Research Article
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 3, 419 - 426, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1508683
https://izlik.org/JA83PD83JS

Abstract

References

  • Arbore, G., & Kemper, C. (2016). A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function. European Journal of Immunology, 46(7), 1563-1573. https://doi.org/10.1002/eji.201546131 google scholar
  • Avogaro, A., Nosadini, R., Doria, A., Fioretto, P., Velussi, M., Vigorito, C., Sacca, L., Toffolo, G., Cobelli, C., Trevisan, R., & et al. (1990). Myocardial metabolism in insulindeficient diabetic humans without coronary artery disease. American Journal of Physiology, 258(4 Pt 1), E606-618. https://doi.org/10.1152/ajpendo.1990.258. 4.E606 google scholar
  • Bae, H. R., Kim, D. H., Park, M. H., Lee, B., Kim, M. J., Lee, E. K., Chung, K. W., Kim, S. M., Im, D. S., & Chung, H. Y. (2016). β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 7(41), 66444-66454. https://doi.org/10.18632/oncotarget.12119 google scholar
  • Bae, H. R., Kim, D. H., Park, M. H., Lee, B., Kim, M. J., Lee, E. K., Chung, K. W., Kim, S. M., Im, D. S., & Chung, H. Y. (2016). β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 7(41). https://www.oncotarget.com/article/12119/text/ google scholar
  • Benoist, L., Chadet, S., Genet, T., Lefort, C., Heraud, A., Danila, M. D., Muntean, D. M., Baron, C., Angoulvant, D., Babuty, D., Bourguignon, T., & Ivanes, F. (2019). Stimulation of P2Y11 receptor protects human cardiomyocytes against Hypoxia/ Reoxygenation injury and involves PKCε signaling pathway. Scientific Reports, 9(1), 11613. https://doi.org/10.1038/s41598-019-48006-6 google scholar
  • Billingham, L. K., Stoolman, J. S., Vasan, K., Rodriguez, A. E., Poor, T. A., Szibor, M., Jacobs, H. T., Reczek, C. R., Rashidi, A., Zhang, P., Miska, J., & Chandel, N. S. (2022). Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nature Immunology, 23(5), 692-704. https://doi.org/10.1038/s41590-022-01185-3 google scholar
  • Bracamonte-Baran, W., & Čiháková, D. (2017). Cardiac Autoimmunity: Myocarditis. Advances in Experimental Medicine and Biology, 1003, 187-221. https://doi.org/ 10.1007/978-3-319-57613-8_10 google scholar
  • Broz, P., & Dixit, V. M. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews in Immunology, 16(7), 407-420. https://doi.org/10. 1038/nri.2016.58 google scholar
  • Cahill, G. F., Jr. (2006). Fuel metabolism in starvation. Annual Review of Nutrition, 26, 1-22. https://doi.org/10.1146/annurev.nutr.26.061505.111258 google scholar
  • Cotter, D. G., Schugar, R. C., & Crawford, P. A. (2013). Ketone body metabolism and cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology, 304(8), H1060-1076. https://doi.org/10.1152/ajpheart.00646.2012 google scholar
  • Deng, Y., Xie, M., Li, Q., Xu, X., Ou, W., Zhang, Y., Xiao, H., Yu, H., Zheng, Y., Liang, Y., Jiang, C., Chen, G., Du, D., Zheng, W., Wang, S., Gong, M., Chen, Y., Tian, R., & Li, T. (2021). Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF. Circulation Research, 128(2), 232-245. https://doi.org/10.1161/circresaha. 120.317933 google scholar
  • Duncan, J. G., Fong, J. L., Medeiros, D. M., Finck, B. N., & Kelly, D. P. (2007). Insulinresistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation, 115(7), 909-917. https://doi.org/10.1161/circulationaha.106. 662296 google scholar
  • Dyńka, D., Kowalcze, K., Charuta, A., & Paziewska, A. (2023). The Ketogenic Diet and Cardiovascular Diseases. Nutrients, 15(15). https://doi.org/10.3390/nu15153368 google scholar
  • Güven, B., Sun, Q., Wagg, C. S., Almeida de Oliveira, A., Silver, H., Persad, K. L., Onay-Besikci, A., Vu, J., Oudit, G. Y., & Lopaschuk, G. D. (2024). Obesity Is a Major Determinant of Impaired Cardiac Energy Metabolism in Heart Failure with Preserved Ejection Fraction. Journal of Pharmacology and Experimental Therapeutics, 388(1), 145-155. https://doi.org/10.1124/jpet.123.001791 google scholar
  • Hasan-Olive, M. M., Lauritzen, K. H., Ali, M., Rasmussen, L. J., Storm-Mathisen, J., & Bergersen, L. H. (2019). A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1α-SIRT3-UCP2 Axis. Neurochemical Research, 44(1), 22-37. https://doi.org/10.1007/s11064-018-2588-6 google scholar
  • Henein, M. Y., Vancheri, S., Longo, G., & Vancheri, F. (2022). The Role of Inflammation in Cardiovascular Disease. International Journal of Molecular Sciences, 23(21), 12906. https://www.mdpi.com/1422-0067/23/21/12906 google scholar
  • Huang, L., Guo, B., Yan, J., Wei, H., Liu, S., & Li, Y. (2023). CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chaperones, 28(2), 177-190. https://doi.org/10.1007/s12192-023-01328-x google scholar
  • Janardhan, A., Chen, J., & Crawford, P. A. (2011). Altered systemic ketone body metabolism in advanced heart failure. Texas Heart Institute Journal, 38(5), 533-538. google scholar
  • Ji, L., He, Q., Liu, Y., Deng, Y., Xie, M., Luo, K., Cai, X., Zuo, Y., Wu, W., Li, Q., Zhou, R., & Li, T. (2022). Ketone Body β-Hydroxybutyrate Prevents Myocardial Oxidative Stress in Septic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 2513837. https://doi.org/10.1155/2022/2513837 google scholar
  • Kim, D. H., Park, M. H., Ha, S., Bang, E. J., Lee, Y., Lee, A. K., Lee, J., Yu, B. P., & Chung, H. Y. (2019). Anti-inflammatory action of β-hydroxybutyrate via modulation of PGC-1α and FoxO1, mimicking calorie restriction. Aging (Albany NY), 11(4), 1283-1304. https://doi.org/10.18632/aging.101838 google scholar
  • Kong, G., Liu, J., Li, R., Lin, J., Huang, Z., Yang, Z., Wu, X., Huang, Z., Zhu, Q., & Wu, X. (2021). Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochemical Research, 46(2), 213-229. https://doi.org/10.1007/s11064-020-03156-2 google scholar
  • Li, L. C., Wang, Z. W., Hu, X. P., Wu, Z. Y., Hu, Z. P., & Ruan, Y. L. (2017). MDG‑1 inhibits H2O2‑induced apoptosis and inflammation in human umbilical vein endothelial cells. Molecular Medicine Reports, 16(3), 3673-3679. https://doi.org/10.3892/ mmr.2017.6957 google scholar
  • Li, Q., Deng, G., & Gao, Y. (2022). S100 calcium-binding protein A12 knockdown ameliorates hypoxia-reoxygenation-induced inflammation and apoptosis in human google scholar cardiomyocytes by regulating caspase-4-mediated non-classical pyroptosis. General Physiology and Biophysics, 41(4), 287-297. https://doi.org/10.4149/gpb_ 2022018 google scholar
  • Libby, P. (2006). Inflammation and cardiovascular disease mechanisms. The American Journal of Clinical Nutrition, 83(2), 456s-460s. https://doi.org/10.1093/ajcn/83. 2.456S google scholar
  • Libby, P. (2021). Inflammation during the life cycle of the atherosclerotic plaque. Cardiovascular Research, 117(13), 2525-2536. https://doi.org/10.1093/cvr/cvab303 google scholar
  • Lommi, J., Kupari, M., Koskinen, P., Näveri, H., Leinonen, H., Pulkki, K., & Härkönen, M. (1996). Blood ketone bodies in congestive heart failure. Journal of the American College of Cardiology, 28(3), 665-672. https://doi.org/10.1016/0735-1097(96)00214-8 google scholar
  • Lopaschuk, G. D., & Dyck, J. R. B. (2023). Ketones and the cardiovascular system. Nature Cardiovascular Research, 2(5), 425-437. https://doi.org/10.1038/s44161-023-00259-1 google scholar
  • Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R., & Abel, E. D. (2021). Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128(10), 1487-1513. https:// doi.org/doi:10.1161/CIRCRESAHA.121.318241 google scholar
  • Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90(1), 207-258. https://doi.org/10.1152/physrev.00015.2009 google scholar
  • Luo, M., Yan, D., Sun, Q., Tao, J., Xu, L., Sun, H., & Zhao, H. (2020). Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/ NLRP3 pathway. Journal of Cellular Biochemistry, 121(4), 2994-3004. https://doi. org/10.1002/jcb.29556 google scholar
  • Luo, X., Xu, Y., Zhong, Z., Xiang, P., Wu, X., & Chong, A. (2022). miR-8485 alleviates the injury of cardiomyocytes through TP53INP1. Journal of Biochemical and Molecular Toxicology, 36(10), e23159. https://doi.org/10.1002/jbt.23159 google scholar
  • Nesterova, V. V., Babenkova, P. I., Brezgunova, A. A., Samoylova, N. A., Sadovnikova, I. S., Semenovich, D. S., Andrianova, N. V., Gureev, A. P., & Plotnikov, E. Y. (2024). Differences in the Effect of Beta-Hydroxybutyrate on the Mitochondrial Biogenesis, Oxidative Stress and Inflammation Markers in Tissues from Young and Old Rats. Biochemistry (Mosc), 89(7), 1336-1348. https://doi.org/10.1134/ s0006297924070149 google scholar
  • Parker, B. A., Walton, C. M., Carr, S. T., Andrus, J. L., Cheung, E. C. K., Duplisea, M. J., Wilson, E. K., Draney, C., Lathen, D. R., Kenner, K. B., Thomson, D. M., Tessem, J. S., & Bikman, B. T. (2018). β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. International Journal of Molecular Sciences, 19(8). https://doi.org/10.3390/ijms19082247 google scholar
  • Qiu, Y., Huang, Y., Chen, M., Yang, Y., Li, X., & Zhang, W. (2022). Mitochondrial DNA in NLRP3 inflammasome activation. International Immunopharmacology, 108, 108719. https://doi.org/https://doi.org/10.1016/j.intimp.2022.108719 google scholar
  • Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., & Xia, Z.-y. (2019). Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes. Journal of Diabetes Research, 2019(1), 8151836. https://doi.org/https://doi.org/10.1155/2019/8151836 google scholar
  • Riley, M., Bell, N., Elborn, J. S., Stanford, C. F., Buchanan, K. D., & Nicholls, D. P. (1993). Metabolic responses to graded exercise in chronic heart failure. European Heart Journal, 14(11), 1484-1488. https://doi.org/10.1093/eurheartj/14.11.1484 google scholar
  • Rogacev, K. S., Cremers, B., Zawada, A. M., Seiler, S., Binder, N., Ege, P., Große-Dunker, G., Heisel, I., Hornof, F., Jeken, J., Rebling, N. M., Ulrich, C., Scheller, B., Böhm, M., Fliser, D., & Heine, G. H. (2012). CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. Journal of the American College of Cardiology, 60(16), 1512-1520. https://doi.org/10.1016/j.jacc.2012.07.019 google scholar
  • Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Ahmed, M., Aksut, B., Alam, T., Alam, K., Alla, F., Alvis-Guzman, N., Amrock, S., Ansari, H., Ärnlöv, J., Asayesh, H., Atey, T. M., Avila-Burgos, L., Awasthi, A., . . . Murray, C. (2017). Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1-25. https://doi.org/10.1016/j.jacc.2017.04.052 google scholar
  • Scarpulla, R. C. (2002). Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et Biophysica Acta, 1576(1-2), 1-14. https://doi.org/ 10.1016/s0167-4781(02)00343-3 google scholar
  • Shen, S., Duan, J., Hu, J., Qi, Y., Kang, L., Wang, K., Chen, J., Wu, X., Xu, B., & Gu, R. (2022). Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. European Journal of Pharmacology, 929, 175126. https://doi.org/10.1016/j.ejphar.2022.175126 google scholar
  • Singhal, A., Morris, V. B., Labhasetwar, V., & Ghorpade, A. (2013). Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death and Disease, 4(11), e903. https://doi.org/10.1038/cddis.2013.362 google scholar
  • Soni, S., Tabatabaei Dakhili, S. A., Ussher, J. R., & Dyck, J. R. B. (2024). The therapeutic potential of ketones in cardiometabolic disease: impact on heart and skeletal muscle. American Journal of Physiology-Cell Physiology, 326(2), C551-c566. https://doi.org/10.1152/ajpcell.00501.2023 google scholar
  • Swirski, F. K., & Nahrendorf, M. (2018). Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews in Immunology, 18(12), 733-744. https://doi.org/10.1038/s41577-018-0065-8 google scholar
  • Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews in Cardiology, 15(4), 203-214. https://doi.org/10.1038/ nrcardio.2017.161 google scholar
  • Williams, J. W., Huang, L.-h., & Randolph, G. J. (2019). Cytokine circuits in cardiovascular disease. Immunity, 50(4), 941-954. google scholar
  • Xiao, J., Qiu, M., Long, M., Zhou, S., Guo, S., Xu, S., & Jiang, H. (2023). Long Non-coding RNA XIST Impedes LPS-induced AC16 Cell Inflammation and Apoptosis through Down-regulating miR-370-3p and Regulating PI3K/AKT/mTOR Pathways. Combinatorial Chemistry & High Throughput Screening. https://doi.org/10.2174/ 1386207326666230213124031 google scholar
  • Xin, H., Li, C., Cai, T., Cao, J., & Wang, M. (2022). LncRNA KCNQ1OT1 contributes to hydrogen peroxide-induced apoptosis, inflammation, and oxidative stress of cardiomyocytes via miR-130a-3p/ZNF791 axis. Cell Biology International, 46(12), 2018-2027. https://doi.org/10.1002/cbin.11873 google scholar
  • Xu, S., Tao, H., Cao, W., Cao, L., Lin, Y., Zhao, S. M., Xu, W., Cao, J., & Zhao, J. Y. (2021). Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduction and Targeted Therapy, 6(1), 54. https://doi.org/10.1038/s 41392-020-00411-4 google scholar
  • Xu, Z., Kombe Kombe, A. J., Deng, S., Zhang, H., Wu, S., Ruan, J., Zhou, Y., & Jin, T. (2024). NLRP inflammasomes in health and disease. Molecular Biomedicine, 5(1), 14. https://doi.org/10.1186/s43556-024-00179-x google scholar
  • Yan, W., Feng, Y., Lei, Z., Kuang, W., & Long, C. (2022). MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B. Folia Biologica (Praha), 68(2), 78-85. google scholar
  • Yang, C., & Wen, K. (2021). Predictive value and regulatory mechanism of serum miR-499a-5p on myocardial dysfunction in sepsis. Journal of Cardiothoracic Surgery, 16(1), 301. https://doi.org/10.1186/s13019-021-01679-5 google scholar
  • Yang, Y., Liang, F., Gao, J., Li, J., Jiang, C., Xie, W., Wu, S., Wang, Y., & Yi, J. (2023). Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway. Cardiovascular Toxicology, 23(11-12), 406-418. https://doi.org/10.1007/s12012-023-09808-3 google scholar
  • Youm, Y. H., Nguyen, K. Y., Grant, R. W., Goldberg, E. L., Bodogai, M., Kim, D., D'Agostino, D., Planavsky, N., Lupfer, C., Kanneganti, T. D., Kang, S., Horvath, T. L., Fahmy, T. M., Crawford, P. A., Biragyn, A., Alnemri, E., & Dixit, V. D. (2015). The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature Medicine, 21(3), 263-269. https://doi.org/10.1038/nm.3804 google scholar
  • Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221-225. https://doi.org/10.1038/ nature09663 google scholar
  • Zhu, H., Wu, J., Li, C., Zeng, Z., He, T., Liu, X., Wang, Q., Hu, X., Lu, Z., & Cai, H. (2023). Transcriptome analysis reveals the mechanism of pyroptosis-related genes in septic cardiomyopathy. PeerJ, 11, e16214. https://doi.org/10.7717/peerj.16214 google scholar

Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes

Year 2025, Volume: 55 Issue: 3, 419 - 426, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1508683
https://izlik.org/JA83PD83JS

Abstract

Background and Aims: Systemic and local inflammation appear to play an important role in the development and progression of cardiovascular disease. A cause of myocardial damage is inflammation, which can be detected by the elevation of certain proteins. Targeting inflammation in cardiovascular disease is therefore an alternative approach to treatment.

Methods: The inflammatory effects of hydrogen peroxide (H₂O₂) were initially investigated using a human cardiomyocyte cell line (AC16). In this context, the optimal inflammatory H₂O₂ concentration (200 μM) was determined through the MTT assay. Then, the cells were incubated with/without H₂O₂ and treated with two different concentrations of beta-hydroxybutyrate (βOHB, 2 mM/10 mM). The protein expression levels of nod-like receptor protein 3 (NLRP3), tumour necrosis factor-α (TNF-α), nuclear factor-κB (NF- κB), and mitochondrial transcription factor A (TFAM) were evaluated via Western blotting to investigate the impact of βOHB treatment on inflammation and mitochondrial function.

Results: The results demonstrated that βOHB at a concentration of 2 mM did not significantly alter the levels of the inflammatory proteins. However, at 10 mM, βOHB significantly reduced the expression levels of NLRP3 and TNF-α. Furthermore, the expression of TFAM was significantly altered only in control cells that had not been exposed to H₂O₂, suggesting a potential effect of βOHB on mitochondrial function under baseline conditions.

Conclusion: βOHB has the potential to prevent the increase in the inflammatory response in a dosedependent manner and may influence mitochondrial function in cardiomyocytes.

References

  • Arbore, G., & Kemper, C. (2016). A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function. European Journal of Immunology, 46(7), 1563-1573. https://doi.org/10.1002/eji.201546131 google scholar
  • Avogaro, A., Nosadini, R., Doria, A., Fioretto, P., Velussi, M., Vigorito, C., Sacca, L., Toffolo, G., Cobelli, C., Trevisan, R., & et al. (1990). Myocardial metabolism in insulindeficient diabetic humans without coronary artery disease. American Journal of Physiology, 258(4 Pt 1), E606-618. https://doi.org/10.1152/ajpendo.1990.258. 4.E606 google scholar
  • Bae, H. R., Kim, D. H., Park, M. H., Lee, B., Kim, M. J., Lee, E. K., Chung, K. W., Kim, S. M., Im, D. S., & Chung, H. Y. (2016). β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 7(41), 66444-66454. https://doi.org/10.18632/oncotarget.12119 google scholar
  • Bae, H. R., Kim, D. H., Park, M. H., Lee, B., Kim, M. J., Lee, E. K., Chung, K. W., Kim, S. M., Im, D. S., & Chung, H. Y. (2016). β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation. Oncotarget, 7(41). https://www.oncotarget.com/article/12119/text/ google scholar
  • Benoist, L., Chadet, S., Genet, T., Lefort, C., Heraud, A., Danila, M. D., Muntean, D. M., Baron, C., Angoulvant, D., Babuty, D., Bourguignon, T., & Ivanes, F. (2019). Stimulation of P2Y11 receptor protects human cardiomyocytes against Hypoxia/ Reoxygenation injury and involves PKCε signaling pathway. Scientific Reports, 9(1), 11613. https://doi.org/10.1038/s41598-019-48006-6 google scholar
  • Billingham, L. K., Stoolman, J. S., Vasan, K., Rodriguez, A. E., Poor, T. A., Szibor, M., Jacobs, H. T., Reczek, C. R., Rashidi, A., Zhang, P., Miska, J., & Chandel, N. S. (2022). Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nature Immunology, 23(5), 692-704. https://doi.org/10.1038/s41590-022-01185-3 google scholar
  • Bracamonte-Baran, W., & Čiháková, D. (2017). Cardiac Autoimmunity: Myocarditis. Advances in Experimental Medicine and Biology, 1003, 187-221. https://doi.org/ 10.1007/978-3-319-57613-8_10 google scholar
  • Broz, P., & Dixit, V. M. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews in Immunology, 16(7), 407-420. https://doi.org/10. 1038/nri.2016.58 google scholar
  • Cahill, G. F., Jr. (2006). Fuel metabolism in starvation. Annual Review of Nutrition, 26, 1-22. https://doi.org/10.1146/annurev.nutr.26.061505.111258 google scholar
  • Cotter, D. G., Schugar, R. C., & Crawford, P. A. (2013). Ketone body metabolism and cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology, 304(8), H1060-1076. https://doi.org/10.1152/ajpheart.00646.2012 google scholar
  • Deng, Y., Xie, M., Li, Q., Xu, X., Ou, W., Zhang, Y., Xiao, H., Yu, H., Zheng, Y., Liang, Y., Jiang, C., Chen, G., Du, D., Zheng, W., Wang, S., Gong, M., Chen, Y., Tian, R., & Li, T. (2021). Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF. Circulation Research, 128(2), 232-245. https://doi.org/10.1161/circresaha. 120.317933 google scholar
  • Duncan, J. G., Fong, J. L., Medeiros, D. M., Finck, B. N., & Kelly, D. P. (2007). Insulinresistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation, 115(7), 909-917. https://doi.org/10.1161/circulationaha.106. 662296 google scholar
  • Dyńka, D., Kowalcze, K., Charuta, A., & Paziewska, A. (2023). The Ketogenic Diet and Cardiovascular Diseases. Nutrients, 15(15). https://doi.org/10.3390/nu15153368 google scholar
  • Güven, B., Sun, Q., Wagg, C. S., Almeida de Oliveira, A., Silver, H., Persad, K. L., Onay-Besikci, A., Vu, J., Oudit, G. Y., & Lopaschuk, G. D. (2024). Obesity Is a Major Determinant of Impaired Cardiac Energy Metabolism in Heart Failure with Preserved Ejection Fraction. Journal of Pharmacology and Experimental Therapeutics, 388(1), 145-155. https://doi.org/10.1124/jpet.123.001791 google scholar
  • Hasan-Olive, M. M., Lauritzen, K. H., Ali, M., Rasmussen, L. J., Storm-Mathisen, J., & Bergersen, L. H. (2019). A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1α-SIRT3-UCP2 Axis. Neurochemical Research, 44(1), 22-37. https://doi.org/10.1007/s11064-018-2588-6 google scholar
  • Henein, M. Y., Vancheri, S., Longo, G., & Vancheri, F. (2022). The Role of Inflammation in Cardiovascular Disease. International Journal of Molecular Sciences, 23(21), 12906. https://www.mdpi.com/1422-0067/23/21/12906 google scholar
  • Huang, L., Guo, B., Yan, J., Wei, H., Liu, S., & Li, Y. (2023). CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chaperones, 28(2), 177-190. https://doi.org/10.1007/s12192-023-01328-x google scholar
  • Janardhan, A., Chen, J., & Crawford, P. A. (2011). Altered systemic ketone body metabolism in advanced heart failure. Texas Heart Institute Journal, 38(5), 533-538. google scholar
  • Ji, L., He, Q., Liu, Y., Deng, Y., Xie, M., Luo, K., Cai, X., Zuo, Y., Wu, W., Li, Q., Zhou, R., & Li, T. (2022). Ketone Body β-Hydroxybutyrate Prevents Myocardial Oxidative Stress in Septic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 2513837. https://doi.org/10.1155/2022/2513837 google scholar
  • Kim, D. H., Park, M. H., Ha, S., Bang, E. J., Lee, Y., Lee, A. K., Lee, J., Yu, B. P., & Chung, H. Y. (2019). Anti-inflammatory action of β-hydroxybutyrate via modulation of PGC-1α and FoxO1, mimicking calorie restriction. Aging (Albany NY), 11(4), 1283-1304. https://doi.org/10.18632/aging.101838 google scholar
  • Kong, G., Liu, J., Li, R., Lin, J., Huang, Z., Yang, Z., Wu, X., Huang, Z., Zhu, Q., & Wu, X. (2021). Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochemical Research, 46(2), 213-229. https://doi.org/10.1007/s11064-020-03156-2 google scholar
  • Li, L. C., Wang, Z. W., Hu, X. P., Wu, Z. Y., Hu, Z. P., & Ruan, Y. L. (2017). MDG‑1 inhibits H2O2‑induced apoptosis and inflammation in human umbilical vein endothelial cells. Molecular Medicine Reports, 16(3), 3673-3679. https://doi.org/10.3892/ mmr.2017.6957 google scholar
  • Li, Q., Deng, G., & Gao, Y. (2022). S100 calcium-binding protein A12 knockdown ameliorates hypoxia-reoxygenation-induced inflammation and apoptosis in human google scholar cardiomyocytes by regulating caspase-4-mediated non-classical pyroptosis. General Physiology and Biophysics, 41(4), 287-297. https://doi.org/10.4149/gpb_ 2022018 google scholar
  • Libby, P. (2006). Inflammation and cardiovascular disease mechanisms. The American Journal of Clinical Nutrition, 83(2), 456s-460s. https://doi.org/10.1093/ajcn/83. 2.456S google scholar
  • Libby, P. (2021). Inflammation during the life cycle of the atherosclerotic plaque. Cardiovascular Research, 117(13), 2525-2536. https://doi.org/10.1093/cvr/cvab303 google scholar
  • Lommi, J., Kupari, M., Koskinen, P., Näveri, H., Leinonen, H., Pulkki, K., & Härkönen, M. (1996). Blood ketone bodies in congestive heart failure. Journal of the American College of Cardiology, 28(3), 665-672. https://doi.org/10.1016/0735-1097(96)00214-8 google scholar
  • Lopaschuk, G. D., & Dyck, J. R. B. (2023). Ketones and the cardiovascular system. Nature Cardiovascular Research, 2(5), 425-437. https://doi.org/10.1038/s44161-023-00259-1 google scholar
  • Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R., & Abel, E. D. (2021). Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128(10), 1487-1513. https:// doi.org/doi:10.1161/CIRCRESAHA.121.318241 google scholar
  • Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90(1), 207-258. https://doi.org/10.1152/physrev.00015.2009 google scholar
  • Luo, M., Yan, D., Sun, Q., Tao, J., Xu, L., Sun, H., & Zhao, H. (2020). Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/ NLRP3 pathway. Journal of Cellular Biochemistry, 121(4), 2994-3004. https://doi. org/10.1002/jcb.29556 google scholar
  • Luo, X., Xu, Y., Zhong, Z., Xiang, P., Wu, X., & Chong, A. (2022). miR-8485 alleviates the injury of cardiomyocytes through TP53INP1. Journal of Biochemical and Molecular Toxicology, 36(10), e23159. https://doi.org/10.1002/jbt.23159 google scholar
  • Nesterova, V. V., Babenkova, P. I., Brezgunova, A. A., Samoylova, N. A., Sadovnikova, I. S., Semenovich, D. S., Andrianova, N. V., Gureev, A. P., & Plotnikov, E. Y. (2024). Differences in the Effect of Beta-Hydroxybutyrate on the Mitochondrial Biogenesis, Oxidative Stress and Inflammation Markers in Tissues from Young and Old Rats. Biochemistry (Mosc), 89(7), 1336-1348. https://doi.org/10.1134/ s0006297924070149 google scholar
  • Parker, B. A., Walton, C. M., Carr, S. T., Andrus, J. L., Cheung, E. C. K., Duplisea, M. J., Wilson, E. K., Draney, C., Lathen, D. R., Kenner, K. B., Thomson, D. M., Tessem, J. S., & Bikman, B. T. (2018). β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. International Journal of Molecular Sciences, 19(8). https://doi.org/10.3390/ijms19082247 google scholar
  • Qiu, Y., Huang, Y., Chen, M., Yang, Y., Li, X., & Zhang, W. (2022). Mitochondrial DNA in NLRP3 inflammasome activation. International Immunopharmacology, 108, 108719. https://doi.org/https://doi.org/10.1016/j.intimp.2022.108719 google scholar
  • Qiu, Z., He, Y., Ming, H., Lei, S., Leng, Y., & Xia, Z.-y. (2019). Lipopolysaccharide (LPS) Aggravates High Glucose- and Hypoxia/Reoxygenation-Induced Injury through Activating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis in H9C2 Cardiomyocytes. Journal of Diabetes Research, 2019(1), 8151836. https://doi.org/https://doi.org/10.1155/2019/8151836 google scholar
  • Riley, M., Bell, N., Elborn, J. S., Stanford, C. F., Buchanan, K. D., & Nicholls, D. P. (1993). Metabolic responses to graded exercise in chronic heart failure. European Heart Journal, 14(11), 1484-1488. https://doi.org/10.1093/eurheartj/14.11.1484 google scholar
  • Rogacev, K. S., Cremers, B., Zawada, A. M., Seiler, S., Binder, N., Ege, P., Große-Dunker, G., Heisel, I., Hornof, F., Jeken, J., Rebling, N. M., Ulrich, C., Scheller, B., Böhm, M., Fliser, D., & Heine, G. H. (2012). CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. Journal of the American College of Cardiology, 60(16), 1512-1520. https://doi.org/10.1016/j.jacc.2012.07.019 google scholar
  • Roth, G. A., Johnson, C., Abajobir, A., Abd-Allah, F., Abera, S. F., Abyu, G., Ahmed, M., Aksut, B., Alam, T., Alam, K., Alla, F., Alvis-Guzman, N., Amrock, S., Ansari, H., Ärnlöv, J., Asayesh, H., Atey, T. M., Avila-Burgos, L., Awasthi, A., . . . Murray, C. (2017). Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. Journal of the American College of Cardiology, 70(1), 1-25. https://doi.org/10.1016/j.jacc.2017.04.052 google scholar
  • Scarpulla, R. C. (2002). Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et Biophysica Acta, 1576(1-2), 1-14. https://doi.org/ 10.1016/s0167-4781(02)00343-3 google scholar
  • Shen, S., Duan, J., Hu, J., Qi, Y., Kang, L., Wang, K., Chen, J., Wu, X., Xu, B., & Gu, R. (2022). Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. European Journal of Pharmacology, 929, 175126. https://doi.org/10.1016/j.ejphar.2022.175126 google scholar
  • Singhal, A., Morris, V. B., Labhasetwar, V., & Ghorpade, A. (2013). Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death and Disease, 4(11), e903. https://doi.org/10.1038/cddis.2013.362 google scholar
  • Soni, S., Tabatabaei Dakhili, S. A., Ussher, J. R., & Dyck, J. R. B. (2024). The therapeutic potential of ketones in cardiometabolic disease: impact on heart and skeletal muscle. American Journal of Physiology-Cell Physiology, 326(2), C551-c566. https://doi.org/10.1152/ajpcell.00501.2023 google scholar
  • Swirski, F. K., & Nahrendorf, M. (2018). Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews in Immunology, 18(12), 733-744. https://doi.org/10.1038/s41577-018-0065-8 google scholar
  • Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews in Cardiology, 15(4), 203-214. https://doi.org/10.1038/ nrcardio.2017.161 google scholar
  • Williams, J. W., Huang, L.-h., & Randolph, G. J. (2019). Cytokine circuits in cardiovascular disease. Immunity, 50(4), 941-954. google scholar
  • Xiao, J., Qiu, M., Long, M., Zhou, S., Guo, S., Xu, S., & Jiang, H. (2023). Long Non-coding RNA XIST Impedes LPS-induced AC16 Cell Inflammation and Apoptosis through Down-regulating miR-370-3p and Regulating PI3K/AKT/mTOR Pathways. Combinatorial Chemistry & High Throughput Screening. https://doi.org/10.2174/ 1386207326666230213124031 google scholar
  • Xin, H., Li, C., Cai, T., Cao, J., & Wang, M. (2022). LncRNA KCNQ1OT1 contributes to hydrogen peroxide-induced apoptosis, inflammation, and oxidative stress of cardiomyocytes via miR-130a-3p/ZNF791 axis. Cell Biology International, 46(12), 2018-2027. https://doi.org/10.1002/cbin.11873 google scholar
  • Xu, S., Tao, H., Cao, W., Cao, L., Lin, Y., Zhao, S. M., Xu, W., Cao, J., & Zhao, J. Y. (2021). Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduction and Targeted Therapy, 6(1), 54. https://doi.org/10.1038/s 41392-020-00411-4 google scholar
  • Xu, Z., Kombe Kombe, A. J., Deng, S., Zhang, H., Wu, S., Ruan, J., Zhou, Y., & Jin, T. (2024). NLRP inflammasomes in health and disease. Molecular Biomedicine, 5(1), 14. https://doi.org/10.1186/s43556-024-00179-x google scholar
  • Yan, W., Feng, Y., Lei, Z., Kuang, W., & Long, C. (2022). MicroRNA-214-3p Ameliorates LPS-Induced Cardiomyocyte Injury by Inhibiting Cathepsin B. Folia Biologica (Praha), 68(2), 78-85. google scholar
  • Yang, C., & Wen, K. (2021). Predictive value and regulatory mechanism of serum miR-499a-5p on myocardial dysfunction in sepsis. Journal of Cardiothoracic Surgery, 16(1), 301. https://doi.org/10.1186/s13019-021-01679-5 google scholar
  • Yang, Y., Liang, F., Gao, J., Li, J., Jiang, C., Xie, W., Wu, S., Wang, Y., & Yi, J. (2023). Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway. Cardiovascular Toxicology, 23(11-12), 406-418. https://doi.org/10.1007/s12012-023-09808-3 google scholar
  • Youm, Y. H., Nguyen, K. Y., Grant, R. W., Goldberg, E. L., Bodogai, M., Kim, D., D'Agostino, D., Planavsky, N., Lupfer, C., Kanneganti, T. D., Kang, S., Horvath, T. L., Fahmy, T. M., Crawford, P. A., Biragyn, A., Alnemri, E., & Dixit, V. D. (2015). The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature Medicine, 21(3), 263-269. https://doi.org/10.1038/nm.3804 google scholar
  • Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221-225. https://doi.org/10.1038/ nature09663 google scholar
  • Zhu, H., Wu, J., Li, C., Zeng, Z., He, T., Liu, X., Wang, Q., Hu, X., Lu, Z., & Cai, H. (2023). Transcriptome analysis reveals the mechanism of pyroptosis-related genes in septic cardiomyopathy. PeerJ, 11, e16214. https://doi.org/10.7717/peerj.16214 google scholar
There are 55 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Research Article
Authors

Berna Güven 0000-0001-9181-3741

Submission Date July 1, 2024
Acceptance Date May 15, 2025
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1508683
IZ https://izlik.org/JA83PD83JS
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Güven, B. (2026). Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes. İstanbul Journal of Pharmacy, 55(3), 419-426. https://doi.org/10.26650/IstanbulJPharm.2025.1508683
AMA 1.Güven B. Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes. iujp. 2026;55(3):419-426. doi:10.26650/IstanbulJPharm.2025.1508683
Chicago Güven, Berna. 2026. “Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes”. İstanbul Journal of Pharmacy 55 (3): 419-26. https://doi.org/10.26650/IstanbulJPharm.2025.1508683.
EndNote Güven B (January 1, 2026) Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes. İstanbul Journal of Pharmacy 55 3 419–426.
IEEE [1]B. Güven, “Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes”, iujp, vol. 55, no. 3, pp. 419–426, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1508683.
ISNAD Güven, Berna. “Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 419-426. https://doi.org/10.26650/IstanbulJPharm.2025.1508683.
JAMA 1.Güven B. Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes. iujp. 2026;55:419–426.
MLA Güven, Berna. “Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 419-26, doi:10.26650/IstanbulJPharm.2025.1508683.
Vancouver 1.Güven B. Effects of Beta-Hydroxybutyrate on H₂O₂-Induced Inflammation in AC16 Cardiomyocytes. iujp [Internet]. 2026 Jan. 1;55(3):419-26. Available from: https://izlik.org/JA83PD83JS