1221424 google scholar
  • Sun, W., Chen, G., Wang, F., Qin, Y., Wang, Z., Nie, J., & Ma, G. (2018). Polyelectrolyte-complex multilayer mem-brane with gradient porous structure based on natural poly-mers for wound care. Carbohydrate Polymers, 181, 183-190. https://doi.org/10.1016/j.carbpol.2017.10.068 google scholar
  • Şenel, S., İkinci, G., Kaş, S., Yousefi-Rad, A., Sargon, M., & Hıncal, A. (2000). Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. International Journal of Pharmaceutics, 193(2), 197-203. https://doi.org/10.1016/S0378-5173(99)00334-8 google scholar
  • Tolaimate, A., Desbrieres, J., Rhazi, M., Alagui, A., Vincendon, M., & Vottero, P. (2000). On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 41(7), 2463-2469. https://doi.org/10.1016/S0032-3861(99)00400-0 google scholar
  • Wang, J., & Kinsella, J. (1976). Functional properties of novel proteins: Alfalfa leaf protein. Journal of Food Science, 41(2), 286-292. https://doi.org/10.1111/j.1365-2621.1976.tb00602.x google scholar
  • Wang, Q. Z., Chen, X. G., Liu, N., Wang, S. X., Liu, C. S., Meng, X. H., & Liu, C. G. (2006). Protonation con-stants of chitosan with different molecular weight and de-gree of deacetylation. Carbohydrate Polymers, 65(2), 194-201. https://doi.org/10.1016/j.carbpol.2006.01.001 google scholar
  • Yaşayan, G., Karaca, G., Akgüner, Z. P., & Bal Öztürk, A. (2021). Chi-tosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(9), 623-635. https://doi.org/10.1080/00914037.2020.1740993 google scholar
  • Yeddes, W., Djebali, K., Wannes, W. A., Horchani-Naifer, K., Ham-mami, M., Younes, I., & Tounsi, M. S. (2020). Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using mixture design and response surface method-ology. International Journal of Biological Macromolecules, 154, 92-103. https:ZZdoi.org/10.1016Zj.ijbiomac.2020.03.092 google scholar
  • Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, proper-ties and applications. Marine Drugs, 13(3), 1133-1174. https://doi.org/10.3390/md13031133 google scholar
There are 48 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Toxicology, Pharmaceutical Delivery Technologies
Journal Section Original Article
Authors

Esra Demirtürk 0000-0002-8918-0073

Tilbe Çevikelli 0000-0002-0881-0644

Umay Merve Güven 0000-0003-1547-0817

Tuğçe Boran 0000-0003-4302-1947

Gül Özhan 0000-0002-6926-5723

Publication Date April 30, 2024
Submission Date October 7, 2023
Published in Issue Year 2024

Cite

APA Demirtürk, E., Çevikelli, T., Güven, U. M., Boran, T., et al. (2024). Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay. İstanbul Journal of Pharmacy, 54(1), 20-31. https://doi.org/10.26650/IstanbulJPharm.2024.1372602
AMA Demirtürk E, Çevikelli T, Güven UM, Boran T, Özhan G. Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay. iujp. April 2024;54(1):20-31. doi:10.26650/IstanbulJPharm.2024.1372602
Chicago Demirtürk, Esra, Tilbe Çevikelli, Umay Merve Güven, Tuğçe Boran, and Gül Özhan. “Preparation of Lidocaine Hydrochloride Containing Chitosan-Based Buccal Films for Mucositis: In-Vitro Evaluation and Cytotoxicity Assay”. İstanbul Journal of Pharmacy 54, no. 1 (April 2024): 20-31. https://doi.org/10.26650/IstanbulJPharm.2024.1372602.
EndNote Demirtürk E, Çevikelli T, Güven UM, Boran T, Özhan G (April 1, 2024) Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay. İstanbul Journal of Pharmacy 54 1 20–31.
IEEE E. Demirtürk, T. Çevikelli, U. M. Güven, T. Boran, and G. Özhan, “Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay”, iujp, vol. 54, no. 1, pp. 20–31, 2024, doi: 10.26650/IstanbulJPharm.2024.1372602.
ISNAD Demirtürk, Esra et al. “Preparation of Lidocaine Hydrochloride Containing Chitosan-Based Buccal Films for Mucositis: In-Vitro Evaluation and Cytotoxicity Assay”. İstanbul Journal of Pharmacy 54/1 (April 2024), 20-31. https://doi.org/10.26650/IstanbulJPharm.2024.1372602.
JAMA Demirtürk E, Çevikelli T, Güven UM, Boran T, Özhan G. Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay. iujp. 2024;54:20–31.
MLA Demirtürk, Esra et al. “Preparation of Lidocaine Hydrochloride Containing Chitosan-Based Buccal Films for Mucositis: In-Vitro Evaluation and Cytotoxicity Assay”. İstanbul Journal of Pharmacy, vol. 54, no. 1, 2024, pp. 20-31, doi:10.26650/IstanbulJPharm.2024.1372602.
Vancouver Demirtürk E, Çevikelli T, Güven UM, Boran T, Özhan G. Preparation of lidocaine hydrochloride containing chitosan-based buccal films for mucositis: In-vitro evaluation and cytotoxicity assay. iujp. 2024;54(1):20-31.