Research Article
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 3, 496 - 503, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1426179
https://izlik.org/JA33XM57GB

Abstract

References

  • Adegbola, P.I., Adetutu, A. & Olaniyi, T.D. (2020). Antioxidant activity of Amaranthus species from the Amaranthaceae family-A review. South African Journal of Botany, 133, 111-117. https://doi.org/10.1016/j.sajb.2020.07.003 google scholar
  • Aguilar-Felices, E.J., Romero-Viacava, M., Enciso-Roca, E., Herrera-Calderon, O., Común-Ventura, P., Yuli-Posadas, R.A., Chacaltana-Ramos, L. & Pari-Olarte, B. (2019). Antioxidant activity of the germinated seed of four varieties of Amaranthus caudatus L. from Peru. Pharmacognosy Journal, 11(3), 588-593. http://doi.org/10.5530/pj.2019.11.93 google scholar
  • Ahmed, S.A., Hanif, S. & Iftkhar, T. (2013). Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology, 3, 164-171. http://dx.doi.org/10.4236/ojmm.2013.33025 google scholar
  • Akin-Idowu, P.E., Ademoyegun, O.T., Olagunju, Y.O., Aduloju, A.O. & Adebo, U.G. (2017). Phytochemical content and antioxidant activity of five grain Amaranth species. American Journal of Food Science and Technology, 5, 249-255. https://doi.org/10.12691/ajfst-5-6-5. google scholar
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K. & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119, 770-778. https://doi.org/10.1016/ j.foodchem.2009.07.032 google scholar
  • Anand, P. & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36, 375-399. https://doi.org/ 10.1007/ s12272-013-0036-3 google scholar
  • Aruoma, O.I., Halliwell, B., Hoey, B.M. & Butler, J. (1989). The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine, 6, 593-597. https://doi.org/10. 1016/0891-5849(89)90066-X google scholar
  • Benzie, I.F.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239, 70-76. https://doi. org/10.1006/abio.1996.0292 google scholar
  • Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie-Food Science and Technology, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 google scholar
  • google scholar
  • Buege, J.A. & Aust, S.D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6 google scholar
  • Caselato-Sousa, V.M. & Amaya-Farfán, J. (2012). State of knowledge on Amaranth grain: A comprehensive review. Journal of Food Science, 77(4), R93-R104. https://doi.org/ 10.1111/ j.1750-3841.2012.02645.x google scholar
  • Conforti, F., Giancarlo, A., Statti, A., Loizzo, M.R., Gianni, A., Sacchetti, B., Poli, F. & Menichini, F. (2005). In vitro antioxidant effect and inhibition of a alpha-amylase of two varieties of Amaranthus caudatus seeds. Biological and Pharmaceutical Bulletin, 28, 1098-102. https://doi.org/10.1248/bpb.28.1098 google scholar
  • Duh, P.-D., Tu; Y.-Y. & Yen, G.-C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebensmittel-Wissenschaft und TechnologieFood Science and Technology, 32, 269-277. https://doi.org/10.1006/fstl.1999.0548 google scholar
  • Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9 google scholar
  • Fujii, J., Homma, T. & Osaki, T. (2022). Superoxide radicals in the execution of cell death. Antioxidants, 11, 501-532. https://doi.org/10.3390/antiox11030501 google scholar
  • Gorinstein, S., Medina-Vargas, O.J., Jaramillo, N.O., Arnao-Salas, I., Martinez-Ayala, A.L., Aran-cibia-Avila, P., Toledo, F., Katrich, E. & Trakhtenberg, S. (2007). The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. European Food Research and Technology, 225, 321-328. https://doi.org/10.1007/s00217-006-0417-7 google scholar
  • Hernández, P., Bacilio, M., Porras, F., Juarez, S., Debray, H., Zenteno, E. & Ortiz, B. (1999). A comparative study on the purification of the Amaranthus leucocarpus syn. hypocon-driacus lectin. Preparative Biochemistry and Biotechnology, 29(3), 219-234. https://doi. org/10.1080/10826069908544925 google scholar
  • Iqbal, M.J., Hanif, S., Mahmood, Z., Anwar, F. & Jamil, A. (2012). Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. Journal of Medicinal Plants Research, 6(27), 4450-4455. http://doi.org/10.5897/JMPR12.822 google scholar
  • Jayaprakasam, B., Zhang, Y. & Nair, M.G. (2004). Tumor cell proliferation and cyclooxygenase enzyme inhibitory compounds in Amaranthus tricolor. Journal of Agricultural and Food Chemistry, 52(23), 6939-6943. https://doi.org/10.1021/jf048836z google scholar
  • Jimoh, M.O., Okaiyeto, K., Oguntibeju, O.O. & Laubscher, J.P. (2022). A Systematic review on Amaranthus-related research. Horticulturae, 8, 239-256. https://doi.org/10.3390/ horticulturae8030239 google scholar
  • Karamać, M., Gai, F., Longato, E., Meineri, G., Janiak, M.A., Amarowicz, R. & Peiretti, P.G. (2019). Antioxidant activity and phenolic composition of Amaranth (Amaranthus caudatus) during plant growth. Antioxidants, 8, 173-187. http://doi.org/10.3390/antiox8060173 google scholar
  • Klimczak, I., Malecka, M. & Pacholek, B. (2002). Antioxidant activity of ethanolic extracts of amaranth seeds. Nahrung, 46, 184-186. https://doi.org/10.1002/1521-3803(20020501)46: 3<184::AID-FOOD184>3.0.CO;2-H google scholar
  • Koeppe, S.J. & Rupnow, J.H. (1988). Purification and characterization of a lectin from the seeds of Amaranth (Amaranthus cruentus). Journal of Food Science, 53, 1412-1417. https://doi. org/10.1111/j.1365-2621.1988.tb09289.x google scholar
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0 google scholar
  • Li , H., Deng, Z., Liu, R., Zhu, H., Draves, J., Marcone, M., Sun, Y. & Tsao, R. (2015). Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. Journal of Food Composition and Analysis, 37, 75-81. https://doi.org/10.1016/j.jfca.2014.09.003 google scholar
  • Li , S., Jiang, M., Wang, L. & Yu, S. (2020). Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomedicine & Pharmacotherapy, 129, 110389, 1-10. https://doi.org/10.1016/j.biopha.2020.110389 google scholar
  • Lopez, V.R., Razzeto, G.S., Giménez, M.S. & Escudero, N.L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol treated rats. Plant Foods for Human Nutrition, 66, 157-162. http://doi.org/10.1007/s11130-011-0218-4 google scholar
  • Lopez-Mejía, O.A., Lopez-Malo, A. & Palou, E. (2014). Antioxidant capacity of extracts from amaranth Amaranthus hypochondriacus L. seeds or leaves. Industrial Crops and Products, 53, 55-59. http://doi.org/10.1016/j.indcrop.2013.12.017 google scholar
  • Markesbery, W.R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6 google scholar
  • Nsimba, R.Y., Kikuzaki, H. & Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry, 106, 760-766. http://doi.org/10.1016/j.foodchem.2007.06.004 google scholar
  • Ozden-Yilmaz, T., Can, A., Sancar-Bas, S., Pala-Kara, Z., Okyar, A., Bolkent, S. (2015). Protective effect of Amaranthus lividus L. on carbon tetrachloride induced hepatoxicity in rats. Turkish Journal of Biochemistry, 40(2), 125-131. https://doi.org/10.5505/tjb.2015.05935 google scholar
  • Ozden-Yilmaz, T., Can, A., Karatug, A., Pala-Kara, Z., Okyar, A., Bolkent, S. (2016) Carbontetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicology and Industrial Health, 32(6), 1143-1152. https://doi.org/10.1177/ 0748233714555390. Epub 2014 Nov 20. google scholar
  • Ozsoy, N., Yilmaz, T., Kurt, O., Can, A. & Yanardag, R. (2009). In vitro antioxidant activity of Amaranthus lividus L. Food Chemistry, 116, 867-872. https://doi.org/10.1016/j.foodchem. 2009.03.036 google scholar
  • Pardoe, G.I., Bird, G.W.C., Uhlenbruck, G., Sprenger, I. & Heggen, M. (1970). Heterophile agglutinins with a broad-spectrum specificity. The nature of cell surface receptors for the agglutinins present in seeds of Amaranthus caudatus, Maclura aurantica, Datura stramonium, Viscum album, Phaseolus vulgaris and Moluccella laevis. Zeitschrift fur Immunitatsforschung, Allergie und Klinische Immunologie, 140(4), 374-394. google scholar
  • Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M. & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115, 994-998. http://doi.org/10.1016/j.foodchem. 2009.01.037 google scholar
  • Peiretti, P.G., Meineri, G.; Gai, F., Longato, E. & Amarowicz, R. (2017). Antioxidative activity and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Natural Product Research, 31(18), 2178-2182. http://doi.org/10. 1080/14786419.2017.1278597 google scholar
  • Peter, K. & Gandhi, P. (2017). Rediscovering the therapeutic potential of Amaranthus species: A review. Egyptian Journal of Basic and Applied Sciences, 4, 196-205. http://dx.doi.org/ 10.1016/j.ejbas.2017.05.001 google scholar
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. http://doi.org/10.1016/s0891-5849(98)00315-3 google scholar
  • Repo-Carrasco-Valencia, R., Hellström, J.K., Pihlava, J.M. & Mattila, P.H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120, 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087 google scholar
  • Rinderle, S.J. & Goldstein, I.J. (1989). Isolation and characterizatioo of Amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or Cryptic T)-antigen. The Journal of Biological Chemistry, 264(27), 16123-16131. https://doi.org/10. 1016/S0021-9258(18)71595-0 google scholar
  • Roseiro, L.B., Rauter, A.P. & Serralheiro, M.L.M. (2012). Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutrition & Aging, 1, 99-111. https://doi.org/ 10.3233/NUA-2012-0006 google scholar
  • Sharon, N. & Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14, 53R–62R. https://doi.org/10.1093/glycob/cwh122 google scholar
  • Slinkard, K. & Singleton, V.L. (1977). Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55. https://doi. org/10.5344/ajev.1974.28.1.49 google scholar
  • Tzaneva, M. & Van Damme, E.J.M. (2020). 130 years of plant lectin research. Glycoconjugate Journal, 37, 533-551. https://doi.org/10.1007/s10719-020-09942-y google scholar
  • Wu, Z., Zhao, Y. & Zhao, B. (2010). Superoxide anion, uncoupling proteins and Alzheimer’s diseases. Journal of Clinical Biochemistry and Nutrition, 46, 187-194. https://doi.org/ 10.3164/jcbn.09-104-2 google scholar
  • Yi, M.-R., Kang, C.-H., Bu & H.-J. (2017). Anti-inflammatory and tyrosinase inhibition effects of Amaranth (Amaranthus spp L.) seed extract. Korean Journal of Plant Resorces, 30(2), 144-151. https://doi.org/ /10.7732/kjpr.2017.30.2.144 google scholar
  • Yu, L.G., Milton, J.D., Fernig, D.G. & Rhodes, J.M. (2001). Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Friedenreich antigen-binding lectins. Journal of Cellular Physiology, 186, 282-287. https://doi.org/10.1002/1097-4652(200102 186:2<282:AID-JCP1028>3.0.CO;2-2 google scholar
  • Zenteno, E. & Ochoa, J.-L. (1988). Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochemistry, 27(2), 313-317. https://doi.org/10.1016/0031-9422(88)83088-7 google scholar

Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract

Year 2025, Volume: 55 Issue: 3, 496 - 503, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1426179
https://izlik.org/JA33XM57GB

Abstract

Background and Aims: Amaranth is a gluten-free pseudocereal with nutraceutical properties. The aim of this study was to evaluate the antioxidant, anti-cholinergic and cyclooxygenase (COX) inhibitory effects of the ethanol extract and isolate the lectin from the crude extract prepared from seeds of Amaranthus lividus L.

Methods: The dried powdered seeds were extracted with ethanol using a Soxhlet apparatus.

The antioxidant activity of the ethanol extract was estimated by DPPH, ABTS and superoxide radical scavenging activities, as well as the Trolox equivalent antioxidant capacity (TEAC) and Ferric-Reducing Antioxidant Power (FRAP). The total phenolic compound content was determined using the Folin-Ciocalteu reagent. The extract was screened for its acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities using Ellman’s method. The ability of the extracts to inhibit COX-1 and COX-2 was determined by enzyme immunoassay. The lectin was purified from the crude extract by a two-step procedure of 50% ammonium sulphate precipitation and affinity chromatography on CNBr-activated Sepharose 4B, using ovalbumin as a ligand. The molecular weight was determined using SDS-PAGE.

Results: Results showed that the extract possesses in vitro antioxidant, AChE, BuChE, COX-1 and COX-2 inhibitory activities, suggesting that it may provide treatment options for oxidative stress mediated diseases like Alzheimer’s, inflammatory and cancer diseases. The crude extract of the A. lividus seeds was found to contain lectin, evident by hemagglutination. The lectin was purified to homogeneity approximately 16-fold over the crude extract. It was determined to be a homodimer, and the molecular weight of the monomer corresponded to 34 kDa.

Conclusion: The results showed that the seeds of A. lividus contain valuable ingredients such as phenolic compounds and lectin that are beneficial for health.

References

  • Adegbola, P.I., Adetutu, A. & Olaniyi, T.D. (2020). Antioxidant activity of Amaranthus species from the Amaranthaceae family-A review. South African Journal of Botany, 133, 111-117. https://doi.org/10.1016/j.sajb.2020.07.003 google scholar
  • Aguilar-Felices, E.J., Romero-Viacava, M., Enciso-Roca, E., Herrera-Calderon, O., Común-Ventura, P., Yuli-Posadas, R.A., Chacaltana-Ramos, L. & Pari-Olarte, B. (2019). Antioxidant activity of the germinated seed of four varieties of Amaranthus caudatus L. from Peru. Pharmacognosy Journal, 11(3), 588-593. http://doi.org/10.5530/pj.2019.11.93 google scholar
  • Ahmed, S.A., Hanif, S. & Iftkhar, T. (2013). Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology, 3, 164-171. http://dx.doi.org/10.4236/ojmm.2013.33025 google scholar
  • Akin-Idowu, P.E., Ademoyegun, O.T., Olagunju, Y.O., Aduloju, A.O. & Adebo, U.G. (2017). Phytochemical content and antioxidant activity of five grain Amaranth species. American Journal of Food Science and Technology, 5, 249-255. https://doi.org/10.12691/ajfst-5-6-5. google scholar
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K. & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119, 770-778. https://doi.org/10.1016/ j.foodchem.2009.07.032 google scholar
  • Anand, P. & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36, 375-399. https://doi.org/ 10.1007/ s12272-013-0036-3 google scholar
  • Aruoma, O.I., Halliwell, B., Hoey, B.M. & Butler, J. (1989). The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology and Medicine, 6, 593-597. https://doi.org/10. 1016/0891-5849(89)90066-X google scholar
  • Benzie, I.F.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239, 70-76. https://doi. org/10.1006/abio.1996.0292 google scholar
  • Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie-Food Science and Technology, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 google scholar
  • google scholar
  • Buege, J.A. & Aust, S.D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6 google scholar
  • Caselato-Sousa, V.M. & Amaya-Farfán, J. (2012). State of knowledge on Amaranth grain: A comprehensive review. Journal of Food Science, 77(4), R93-R104. https://doi.org/ 10.1111/ j.1750-3841.2012.02645.x google scholar
  • Conforti, F., Giancarlo, A., Statti, A., Loizzo, M.R., Gianni, A., Sacchetti, B., Poli, F. & Menichini, F. (2005). In vitro antioxidant effect and inhibition of a alpha-amylase of two varieties of Amaranthus caudatus seeds. Biological and Pharmaceutical Bulletin, 28, 1098-102. https://doi.org/10.1248/bpb.28.1098 google scholar
  • Duh, P.-D., Tu; Y.-Y. & Yen, G.-C. (1999). Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebensmittel-Wissenschaft und TechnologieFood Science and Technology, 32, 269-277. https://doi.org/10.1006/fstl.1999.0548 google scholar
  • Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9 google scholar
  • Fujii, J., Homma, T. & Osaki, T. (2022). Superoxide radicals in the execution of cell death. Antioxidants, 11, 501-532. https://doi.org/10.3390/antiox11030501 google scholar
  • Gorinstein, S., Medina-Vargas, O.J., Jaramillo, N.O., Arnao-Salas, I., Martinez-Ayala, A.L., Aran-cibia-Avila, P., Toledo, F., Katrich, E. & Trakhtenberg, S. (2007). The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. European Food Research and Technology, 225, 321-328. https://doi.org/10.1007/s00217-006-0417-7 google scholar
  • Hernández, P., Bacilio, M., Porras, F., Juarez, S., Debray, H., Zenteno, E. & Ortiz, B. (1999). A comparative study on the purification of the Amaranthus leucocarpus syn. hypocon-driacus lectin. Preparative Biochemistry and Biotechnology, 29(3), 219-234. https://doi. org/10.1080/10826069908544925 google scholar
  • Iqbal, M.J., Hanif, S., Mahmood, Z., Anwar, F. & Jamil, A. (2012). Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. Journal of Medicinal Plants Research, 6(27), 4450-4455. http://doi.org/10.5897/JMPR12.822 google scholar
  • Jayaprakasam, B., Zhang, Y. & Nair, M.G. (2004). Tumor cell proliferation and cyclooxygenase enzyme inhibitory compounds in Amaranthus tricolor. Journal of Agricultural and Food Chemistry, 52(23), 6939-6943. https://doi.org/10.1021/jf048836z google scholar
  • Jimoh, M.O., Okaiyeto, K., Oguntibeju, O.O. & Laubscher, J.P. (2022). A Systematic review on Amaranthus-related research. Horticulturae, 8, 239-256. https://doi.org/10.3390/ horticulturae8030239 google scholar
  • Karamać, M., Gai, F., Longato, E., Meineri, G., Janiak, M.A., Amarowicz, R. & Peiretti, P.G. (2019). Antioxidant activity and phenolic composition of Amaranth (Amaranthus caudatus) during plant growth. Antioxidants, 8, 173-187. http://doi.org/10.3390/antiox8060173 google scholar
  • Klimczak, I., Malecka, M. & Pacholek, B. (2002). Antioxidant activity of ethanolic extracts of amaranth seeds. Nahrung, 46, 184-186. https://doi.org/10.1002/1521-3803(20020501)46: 3<184::AID-FOOD184>3.0.CO;2-H google scholar
  • Koeppe, S.J. & Rupnow, J.H. (1988). Purification and characterization of a lectin from the seeds of Amaranth (Amaranthus cruentus). Journal of Food Science, 53, 1412-1417. https://doi. org/10.1111/j.1365-2621.1988.tb09289.x google scholar
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0 google scholar
  • Li , H., Deng, Z., Liu, R., Zhu, H., Draves, J., Marcone, M., Sun, Y. & Tsao, R. (2015). Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. Journal of Food Composition and Analysis, 37, 75-81. https://doi.org/10.1016/j.jfca.2014.09.003 google scholar
  • Li , S., Jiang, M., Wang, L. & Yu, S. (2020). Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomedicine & Pharmacotherapy, 129, 110389, 1-10. https://doi.org/10.1016/j.biopha.2020.110389 google scholar
  • Lopez, V.R., Razzeto, G.S., Giménez, M.S. & Escudero, N.L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol treated rats. Plant Foods for Human Nutrition, 66, 157-162. http://doi.org/10.1007/s11130-011-0218-4 google scholar
  • Lopez-Mejía, O.A., Lopez-Malo, A. & Palou, E. (2014). Antioxidant capacity of extracts from amaranth Amaranthus hypochondriacus L. seeds or leaves. Industrial Crops and Products, 53, 55-59. http://doi.org/10.1016/j.indcrop.2013.12.017 google scholar
  • Markesbery, W.R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134-147. https://doi.org/10.1016/S0891-5849(96)00629-6 google scholar
  • Nsimba, R.Y., Kikuzaki, H. & Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry, 106, 760-766. http://doi.org/10.1016/j.foodchem.2007.06.004 google scholar
  • Ozden-Yilmaz, T., Can, A., Sancar-Bas, S., Pala-Kara, Z., Okyar, A., Bolkent, S. (2015). Protective effect of Amaranthus lividus L. on carbon tetrachloride induced hepatoxicity in rats. Turkish Journal of Biochemistry, 40(2), 125-131. https://doi.org/10.5505/tjb.2015.05935 google scholar
  • Ozden-Yilmaz, T., Can, A., Karatug, A., Pala-Kara, Z., Okyar, A., Bolkent, S. (2016) Carbontetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicology and Industrial Health, 32(6), 1143-1152. https://doi.org/10.1177/ 0748233714555390. Epub 2014 Nov 20. google scholar
  • Ozsoy, N., Yilmaz, T., Kurt, O., Can, A. & Yanardag, R. (2009). In vitro antioxidant activity of Amaranthus lividus L. Food Chemistry, 116, 867-872. https://doi.org/10.1016/j.foodchem. 2009.03.036 google scholar
  • Pardoe, G.I., Bird, G.W.C., Uhlenbruck, G., Sprenger, I. & Heggen, M. (1970). Heterophile agglutinins with a broad-spectrum specificity. The nature of cell surface receptors for the agglutinins present in seeds of Amaranthus caudatus, Maclura aurantica, Datura stramonium, Viscum album, Phaseolus vulgaris and Moluccella laevis. Zeitschrift fur Immunitatsforschung, Allergie und Klinische Immunologie, 140(4), 374-394. google scholar
  • Paśko, P., Bartoń, H., Zagrodzki, P., Gorinstein, S., Fołta, M. & Zachwieja, Z. (2009). Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 115, 994-998. http://doi.org/10.1016/j.foodchem. 2009.01.037 google scholar
  • Peiretti, P.G., Meineri, G.; Gai, F., Longato, E. & Amarowicz, R. (2017). Antioxidative activity and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Natural Product Research, 31(18), 2178-2182. http://doi.org/10. 1080/14786419.2017.1278597 google scholar
  • Peter, K. & Gandhi, P. (2017). Rediscovering the therapeutic potential of Amaranthus species: A review. Egyptian Journal of Basic and Applied Sciences, 4, 196-205. http://dx.doi.org/ 10.1016/j.ejbas.2017.05.001 google scholar
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. http://doi.org/10.1016/s0891-5849(98)00315-3 google scholar
  • Repo-Carrasco-Valencia, R., Hellström, J.K., Pihlava, J.M. & Mattila, P.H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120, 128-133. https://doi.org/10.1016/j.foodchem.2009.09.087 google scholar
  • Rinderle, S.J. & Goldstein, I.J. (1989). Isolation and characterizatioo of Amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or Cryptic T)-antigen. The Journal of Biological Chemistry, 264(27), 16123-16131. https://doi.org/10. 1016/S0021-9258(18)71595-0 google scholar
  • Roseiro, L.B., Rauter, A.P. & Serralheiro, M.L.M. (2012). Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutrition & Aging, 1, 99-111. https://doi.org/ 10.3233/NUA-2012-0006 google scholar
  • Sharon, N. & Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14, 53R–62R. https://doi.org/10.1093/glycob/cwh122 google scholar
  • Slinkard, K. & Singleton, V.L. (1977). Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49-55. https://doi. org/10.5344/ajev.1974.28.1.49 google scholar
  • Tzaneva, M. & Van Damme, E.J.M. (2020). 130 years of plant lectin research. Glycoconjugate Journal, 37, 533-551. https://doi.org/10.1007/s10719-020-09942-y google scholar
  • Wu, Z., Zhao, Y. & Zhao, B. (2010). Superoxide anion, uncoupling proteins and Alzheimer’s diseases. Journal of Clinical Biochemistry and Nutrition, 46, 187-194. https://doi.org/ 10.3164/jcbn.09-104-2 google scholar
  • Yi, M.-R., Kang, C.-H., Bu & H.-J. (2017). Anti-inflammatory and tyrosinase inhibition effects of Amaranth (Amaranthus spp L.) seed extract. Korean Journal of Plant Resorces, 30(2), 144-151. https://doi.org/ /10.7732/kjpr.2017.30.2.144 google scholar
  • Yu, L.G., Milton, J.D., Fernig, D.G. & Rhodes, J.M. (2001). Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Friedenreich antigen-binding lectins. Journal of Cellular Physiology, 186, 282-287. https://doi.org/10.1002/1097-4652(200102 186:2<282:AID-JCP1028>3.0.CO;2-2 google scholar
  • Zenteno, E. & Ochoa, J.-L. (1988). Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochemistry, 27(2), 313-317. https://doi.org/10.1016/0031-9422(88)83088-7 google scholar
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry, Basic Pharmacology
Journal Section Research Article
Authors

Ayhan Üğüden 0000-0003-2315-0821

Nurten Ozsoy 0000-0002-2419-9128

Ayşe Can 0000-0002-8538-663X

Submission Date January 26, 2024
Acceptance Date November 15, 2024
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1426179
IZ https://izlik.org/JA33XM57GB
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Üğüden, A., Ozsoy, N., & Can, A. (2026). Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract. İstanbul Journal of Pharmacy, 55(3), 496-503. https://doi.org/10.26650/IstanbulJPharm.2025.1426179
AMA 1.Üğüden A, Ozsoy N, Can A. Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract. iujp. 2026;55(3):496-503. doi:10.26650/IstanbulJPharm.2025.1426179
Chicago Üğüden, Ayhan, Nurten Ozsoy, and Ayşe Can. 2026. “Some Biological Activities of Ethanol Extract of Amaranthus Lividus L. Seeds and Isolation of the Lectin from the Crude Extract”. İstanbul Journal of Pharmacy 55 (3): 496-503. https://doi.org/10.26650/IstanbulJPharm.2025.1426179.
EndNote Üğüden A, Ozsoy N, Can A (January 1, 2026) Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract. İstanbul Journal of Pharmacy 55 3 496–503.
IEEE [1]A. Üğüden, N. Ozsoy, and A. Can, “Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract”, iujp, vol. 55, no. 3, pp. 496–503, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1426179.
ISNAD Üğüden, Ayhan - Ozsoy, Nurten - Can, Ayşe. “Some Biological Activities of Ethanol Extract of Amaranthus Lividus L. Seeds and Isolation of the Lectin from the Crude Extract”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 496-503. https://doi.org/10.26650/IstanbulJPharm.2025.1426179.
JAMA 1.Üğüden A, Ozsoy N, Can A. Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract. iujp. 2026;55:496–503.
MLA Üğüden, Ayhan, et al. “Some Biological Activities of Ethanol Extract of Amaranthus Lividus L. Seeds and Isolation of the Lectin from the Crude Extract”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 496-03, doi:10.26650/IstanbulJPharm.2025.1426179.
Vancouver 1.Üğüden A, Ozsoy N, Can A. Some Biological Activities of Ethanol Extract of Amaranthus lividus L. Seeds and Isolation of the Lectin from the Crude Extract. iujp [Internet]. 2026 Jan. 1;55(3):496-503. Available from: https://izlik.org/JA33XM57GB