Review
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 1, 109 - 118, 07.05.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1445928

Abstract

References

  • Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., KennedY, P. E., MurphY, P. M., & Berger, E. A. (1996). CC CKR5: A RANTES, MIP-1a, MIP-lp receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 272 (5270), 1955-1958. https:// doi.org/10.1126/science.272.5270.1955 google scholar
  • Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., Shiraishi, M., Aramaki, Y., Okonogi, K., Ogawa, Y., Meguro, K., & Fujino, M. (1999). A small-mol-ecule, nonpeptide CCR5 antagonist with highlY potent and selective anti-HIV-1 activitY. Proceedings of the National Academy of Sciences, 96(10), 5698-5703. https://doi.org/10.1073/pnas.96.10.5698 google scholar
  • Barmania, F., & Pepper, M. S. (2013). C-C chemokine receptor tYpe five (CCR5): An emerging target for the control of HIV infection. Applied & Translational Genomics, 2, 3-16. https://doi.Org/10.1016/j.atg.2013.05.004 google scholar
  • Barre-Sinoussi, F., Chermann, J. C., Rey F., NugeYre, M. T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., & Montagnier, L. (1983). Isolation of a T-lYmphotropic retrovirus from a patient at risk for acquired immune deficiencY sYndrome (AIDS). Science, 220(4599), 868-871. https://doi.org/10.1126/science.6189183 google scholar
  • Berger, E. A., Murphy P. M., & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entrY, tropism, and disease. Annual Review of Immunology, 17(1), 657-700. https://doi.org/101146/annurev.immunol.171.657 google scholar
  • Blanpain, C., Lee, B., Vakili, J., Doranz, B. J., Govaerts, C., Migeotte, I., Sharron, M., Dupriez, V., Vassart, G., Doms, R. W., & Parmentier, M. (1999). Extracellular cYsteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activitY. Journal of Biological Chemistry, 274(27), 18902-18908. https://doi.org/10.1074/jbc.274.27.18902 google scholar
  • BukrinskaYa, A. G. (2004). HIV-1 assemblY and maturation. Archives of Virology, 149(6), 1067-1082. https://doi.org/101007/s00705-003-0281-8 google scholar
  • Caseiro, M. M., Nelson, M., Diaz, R. S., Gathe, J., De Andrade Neto, J. L., Slim, J., Solano, A., Netto, E. M., Mak, C., Shen, J., Greaves, W., Dunkle, L. M., Vilchez, R. A., & Zeinecker, J. (2012). Vicriviroc plus optimized background therapY for treatment-experienced subjects with CCR5 HIV-1 infection: Final results of two randomized phase III trials. Journal of İnfection, 65(4), 326-335. https://doi.org/ 10.1016/j.jinf.2012.05.008 google scholar
  • Cenicriviroc Phase 2 StudY. (n.d.). Cenicriviroc Phase 2 studY (2024, FebruarY 26) [Webpage]. ClinicalTrials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT 05630885?term=Cenicriviroc&cond=Hiv&draw=2&rank=4 google scholar
  • Chan, D. C., Fass, D., Berger, J. M., & Kim, P. S. (1997). Core structure of gp41 from the HIV envelope glYCoprotein. Celi, 89(2), 263-273. https://doi.org/101016/S0092-8674(00)80205-6 google scholar
  • Chen, B. (2019). Molecular mechanism of HIV-1 entıy Trends in Microbiology, 27(10), 878-891. https://doi.Org/101016/j.tim.2019.06.002 google scholar
  • Chen, L., Xu, G., Song, X., Zhang, L., Chen, C., Xiang, G., Wang, S., Zhang, Z., Wu, F., Yang, X., Zhang, L., Ma, X., & Yu, J. (2024). A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer bY CCR5-YAP1 regulation. Cancer Letters, 583, 216635. https://doi.Org/101016/j. canlet.2024.216635 google scholar
  • Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., MackaY, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., & Sodroski, J. (1996). The p-chemokine receptors CCR3 and CCR5 facilitate infection By primarY HIV-1 isolates. Cell, 85(7), 1135-1148. https://doi.org/101016/S0092-8674(00)81313-6 google scholar
  • Christenson, E., Lim, S. J., Wang, H., Ferguson, A., Parkinson, R., Cetasaan, Y., Rodriguez, C., Burkhart, R., De Jesus-Acosta, A., He, J., Klein, R. B., Lafaro, K., Laheru, D., Le, D. T., ShuBert, C., Zaidi, N., Jaffee, E. M., Burns, W., Narang, A., & Zheng, L. (2023). Nivolumab and a CCR2/CCR5 dual antagonist (BMS-813160) with or without GVAX for locallY advanced pancreatic ductal adenocarcinomas: Results of phase I studg Journal of Clinical Oncology, 41 (4_suppl), 730-730. https://doi. org/10.1200/JCO.2023.41.4_suppl.730 google scholar
  • Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., & Landau, N. R. (1997). Change in coreceptor use correlates with disease progression in HIV-1-infected individ-uals. The Journal of Experimental Medicine, 185(4), 621-628. https://doi.org/10. 1084/jem.185.4.621 google scholar
  • De Roda Husman, A.-M., & Schuitemaker, H. (1998). Chemokine receptors and the clinical course of HIV-1 infection. Trends in Microbiology, 6(6), 244-249. https:// doi.org/101016/S0966-842X(98)01249-9 google scholar
  • Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Marzio, P. Di., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., & Landau, N. R. (1996). Identification of a majör co-receptor for primarY isolates of HIV-1. Nature, 381 (6584), 661-666. https://doi.org/10.1038/381661a0 google scholar
  • Dong, M., Lu, L., Li, H., Wang, X., Lu, H., Jiang, S., & Dai, Q. (2012). Design, sYnthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine deriv-atives as CCR5 antagonist-based HIV-1 entry inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(9), 3284-3286. https://doi.Org/10.1016/j.bmcl.2012.03.019 google scholar
  • Doranz, B. J., Rucker, J., Yi, Y., SmYth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., & Doms, R. W. (1996). A Dual-tropic primary HIV-1 isolate that uses fusin and the p-chemokine receptors CKR-5, CKR-3, and CKR-2B as fusion cofactors. Celi, 85(7), 1149-1158. https://doi.org/10.1016/S0092-8674(00)81314-8 google scholar
  • Dorr, P., WestbY, M., Dobbs, S., Griffin, P., Irvine, B., MacartneY, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., & Perros, M. (2005). Maraviroc (UK-427,857), a potent, orallY bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiencY virüs tYpe 1 activitY. Antimicrobial Agents and Chemotherapy, 49(11), 4721-4732. https://doi.org/10. 1128/AAC.49.11.4721-4732.2 0 05 google scholar
  • Dragic, T., Litwin, V., AllawaY, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., CaYanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., & Paxton, W. A. (1996). HIV-1 entıy into CD4+ cells is mediated By the chemokine receptor CC-CKR-5. Nature, 381 (6584), 667-673. https://doi.org/10.1038/381667a0 google scholar
  • Dzinamarira, T., Almehmadi, M., Alsaiari, A. A., AllahYani, M., Aljuaid, A., Alsharif, A., Khan, A., Kamal, M., Rabaan, A. A., Alfaraj, A. H., AlShehail, B. M., Alotaibi, N., AlShehail, S. M., & Imran, M. (2023). Highlights on the development, related patents, and prospects of lenacapavir: the first-in-class HIV-1 capsid inhibitor for the treatment of multi-drug-resistant HIV-1 Infection. Medicina, 59(6), 1041. https://doi.org/10.3390/medicina59061041 google scholar
  • Feng, Y., Broder, C. C., KennedY, P E., & Berger, E. A. (1996). HIV-1 entıy cofactor: Func-tional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272(5263), 872-877. https://doi.org/10.1126/science.272.5263.872 google scholar
  • Food and Drug Administration (FDA). (2010, MaY). Maraviroc [Webpage]. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/ label/2010/022128s004lbl.pdf google scholar
  • Freed, E. O., & Martin, M. A. (2007). HIVs and their replication. In Fields virology (5th ed., pp. 2107-2186). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. google scholar
  • He, Y., Zhou, J., Gao, H., Liu, C., Zhan, P., & Liu, X. (2024). Broad-spectrum antiviral strategY: Host-targeting antivirals against emerging and re-emerging viruses. European Journal of Medicinal Chemistry, 265, 116069. https://doi.org/10.1016/ j.ejmech.2023.116069 google scholar
  • Hirsch, M. S., & Curran, J. (1990). Human immunodeficiencY viruses. In Virology (4th ed., pp. 1953-1975). Philadelphia: Lippincott-Raven Publishers. google scholar
  • Horuk, R. (1994). The interleukin-8-receptor familY: From chemokines to malaria. Immunology Today, 15(4), 169-174. https://doi.org/10 1 016/0167-5699(94)90314-X google scholar
  • Ideıryor, V. (2005). Human İmmunodeficiencY virüs (HIV) entry inhibitors (CCR5 Spe-cific Blockers) in development: Are theY the next novel therapies? HIV Clinical Trials, 6(5), 272-277. https://doi.org/2016033103061400927 google scholar
  • International AgencY for Research on Cancer (IARC). (2012). Biological agents: A review of human carcinogens. In Biological agents (Vol. 100B, pp. 215-253). Interna-tional AgencY for Research on Cancer. https://www.ncbi.nlm.nih.gov/books/ NBK304351/ google scholar
  • Ji, X., & Li, Z. (2020). Medicinal chemistrY strategies toward host targeting antiviral agents. Medicinal Research Reviews, 40(5), 1519-1557. https://doi.org/10.1002/ med.21664 google scholar
  • Jünior, A. J. B., Andrade, A. L. V., Ferreira, A. A. G., Oliveira, S., Andrade, M., & Pinheiro, T. S. (2014). Human immunodeficiencY virus (HIV): A review. Brazilian Journal of Surgery & Clinical Research, 9(2), 43-48. google scholar
  • Kim, M. B., Giesler, K. E., Tahirovic, Y. A., Truax, V. M., Liotta, D. C., & Wilson, L. J. (2016). CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opinion on Investigational Drugs, 25(12), 1377-1392. https://doi.org/10.1080/13543784.2016.1254615 google scholar
  • Kondru, R., Zhang, J., Ji, C., Mirzadegan, T., Rotstein, D., Sankuratri, S., & Dioszegi, M. (2008). Molecular interactions of CCR5 with majör classes of small-molecule anti-HIV CCR5 antagonists. Molecular Pharmacology, 73(3), 789-800. https:// doi.org/10.1124/mol.107.042101 google scholar
  • Lee, Y. A., Wallace, M. C., & Friedman, S. L. (2015). PathobiologY of liver fibrosis: A translational success story Gut, 64(5), 830-841. https://doi.org/10.1136/gutjnl-2014-306842 google scholar
  • Lefebvre, E., MoYle, G., Reshef, R., Richman, L. P., Thompson, M., Hong, F., Chou, H., Hashiguchi, T., Plato, C., Poulin, D., Richards, T., YoneYama, H., Jenkins, H., Wolfgang, G., & Friedman, S. L. (2016). Antifibrotic effects of the dual CCR2/ CCR5 antagonist cenicriviroc in animal models of liver and kidneY fibrosis. PLOS ONE, 11(6), e0158156. https://doi.org/10.1371/journal.pone.0158156 google scholar
  • Maeda, K., Yoshimura, K., ShibaYama, S., Habashita, H., Tada, H., Sagawa, K., MiYakawa, T., Aoki, M., Fukushima, D., & MitsuYa, H. (2001). Novel low molecular weight spirodiketopiperazine derivatives potentlY inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. Journal of Biological Chemistry, 276(37), 35194-35200. https://doi.org/10 1 074/jbc.M105670200 google scholar
  • Mild, M., Kvist, A., Esbjörnsson, J., Karlsson, I., FenYö, E. M., & Medstrand, P. (2010). Differences in molecular evolution between switch (R5 to R5X4/X4-tropic) and non-switch (R5-tropic onlY) HIV-1 populations during infection. İnfection, Genetics and Evolution, 10(3), 356-364. https://doi.Org/101016/j.meegid.2009. 05.003 google scholar
  • Mirza, M. U., Saadabadi, A., Vanmeert, M., Salo-Ahen, O. M. H., Abdullah, I., Claes, S., De Jonghe, S., Schols, D., Ahmad, S., & FroeYen, M. (2020). DiscoverY of HIV entrY inhibitors via a hYbrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach. European Journal of Pharmaceutical Sciences, 155, 105537. https://doi.org/10.1016/j.ejps.2020.105537 google scholar
  • Montagnier, L., & Clavel, F. (1994). Human immunodeficiencY viruses. In R. G. Webster & A. Granoff (Eds.), Encyclopedia of virology (Vol. 2, pp. 674-681). Academic Press. google scholar
  • Murga, J. D., Franti, M., Pevear, D. C., Maddon, P. J., & Olson, W. C. (2006). Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus tYpe 1. Antimicrobial Agents and Chemother-apy, 50(10), 3289-3296. https://doi.org/101128/AAC.00699-06 google scholar
  • Murphy P M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., Miller, L. H., Oppenheim, J. J., & Power, C. A. (2000). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews, 52 (i), 145-176. google scholar
  • Nacher, M., Huber, F., Adriouch, L., Djossou, F., Adenis, A., & Couppie, P. (2018). Temporal trend of the proportion of patients presenting with advanced HIV in French Guiana: Stuck on the asYmptote? BMC Research Notes, 11(1), 831. https://doi. org/101186/s13104-018-3944-Y google scholar
  • Palani, A., & Tagat, J. R. (2006). Discovery and development of small-molecule chemokine coreceptor CCR5 antagonists. Journal of Medicinal Chemistry, 49(10), 2851-2857. https://doi.org/10.1021/jm060009x google scholar
  • Palani, A., Shapiro, S., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J., Endres, M., & BaroudY, B. M. (2001). Discovery of 4-[( Z )-(4-BromophenYl)-(ethoxyimino)methyl]−1‘5[(2,45dimethyl535 pyridinyl)carbonyl]−4‘5methyl51,4‘5 bipiperidine N 5Oxide (SCH 351125): An orally bioavailable human CCR5 antag5 onist for the treatment of HIV infection. Journal of Medicinal Chemistry, 44(21), 333953342. https://doi.org/10.1021/jm015526o google scholar
  • Qi, B., Fang, Q., Liu, S., Hou, W., Li, J., Huang, Y., & Shi, J. (2020). Advances of CCR5 antagonists: From small molecules to macromolecules. European Journal of Medicinal Chemistry, 208, 112819. https://doi.org/10.1016/j.ejmech.2020.112819 google scholar
  • Rashad, A. A., Song, L.-R., Holmes, A. P., Acharya, K., Zhang, S., Wang, Z.-L., Gary, E., Xie, X., Pirrone, V., Kutzler, M. A., Long, Y.-Q., & Chaiken, I. (2018). Bifunctional chimera that coordinatelY targets human ımmunodeficiencY virus 1 envelope gp120 and the host-cell CCR5 coreceptor at the virus-cell interface. Journal of Medicinat Chemistry, 61 (11), 5020-5033. https://doi.org/10.1021/acs.jmedchem. 8b00477 google scholar
  • Rottman, J. B., GanleY, K. P., Williams, K., Wu, L., MackaY, C. R., & Ringler, D. J. (1997). Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. The American Journal of Pathology, 151 (5), 1341-1351. google scholar
  • Safarian, D., Carnec, X., Tsamis, F., Kajumo, F., & Dragic, T. (2006). An anti-CCR5 mono-clonal antibodY and small molecule CCR5 antagonists sYnergize bY inhibiting different stages of human immunodeficiencY virus tYpe 1 entrY. Virology, 352(2), 477-484. https://doi.org/10.1016/jvirol.2006.05.016 google scholar
  • Shah, H. R., & Savjani, J. K. (2018). Recent updates for designing CCR5 antagonists as anti-retroviral agents. European Journal of Medicinat Chemistry, 147, 115-129. https://doi.org/10.1016/j.ejmech.2018.01.085 google scholar
  • Shepherd, A. J., Loo, L., & Mohapatra, D. P (2013). Chemokine co-receptor CCR5/ CXCR4-dependent modulation of Kv2.1 channel confers acute neuroprotection to HIV-1 glYCoprotein gp120 exposure. PLoS ONE, 8(9), e76698. https://doi.org/ 10.1371/journal.pone.0076698 google scholar
  • Strizki, J. M., TremblaY, C., Xu, S., Wojcik, L., Wagner, N., Gonsiorek, W., Hipkin, R. W., Chou, C.-C., Pugliese-Sivo, C., Xiao, Y., Tagat, J. R., Cox, K., Priestley, T., Sorota, S., Huang, W., Hirsch, M., Reyes, G. R., & BaroudY, B. M. (2005). Discovery and characteri-zation of vicriviroc (SCH 417690), a CCR5 antagonist with potent activitY against human immunodeficiencY virus tYpe 1. Antimicrobial Agents and Chemother-apy, 49(12), 4911-4919. https://doi.org/10.1128/AAC.49.12.4911-4919.2005 google scholar
  • Tagat, J. R., McCombie, S. W., Nazareno, D., Labroli, M. A., Xiao, Y., Steensma, R. W., Strizki, J. M., BaroudY, B. M., Cox, K., Lachowicz, J., VartY, G., & Watkins, R. (2004). Piperazine-Based CCR5 Antagonists as HIV-1 Inhibitors. IV. Discov-ery of 1-[(4,6-DimethYl-5-pYrimidinYl)carbonyl]- 4-[4-{2-methoxY-l( R )-4-(tri-fluoromethYl)phenYl}ethYl-3( S )-methyl-1-piperazinyl]- 4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. Journal of Medicinat Chemistry, 47(10), 2405-2408. https://doi.org/ 10.1021/jm0304515 google scholar
  • Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G. W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R. C., Zhao, Q., & Wu, B. (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 341 (6152), 1387-1390. https://doi.org/10. 1126/science.1241475 google scholar
  • Tian, Y., Zhang, D., Zhan, P., & Liu, X. (2014). Medicinal chemistrY of small molecule CCR5 antagonists for blocking HIV-1 entry: A review of structural evolution. Current Topics in Medicinat Chemistry, 14(13), 1515-1538. https://doi.org/10. 2174/1568026614666140827143934 google scholar
  • Tsamis, F., Gavrilov, S., Kajumo, F., Seibert, C., Kuhmann, S., Ketas, T., Trkola, A., Palani, A., Clader, J. W., Tagat, J. R., McCombie, S., BaroudY, B., Moore, J. P., Sakmar, T. P., & Dragic, T. (2003). Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodefciency virüs type 1 entry. Journal of Virology, 77(9), 5201-5208. https://doi.org/10.1128/ JVI.77.9.5201-52 0 8.2 0 03 google scholar
  • Turner, B. G., & Summers, M. F. (1999). Structural biologY of HIV. Journal of Molecular Biology, 285(1), 1-32. https://doi.org/10.1006/jmbi.1998.2354 google scholar
  • Verhofstede, C., Nijhuis, M., & Vandekerckhove, L. (2012). Correlation of coreceptor usage and disease progression: Current Opinion in HIV and AIDS, 7(5), 432-439. https://doi.org/10.1097/COH.0b013e328356f6f2 google scholar
  • Visseaux, B., Charpentier, C., Collin, G., Bertine, M., PeYtavin, G., Damond, F., Matheron, S., Lefebvre, E., Brun-Vezinet, F., Descamps, D., & ANRS CO5 HIV-2 Cohort. (2015). Cenicriviroc, a novel CCR5 (R5) and CCR2 antagonist, shows in vitro activitY against R5 tropic HIV-2 clinical isolates. PLOS ONE, 10(8), e0134904. https://doi. org/10.1371/journal.pone.0134904 google scholar
  • Walayat, K., Ul Amin Mohsin, N., Aslam, S., Rasool, N., Ahmad, M., Raflq, A., Al-Hussain, S. A., & Zaki, M. E. A. (2023). Recent advances in the piperazine based antiviral agents: A remarkable heterocYcle for antiviral research. Arabian Journal of Chemistry, 16(12), 105292. https://doi.org/10.1016/j.arabjc.2023.105292 google scholar
  • Walz, D. A., Wu, V. Y., De Lamo, R., Dene, H., & McCoY, L. E. (1977). PrimarY structure of human platelet factor 4. ThromBosis Research, 11 (6), 893-898. https://doi.org/ 10.1016/0 049-3 848(77)90117-7 google scholar
  • Wang, C., Wang, H., Wang, X., Sun, L., Wang, Q., Li, Q., Liang, R., Dou, D., Yu, F., Lu, L., & Jiang, S. (2023). Multitargeted drug design strategy for discovery of short-peptide-based HIV-1 entry inhibitors with high potency. European Journal of Medicinal Chemistry, 252, 115294. https://doi.org/10.1016/j.ejmech.2023.115294 google scholar
  • Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., & WileY, D. C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature, 387(6631), 426-430. https://doi.org/10.1038/387426a0 google scholar
  • Westby, M., & Van Der Ryst, E. (2005). CCR5 antagonists: Host-targeted antivirals for the treatment of HIV infection. Antiviral Chemistry and Chemotherapy, 16(6), 339-354. https://doi.org/10.1177/095632020501600601 google scholar
  • World Health Organization. (2023, FebruarY 19). HIV data and statistics [Webpage]. World Health Organization. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics google scholar
  • Wu, L., Gerard, N. P., WYatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C., & Sodroski, J. (1996). CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature, 384(6605), 179-183. https://doi.org/10.1038/384179a0 google scholar
  • Xie, X., Zheng, Y.-G., Chen, H., Li, J., Luo, R.-H., Chen, L., Zheng, C.-B., Zhang, S., Peng, P., Ma, D., Yang, L.-M., Zheng, Y.-T., Liu, H., & Wang, J. (2022). Structure-based design of tropane derivatives as a novel series of CCR5 antagonists with broad-spectrum anti-HIV-1 activities and improved oral bioavailability. Journal of Medicinat Chemistry, 65(24), 16526-16540. https://doi.org/10.1021/ acs.jmedchem.2c01383 google scholar
  • Xue, C.-B., Chen, L., Cao, G., Zhang, K., Wang, A., Meloni, D., Glenn, J., Anand, R., Xia, M., Kong, L., Huang, T., Feng, H., Zheng, C., Li, M., GalYa, L., Zhou, J., Shin, N., Baribaud, F., Solomon, K.,... Metcalf, B. (2010). Discovery of INCB9471, a potent, selective, and orally bioavailable CCR5 antagonist with potent anti-HIV-1 activity. ACS Medicinat Chemistry Letters, 1 (9), 483-487. https://doi.org/10.1021/ml1001536 google scholar
  • Yang, M., Zhi, R., Lu, L., Dong, M., Wang, Y., Tian, F., Xia, M., Hu, J., Dai, Q., Jiang, S., & Li, W. (2018). A CCR5 antagonist-based HIV entry inhibitor exhibited potent spermicidal activitY: Potential application for contraception and prevention of HIV sexual transmission. European Journal of Pharmaceutical Sciences, 117, 313-320. https://doi.Org/10.1016/j.ejps.2018.02.026 google scholar

The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists

Year 2025, Volume: 55 Issue: 1, 109 - 118, 07.05.2025
https://doi.org/10.26650/IstanbulJPharm.2025.1445928

Abstract

Human immunodeficiency virus (HIV) infection is a major health problem worldwide. Antiretroviral Therapy (ART) involves a combination of HIV drugs (called HIV treatment regimen). However, ART resis5 tance, which emerged because of evolutionary processes, poses numerous challenges in HIV treatment. Therefore, there is urgently needed to develop new anti5retroviral drugs that can eliminate resistant HIV strains. HIV interacts with the primary receptor cluster of differentiation 4 + T cell (CD4+ ) and its co5receptor to allow entry by triggering major structural rearrangements and inducing membrane fusion. Among chemokine receptors, the C5C chemokine receptor 5 (CCR5) is the main co5receptor for HIV binding, which is responsible for viral transmission. Therefore, CCR5 plays an important role in HIV pathogenesis. CCR5 antagonists block the binding of HIV51 to the CCR5 receptor, leading to the discovery of new drug molecules and the search for more effective therapeutics. This review focuses on CCR5 antagonists as viral targets and highlights relevant drug molecules consid5 ering advances in the structural biology of pharmacophore sites. In addition, this article reviews studies on existing drug molecules and discusses the development of CCR5 antagonists that can combat HIV51 infection.

References

  • Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., KennedY, P. E., MurphY, P. M., & Berger, E. A. (1996). CC CKR5: A RANTES, MIP-1a, MIP-lp receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 272 (5270), 1955-1958. https:// doi.org/10.1126/science.272.5270.1955 google scholar
  • Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., Shiraishi, M., Aramaki, Y., Okonogi, K., Ogawa, Y., Meguro, K., & Fujino, M. (1999). A small-mol-ecule, nonpeptide CCR5 antagonist with highlY potent and selective anti-HIV-1 activitY. Proceedings of the National Academy of Sciences, 96(10), 5698-5703. https://doi.org/10.1073/pnas.96.10.5698 google scholar
  • Barmania, F., & Pepper, M. S. (2013). C-C chemokine receptor tYpe five (CCR5): An emerging target for the control of HIV infection. Applied & Translational Genomics, 2, 3-16. https://doi.Org/10.1016/j.atg.2013.05.004 google scholar
  • Barre-Sinoussi, F., Chermann, J. C., Rey F., NugeYre, M. T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., & Montagnier, L. (1983). Isolation of a T-lYmphotropic retrovirus from a patient at risk for acquired immune deficiencY sYndrome (AIDS). Science, 220(4599), 868-871. https://doi.org/10.1126/science.6189183 google scholar
  • Berger, E. A., Murphy P. M., & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entrY, tropism, and disease. Annual Review of Immunology, 17(1), 657-700. https://doi.org/101146/annurev.immunol.171.657 google scholar
  • Blanpain, C., Lee, B., Vakili, J., Doranz, B. J., Govaerts, C., Migeotte, I., Sharron, M., Dupriez, V., Vassart, G., Doms, R. W., & Parmentier, M. (1999). Extracellular cYsteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activitY. Journal of Biological Chemistry, 274(27), 18902-18908. https://doi.org/10.1074/jbc.274.27.18902 google scholar
  • BukrinskaYa, A. G. (2004). HIV-1 assemblY and maturation. Archives of Virology, 149(6), 1067-1082. https://doi.org/101007/s00705-003-0281-8 google scholar
  • Caseiro, M. M., Nelson, M., Diaz, R. S., Gathe, J., De Andrade Neto, J. L., Slim, J., Solano, A., Netto, E. M., Mak, C., Shen, J., Greaves, W., Dunkle, L. M., Vilchez, R. A., & Zeinecker, J. (2012). Vicriviroc plus optimized background therapY for treatment-experienced subjects with CCR5 HIV-1 infection: Final results of two randomized phase III trials. Journal of İnfection, 65(4), 326-335. https://doi.org/ 10.1016/j.jinf.2012.05.008 google scholar
  • Cenicriviroc Phase 2 StudY. (n.d.). Cenicriviroc Phase 2 studY (2024, FebruarY 26) [Webpage]. ClinicalTrials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT 05630885?term=Cenicriviroc&cond=Hiv&draw=2&rank=4 google scholar
  • Chan, D. C., Fass, D., Berger, J. M., & Kim, P. S. (1997). Core structure of gp41 from the HIV envelope glYCoprotein. Celi, 89(2), 263-273. https://doi.org/101016/S0092-8674(00)80205-6 google scholar
  • Chen, B. (2019). Molecular mechanism of HIV-1 entıy Trends in Microbiology, 27(10), 878-891. https://doi.Org/101016/j.tim.2019.06.002 google scholar
  • Chen, L., Xu, G., Song, X., Zhang, L., Chen, C., Xiang, G., Wang, S., Zhang, Z., Wu, F., Yang, X., Zhang, L., Ma, X., & Yu, J. (2024). A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer bY CCR5-YAP1 regulation. Cancer Letters, 583, 216635. https://doi.Org/101016/j. canlet.2024.216635 google scholar
  • Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., MackaY, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., & Sodroski, J. (1996). The p-chemokine receptors CCR3 and CCR5 facilitate infection By primarY HIV-1 isolates. Cell, 85(7), 1135-1148. https://doi.org/101016/S0092-8674(00)81313-6 google scholar
  • Christenson, E., Lim, S. J., Wang, H., Ferguson, A., Parkinson, R., Cetasaan, Y., Rodriguez, C., Burkhart, R., De Jesus-Acosta, A., He, J., Klein, R. B., Lafaro, K., Laheru, D., Le, D. T., ShuBert, C., Zaidi, N., Jaffee, E. M., Burns, W., Narang, A., & Zheng, L. (2023). Nivolumab and a CCR2/CCR5 dual antagonist (BMS-813160) with or without GVAX for locallY advanced pancreatic ductal adenocarcinomas: Results of phase I studg Journal of Clinical Oncology, 41 (4_suppl), 730-730. https://doi. org/10.1200/JCO.2023.41.4_suppl.730 google scholar
  • Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S., & Landau, N. R. (1997). Change in coreceptor use correlates with disease progression in HIV-1-infected individ-uals. The Journal of Experimental Medicine, 185(4), 621-628. https://doi.org/10. 1084/jem.185.4.621 google scholar
  • De Roda Husman, A.-M., & Schuitemaker, H. (1998). Chemokine receptors and the clinical course of HIV-1 infection. Trends in Microbiology, 6(6), 244-249. https:// doi.org/101016/S0966-842X(98)01249-9 google scholar
  • Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Marzio, P. Di., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R., & Landau, N. R. (1996). Identification of a majör co-receptor for primarY isolates of HIV-1. Nature, 381 (6584), 661-666. https://doi.org/10.1038/381661a0 google scholar
  • Dong, M., Lu, L., Li, H., Wang, X., Lu, H., Jiang, S., & Dai, Q. (2012). Design, sYnthesis, and biological activity of novel 1,4-disubstituted piperidine/piperazine deriv-atives as CCR5 antagonist-based HIV-1 entry inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(9), 3284-3286. https://doi.Org/10.1016/j.bmcl.2012.03.019 google scholar
  • Doranz, B. J., Rucker, J., Yi, Y., SmYth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G., & Doms, R. W. (1996). A Dual-tropic primary HIV-1 isolate that uses fusin and the p-chemokine receptors CKR-5, CKR-3, and CKR-2B as fusion cofactors. Celi, 85(7), 1149-1158. https://doi.org/10.1016/S0092-8674(00)81314-8 google scholar
  • Dorr, P., WestbY, M., Dobbs, S., Griffin, P., Irvine, B., MacartneY, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., & Perros, M. (2005). Maraviroc (UK-427,857), a potent, orallY bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiencY virüs tYpe 1 activitY. Antimicrobial Agents and Chemotherapy, 49(11), 4721-4732. https://doi.org/10. 1128/AAC.49.11.4721-4732.2 0 05 google scholar
  • Dragic, T., Litwin, V., AllawaY, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., CaYanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., & Paxton, W. A. (1996). HIV-1 entıy into CD4+ cells is mediated By the chemokine receptor CC-CKR-5. Nature, 381 (6584), 667-673. https://doi.org/10.1038/381667a0 google scholar
  • Dzinamarira, T., Almehmadi, M., Alsaiari, A. A., AllahYani, M., Aljuaid, A., Alsharif, A., Khan, A., Kamal, M., Rabaan, A. A., Alfaraj, A. H., AlShehail, B. M., Alotaibi, N., AlShehail, S. M., & Imran, M. (2023). Highlights on the development, related patents, and prospects of lenacapavir: the first-in-class HIV-1 capsid inhibitor for the treatment of multi-drug-resistant HIV-1 Infection. Medicina, 59(6), 1041. https://doi.org/10.3390/medicina59061041 google scholar
  • Feng, Y., Broder, C. C., KennedY, P E., & Berger, E. A. (1996). HIV-1 entıy cofactor: Func-tional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272(5263), 872-877. https://doi.org/10.1126/science.272.5263.872 google scholar
  • Food and Drug Administration (FDA). (2010, MaY). Maraviroc [Webpage]. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/ label/2010/022128s004lbl.pdf google scholar
  • Freed, E. O., & Martin, M. A. (2007). HIVs and their replication. In Fields virology (5th ed., pp. 2107-2186). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. google scholar
  • He, Y., Zhou, J., Gao, H., Liu, C., Zhan, P., & Liu, X. (2024). Broad-spectrum antiviral strategY: Host-targeting antivirals against emerging and re-emerging viruses. European Journal of Medicinal Chemistry, 265, 116069. https://doi.org/10.1016/ j.ejmech.2023.116069 google scholar
  • Hirsch, M. S., & Curran, J. (1990). Human immunodeficiencY viruses. In Virology (4th ed., pp. 1953-1975). Philadelphia: Lippincott-Raven Publishers. google scholar
  • Horuk, R. (1994). The interleukin-8-receptor familY: From chemokines to malaria. Immunology Today, 15(4), 169-174. https://doi.org/10 1 016/0167-5699(94)90314-X google scholar
  • Ideıryor, V. (2005). Human İmmunodeficiencY virüs (HIV) entry inhibitors (CCR5 Spe-cific Blockers) in development: Are theY the next novel therapies? HIV Clinical Trials, 6(5), 272-277. https://doi.org/2016033103061400927 google scholar
  • International AgencY for Research on Cancer (IARC). (2012). Biological agents: A review of human carcinogens. In Biological agents (Vol. 100B, pp. 215-253). Interna-tional AgencY for Research on Cancer. https://www.ncbi.nlm.nih.gov/books/ NBK304351/ google scholar
  • Ji, X., & Li, Z. (2020). Medicinal chemistrY strategies toward host targeting antiviral agents. Medicinal Research Reviews, 40(5), 1519-1557. https://doi.org/10.1002/ med.21664 google scholar
  • Jünior, A. J. B., Andrade, A. L. V., Ferreira, A. A. G., Oliveira, S., Andrade, M., & Pinheiro, T. S. (2014). Human immunodeficiencY virus (HIV): A review. Brazilian Journal of Surgery & Clinical Research, 9(2), 43-48. google scholar
  • Kim, M. B., Giesler, K. E., Tahirovic, Y. A., Truax, V. M., Liotta, D. C., & Wilson, L. J. (2016). CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opinion on Investigational Drugs, 25(12), 1377-1392. https://doi.org/10.1080/13543784.2016.1254615 google scholar
  • Kondru, R., Zhang, J., Ji, C., Mirzadegan, T., Rotstein, D., Sankuratri, S., & Dioszegi, M. (2008). Molecular interactions of CCR5 with majör classes of small-molecule anti-HIV CCR5 antagonists. Molecular Pharmacology, 73(3), 789-800. https:// doi.org/10.1124/mol.107.042101 google scholar
  • Lee, Y. A., Wallace, M. C., & Friedman, S. L. (2015). PathobiologY of liver fibrosis: A translational success story Gut, 64(5), 830-841. https://doi.org/10.1136/gutjnl-2014-306842 google scholar
  • Lefebvre, E., MoYle, G., Reshef, R., Richman, L. P., Thompson, M., Hong, F., Chou, H., Hashiguchi, T., Plato, C., Poulin, D., Richards, T., YoneYama, H., Jenkins, H., Wolfgang, G., & Friedman, S. L. (2016). Antifibrotic effects of the dual CCR2/ CCR5 antagonist cenicriviroc in animal models of liver and kidneY fibrosis. PLOS ONE, 11(6), e0158156. https://doi.org/10.1371/journal.pone.0158156 google scholar
  • Maeda, K., Yoshimura, K., ShibaYama, S., Habashita, H., Tada, H., Sagawa, K., MiYakawa, T., Aoki, M., Fukushima, D., & MitsuYa, H. (2001). Novel low molecular weight spirodiketopiperazine derivatives potentlY inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. Journal of Biological Chemistry, 276(37), 35194-35200. https://doi.org/10 1 074/jbc.M105670200 google scholar
  • Mild, M., Kvist, A., Esbjörnsson, J., Karlsson, I., FenYö, E. M., & Medstrand, P. (2010). Differences in molecular evolution between switch (R5 to R5X4/X4-tropic) and non-switch (R5-tropic onlY) HIV-1 populations during infection. İnfection, Genetics and Evolution, 10(3), 356-364. https://doi.Org/101016/j.meegid.2009. 05.003 google scholar
  • Mirza, M. U., Saadabadi, A., Vanmeert, M., Salo-Ahen, O. M. H., Abdullah, I., Claes, S., De Jonghe, S., Schols, D., Ahmad, S., & FroeYen, M. (2020). DiscoverY of HIV entrY inhibitors via a hYbrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach. European Journal of Pharmaceutical Sciences, 155, 105537. https://doi.org/10.1016/j.ejps.2020.105537 google scholar
  • Montagnier, L., & Clavel, F. (1994). Human immunodeficiencY viruses. In R. G. Webster & A. Granoff (Eds.), Encyclopedia of virology (Vol. 2, pp. 674-681). Academic Press. google scholar
  • Murga, J. D., Franti, M., Pevear, D. C., Maddon, P. J., & Olson, W. C. (2006). Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus tYpe 1. Antimicrobial Agents and Chemother-apy, 50(10), 3289-3296. https://doi.org/101128/AAC.00699-06 google scholar
  • Murphy P M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., Miller, L. H., Oppenheim, J. J., & Power, C. A. (2000). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews, 52 (i), 145-176. google scholar
  • Nacher, M., Huber, F., Adriouch, L., Djossou, F., Adenis, A., & Couppie, P. (2018). Temporal trend of the proportion of patients presenting with advanced HIV in French Guiana: Stuck on the asYmptote? BMC Research Notes, 11(1), 831. https://doi. org/101186/s13104-018-3944-Y google scholar
  • Palani, A., & Tagat, J. R. (2006). Discovery and development of small-molecule chemokine coreceptor CCR5 antagonists. Journal of Medicinal Chemistry, 49(10), 2851-2857. https://doi.org/10.1021/jm060009x google scholar
  • Palani, A., Shapiro, S., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J., Endres, M., & BaroudY, B. M. (2001). Discovery of 4-[( Z )-(4-BromophenYl)-(ethoxyimino)methyl]−1‘5[(2,45dimethyl535 pyridinyl)carbonyl]−4‘5methyl51,4‘5 bipiperidine N 5Oxide (SCH 351125): An orally bioavailable human CCR5 antag5 onist for the treatment of HIV infection. Journal of Medicinal Chemistry, 44(21), 333953342. https://doi.org/10.1021/jm015526o google scholar
  • Qi, B., Fang, Q., Liu, S., Hou, W., Li, J., Huang, Y., & Shi, J. (2020). Advances of CCR5 antagonists: From small molecules to macromolecules. European Journal of Medicinal Chemistry, 208, 112819. https://doi.org/10.1016/j.ejmech.2020.112819 google scholar
  • Rashad, A. A., Song, L.-R., Holmes, A. P., Acharya, K., Zhang, S., Wang, Z.-L., Gary, E., Xie, X., Pirrone, V., Kutzler, M. A., Long, Y.-Q., & Chaiken, I. (2018). Bifunctional chimera that coordinatelY targets human ımmunodeficiencY virus 1 envelope gp120 and the host-cell CCR5 coreceptor at the virus-cell interface. Journal of Medicinat Chemistry, 61 (11), 5020-5033. https://doi.org/10.1021/acs.jmedchem. 8b00477 google scholar
  • Rottman, J. B., GanleY, K. P., Williams, K., Wu, L., MackaY, C. R., & Ringler, D. J. (1997). Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. The American Journal of Pathology, 151 (5), 1341-1351. google scholar
  • Safarian, D., Carnec, X., Tsamis, F., Kajumo, F., & Dragic, T. (2006). An anti-CCR5 mono-clonal antibodY and small molecule CCR5 antagonists sYnergize bY inhibiting different stages of human immunodeficiencY virus tYpe 1 entrY. Virology, 352(2), 477-484. https://doi.org/10.1016/jvirol.2006.05.016 google scholar
  • Shah, H. R., & Savjani, J. K. (2018). Recent updates for designing CCR5 antagonists as anti-retroviral agents. European Journal of Medicinat Chemistry, 147, 115-129. https://doi.org/10.1016/j.ejmech.2018.01.085 google scholar
  • Shepherd, A. J., Loo, L., & Mohapatra, D. P (2013). Chemokine co-receptor CCR5/ CXCR4-dependent modulation of Kv2.1 channel confers acute neuroprotection to HIV-1 glYCoprotein gp120 exposure. PLoS ONE, 8(9), e76698. https://doi.org/ 10.1371/journal.pone.0076698 google scholar
  • Strizki, J. M., TremblaY, C., Xu, S., Wojcik, L., Wagner, N., Gonsiorek, W., Hipkin, R. W., Chou, C.-C., Pugliese-Sivo, C., Xiao, Y., Tagat, J. R., Cox, K., Priestley, T., Sorota, S., Huang, W., Hirsch, M., Reyes, G. R., & BaroudY, B. M. (2005). Discovery and characteri-zation of vicriviroc (SCH 417690), a CCR5 antagonist with potent activitY against human immunodeficiencY virus tYpe 1. Antimicrobial Agents and Chemother-apy, 49(12), 4911-4919. https://doi.org/10.1128/AAC.49.12.4911-4919.2005 google scholar
  • Tagat, J. R., McCombie, S. W., Nazareno, D., Labroli, M. A., Xiao, Y., Steensma, R. W., Strizki, J. M., BaroudY, B. M., Cox, K., Lachowicz, J., VartY, G., & Watkins, R. (2004). Piperazine-Based CCR5 Antagonists as HIV-1 Inhibitors. IV. Discov-ery of 1-[(4,6-DimethYl-5-pYrimidinYl)carbonyl]- 4-[4-{2-methoxY-l( R )-4-(tri-fluoromethYl)phenYl}ethYl-3( S )-methyl-1-piperazinyl]- 4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. Journal of Medicinat Chemistry, 47(10), 2405-2408. https://doi.org/ 10.1021/jm0304515 google scholar
  • Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G. W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R. C., Zhao, Q., & Wu, B. (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 341 (6152), 1387-1390. https://doi.org/10. 1126/science.1241475 google scholar
  • Tian, Y., Zhang, D., Zhan, P., & Liu, X. (2014). Medicinal chemistrY of small molecule CCR5 antagonists for blocking HIV-1 entry: A review of structural evolution. Current Topics in Medicinat Chemistry, 14(13), 1515-1538. https://doi.org/10. 2174/1568026614666140827143934 google scholar
  • Tsamis, F., Gavrilov, S., Kajumo, F., Seibert, C., Kuhmann, S., Ketas, T., Trkola, A., Palani, A., Clader, J. W., Tagat, J. R., McCombie, S., BaroudY, B., Moore, J. P., Sakmar, T. P., & Dragic, T. (2003). Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodefciency virüs type 1 entry. Journal of Virology, 77(9), 5201-5208. https://doi.org/10.1128/ JVI.77.9.5201-52 0 8.2 0 03 google scholar
  • Turner, B. G., & Summers, M. F. (1999). Structural biologY of HIV. Journal of Molecular Biology, 285(1), 1-32. https://doi.org/10.1006/jmbi.1998.2354 google scholar
  • Verhofstede, C., Nijhuis, M., & Vandekerckhove, L. (2012). Correlation of coreceptor usage and disease progression: Current Opinion in HIV and AIDS, 7(5), 432-439. https://doi.org/10.1097/COH.0b013e328356f6f2 google scholar
  • Visseaux, B., Charpentier, C., Collin, G., Bertine, M., PeYtavin, G., Damond, F., Matheron, S., Lefebvre, E., Brun-Vezinet, F., Descamps, D., & ANRS CO5 HIV-2 Cohort. (2015). Cenicriviroc, a novel CCR5 (R5) and CCR2 antagonist, shows in vitro activitY against R5 tropic HIV-2 clinical isolates. PLOS ONE, 10(8), e0134904. https://doi. org/10.1371/journal.pone.0134904 google scholar
  • Walayat, K., Ul Amin Mohsin, N., Aslam, S., Rasool, N., Ahmad, M., Raflq, A., Al-Hussain, S. A., & Zaki, M. E. A. (2023). Recent advances in the piperazine based antiviral agents: A remarkable heterocYcle for antiviral research. Arabian Journal of Chemistry, 16(12), 105292. https://doi.org/10.1016/j.arabjc.2023.105292 google scholar
  • Walz, D. A., Wu, V. Y., De Lamo, R., Dene, H., & McCoY, L. E. (1977). PrimarY structure of human platelet factor 4. ThromBosis Research, 11 (6), 893-898. https://doi.org/ 10.1016/0 049-3 848(77)90117-7 google scholar
  • Wang, C., Wang, H., Wang, X., Sun, L., Wang, Q., Li, Q., Liang, R., Dou, D., Yu, F., Lu, L., & Jiang, S. (2023). Multitargeted drug design strategy for discovery of short-peptide-based HIV-1 entry inhibitors with high potency. European Journal of Medicinal Chemistry, 252, 115294. https://doi.org/10.1016/j.ejmech.2023.115294 google scholar
  • Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J., & WileY, D. C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature, 387(6631), 426-430. https://doi.org/10.1038/387426a0 google scholar
  • Westby, M., & Van Der Ryst, E. (2005). CCR5 antagonists: Host-targeted antivirals for the treatment of HIV infection. Antiviral Chemistry and Chemotherapy, 16(6), 339-354. https://doi.org/10.1177/095632020501600601 google scholar
  • World Health Organization. (2023, FebruarY 19). HIV data and statistics [Webpage]. World Health Organization. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics google scholar
  • Wu, L., Gerard, N. P., WYatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C., & Sodroski, J. (1996). CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature, 384(6605), 179-183. https://doi.org/10.1038/384179a0 google scholar
  • Xie, X., Zheng, Y.-G., Chen, H., Li, J., Luo, R.-H., Chen, L., Zheng, C.-B., Zhang, S., Peng, P., Ma, D., Yang, L.-M., Zheng, Y.-T., Liu, H., & Wang, J. (2022). Structure-based design of tropane derivatives as a novel series of CCR5 antagonists with broad-spectrum anti-HIV-1 activities and improved oral bioavailability. Journal of Medicinat Chemistry, 65(24), 16526-16540. https://doi.org/10.1021/ acs.jmedchem.2c01383 google scholar
  • Xue, C.-B., Chen, L., Cao, G., Zhang, K., Wang, A., Meloni, D., Glenn, J., Anand, R., Xia, M., Kong, L., Huang, T., Feng, H., Zheng, C., Li, M., GalYa, L., Zhou, J., Shin, N., Baribaud, F., Solomon, K.,... Metcalf, B. (2010). Discovery of INCB9471, a potent, selective, and orally bioavailable CCR5 antagonist with potent anti-HIV-1 activity. ACS Medicinat Chemistry Letters, 1 (9), 483-487. https://doi.org/10.1021/ml1001536 google scholar
  • Yang, M., Zhi, R., Lu, L., Dong, M., Wang, Y., Tian, F., Xia, M., Hu, J., Dai, Q., Jiang, S., & Li, W. (2018). A CCR5 antagonist-based HIV entry inhibitor exhibited potent spermicidal activitY: Potential application for contraception and prevention of HIV sexual transmission. European Journal of Pharmaceutical Sciences, 117, 313-320. https://doi.Org/10.1016/j.ejps.2018.02.026 google scholar
There are 69 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences, Pharmaceutical Chemistry
Journal Section Review
Authors

Dilek Aksoy 0000-0002-5435-4299

Füsun Ur Göktaş 0000-0003-2412-2232

Submission Date March 1, 2024
Acceptance Date October 8, 2024
Publication Date May 7, 2025
Published in Issue Year 2025 Volume: 55 Issue: 1

Cite

APA Aksoy, D., & Ur Göktaş, F. (2025). The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists. İstanbul Journal of Pharmacy, 55(1), 109-118. https://doi.org/10.26650/IstanbulJPharm.2025.1445928
AMA Aksoy D, Ur Göktaş F. The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists. iujp. May 2025;55(1):109-118. doi:10.26650/IstanbulJPharm.2025.1445928
Chicago Aksoy, Dilek, and Füsun Ur Göktaş. “The Importance of Co-Receptors in Antiretroviral Therapy and Novel Studies on Non-Peptide, Small Molecule Chemokine Receptor Type 5 (CCR5) Antagonists”. İstanbul Journal of Pharmacy 55, no. 1 (May 2025): 109-18. https://doi.org/10.26650/IstanbulJPharm.2025.1445928.
EndNote Aksoy D, Ur Göktaş F (May 1, 2025) The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists. İstanbul Journal of Pharmacy 55 1 109–118.
IEEE D. Aksoy and F. Ur Göktaş, “The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists”, iujp, vol. 55, no. 1, pp. 109–118, 2025, doi: 10.26650/IstanbulJPharm.2025.1445928.
ISNAD Aksoy, Dilek - Ur Göktaş, Füsun. “The Importance of Co-Receptors in Antiretroviral Therapy and Novel Studies on Non-Peptide, Small Molecule Chemokine Receptor Type 5 (CCR5) Antagonists”. İstanbul Journal of Pharmacy 55/1 (May2025), 109-118. https://doi.org/10.26650/IstanbulJPharm.2025.1445928.
JAMA Aksoy D, Ur Göktaş F. The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists. iujp. 2025;55:109–118.
MLA Aksoy, Dilek and Füsun Ur Göktaş. “The Importance of Co-Receptors in Antiretroviral Therapy and Novel Studies on Non-Peptide, Small Molecule Chemokine Receptor Type 5 (CCR5) Antagonists”. İstanbul Journal of Pharmacy, vol. 55, no. 1, 2025, pp. 109-18, doi:10.26650/IstanbulJPharm.2025.1445928.
Vancouver Aksoy D, Ur Göktaş F. The importance of co-receptors in antiretroviral therapy and novel studies on non-peptide, small molecule chemokine receptor type 5 (CCR5) antagonists. iujp. 2025;55(1):109-18.