Research Article
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 3, 378 - 389, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1564271
https://izlik.org/JA48UC79MY

Abstract

References

  • Alhalaweh, A., George, S., Basavoju, S., Childs, S. L., Syed, A. A. R., & Velega, S. P. (2012). Pharmaceutical cocrystals of nitrofurantoin: screening characterization and crystal structure analysis. Crystal Engineering Communications, 14, 5078-5088. http://dx.doi/10.1039/C2CE06602E google scholar 
  • Ali, S. F., Fathima, A. F., & Panda, N. (2022). Formulation and evaluation of apremilast co-crystals loaded in gel. International Journal of Pharmaceutical Sciences Review and Research, 72, 59-65. http://dx.doi/10.47583/ijpsrr.2022.v72i02.009 google scholar 
  • Ammanage, A., Rodriques, P., Kempwade, A., & Hiremath, R. (2020). Formulation and evaluation of buccal films of piroxicam co-crystals. Future Journal of Pharma-ceutical Sciences, 6, 1-11. http://dx.doi/10.1186/s43094-020-00033-1 google scholar 
  • Barends, D., Dressman, J., Hubbard, J., Junginger, H., Patnaik, R., Polli, J., & Stavchan-sky, S. (2005). Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability draft revision. WHO, Technical Report Series, 937, 17-19. google scholar 
  • Begum, R., Sultan, M. Z., Chowdhury, J. A., & Amran. M. S. (2019). In vitro pharmaceutical equivalence study of three brands of atenolol tablets available in Bangladesh. Dhaka University Journal of Pharmaceutical Sciences. Dhaka University Jour-nal of Pharmaceutical Sciences, 18, 43-48. http://dx.doi/10.3329/dujps.v18i1. 41426 google scholar 
  • British Pharmacopoeia, B. P. (2012). Volume I and II: Her Majesty’s Stationery Office (pp. 2593-2594). London, UK. Cambridge University Press. google scholar 
  • Budiman, A., Husni, P., Shafira, & Tazyinul, Q. A. (2019). The development of gliben-clamide-saccharin cocrystal tablet formulations to increase the dissolution rate of the drug. International Journal of Applied Pharmaceutics, 11, 359-364. http://dx.doi/10.22159/ijap.2019v11i4.33802 google scholar 
  • Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica- Drug Research, 67, 217-223. google scholar 
  • Fatimah, S. F., Novarida, R., Nurani, L. H., & Edityaningrum, C. A. (2021). Optimization formulation of spirulina platensis chewable tablet advances in social science. Advances in Social Science, Education and Humanities Research, 547, 104-110. google scholar 
  • Guo, M., Sun, X., Chen, J., & Cai, T. (2021). Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharmaceu-tica Sinica B, 11, 2537-2564. http://dx.doi/10.1016/j.apsb.2021.03.030 google scholar 
  • Huang, Y., Zhou, L., Yang, W., Li, Y., Yang, Y., Zhang, Z., … Yin, Q. (2019). Preparation of theophylline-benzoic acid cocrystal and on-line monitoring of co-crystal-lization process in solution by Raman spectroscopy. Crystals, 9, 2-13. http://dx. doi/10.3390/Cryst9070329google scholar 
  • Jain, H., Khomane, K. S., & Bansal, A. K. (2014). Implication of microstructure on the mechanical behaviour of an aspirin–paracetamol eutectic mixture. Crystal Engineering Communications, 16, 8471-8478. http://dx.doi/10.1039/C4CE00878B google scholar 
  • Khanfar, M. A. L., Taani, B., & Mohammad, E. (2019). Enhancement of dissolution and stability of candesartan cilexetil–loaded silica polymers. International Journal of Applied Pharmaceutics, 11, 64-70. http://dx.doi/10.22159/ijap.2019v11i2.30411 google scholar 
  • Kharb, M., Jalwal, P., Rathi, S., & Kumar, S. (2022). Formulation, characterization and evaluation of docetaxel cocrystals fast release tablets for treatment of cancer. Journal of Pharmaceutical Negative Results, 13, 795 −809. google scholar 
  • Koranne, S., Krzyzaniak, J. F., Luthra, S., Arora, K. K., & Suryanarayanan, R. (2019). Role of coformer and excipient properties on the solid-state stability of theophylline cocrystals. Crystal Growth & Design, 19, 868-875. http://dx.doi/10.1021/acs.cgd. 8b01430 google scholar 
  • Kulkarni, A., Bachhav, R., Hol, V., & Shete, S. (2020). Co-crystals of active pharmaceuti-cal ingredient-ibuprofen lysine. International Journal of Applied Pharmaceu-tics, 12, 22-32. http://dx.doi/10.22159/ijap.2020v12i3.36463 google scholar 
  • Kumar, B. R., Rout, S. R., Kenguva, G., Gorain, B., Alhakamy, N. A., Kesharwani, P., & Dandela, R. (2021). Recent advances in pharmaceutical cocrystals: From bench to market. Frontiers in Pharmacology, 12, 780582. http://dx.doi/10.3389/fphar. 2021.780582google scholar 
  • Lefnaoui, S., & Moulai-Mostefa, N. (2015). Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pre-gelatinized starch as a pharmaceutical excipient. Saudi Pharmaceutical Journal, 23, 698-711. http:// dx.doi/10.1016/j.jsps.2015.01.021 google scholar 
  • LeMaire, P. C. K., & LeMaire P. K. (2022). Thermal studies of commercial low-calorie sweeteners. American Journal of Analytical Chemistry, 13, 346-364. http://dx. doi/10.4236/ajac.2022.139024 google scholar 
  • Manin, A. N., Voronin, A. P., Drozd, K. V., Manin, N. G., Bauer-Brandl, A., Perlovich, G. L. (2014). Cocrystal screening of hydroxybenzamides with benzoic acid deriva-tives: A comparative study of thermal and solution-based methods. European Journal of Pharmaceutical Sciences, 65, 56–64. http://dx.doi/10.1016/j.ejps. 2014.09.003 google scholar 
  • Mannava, M. K. C., Dandela, R., Tothadi, S., Solomon, K. A., & Nangia, A. K. (2020). Naftopidil molecular salts with improved dissolution and permeation. Crystal Growth & Design, 20, 3064-3076. http://dx.doi/10.1021/ACS.CGD.9B01689 google scholar 
  • Markl, D., & Zeitler, J. A. (2017). A review of disintegration mechanisms and measure-ment techniques. Pharmaceutical Research, 34, 890-917. http://dx.doi/10.1007/ s11095-017-2129-z google scholar 
  • Mora, P. C., Cirri, M., & Mura, P. (2006). Differential scanning calorimetry as a screening technique in compatibility studies of DHEA extended-release formulations. Journal of Pharmaceutical and Biomedical Analysis, 42, 3-10. http://dx.doi/10. 1016/j.jpba.2006.02.038 google scholar 
  • Ngilirabanga, J. B., & Samsodien, H. (2021). Pharmaceutical co-crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Select (Wiley), 2, 512-526. http://dx.doi/10.1002/nano.202000201 google scholar 
  • Odeku, O. A., & Itiola, O. A. (2003). Effects of interacting variables on the tensile strength and the release properties of paracetamol tablets. Tropical Journal of Pharmaceutical Research, 2, 147-153. http://dx.doi/10.431/tjpr.v2i1.14579 google scholar 
  • Panzade, P., Shendarkar, G., Shaikh, S., & Rathi, P. B. (2017). Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Advanced Pharmaceutical Bulletin, 7, 399-408. http://dx.doi/10.15171/apb.2017.048 google scholar 
  • Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceu-tical cocrystals: an overview. International Journal of Pharmaceutics, 419, 1-11. http://dx.doi/10.1016/j.ijpharm.2011.07.037 google scholar 
  • Quodbach, J., Moussavi, A., Tammer, R., Frahm, J., & Kleinebudde, P. (2014). Tablet dis-integration studied by high-resolution real-time magnetic resonance imaging. Journal of Pharmaceutical Sciences, 103, 249-255. http://dx.doi/10.1002/jps. 23789 google scholar 
  • Sahoo, R. N., Satapathy, B. S., Mallick. (2021). Improved dissolution of ibuprofen after crystallization from polymeric solution: Correlation with crystal parameter. Journal of the Serbian Chemical Society, 86, 571–584. http://dx.doi/10.2298/JSC 201209021Ngoogle scholar 
  • Salas-Zúñiga, R., Rodríguez-Ruiz, C., Morales-Rojas, H., Höpfl, H., Sánchez-Guadar-rama, O., Rodríguez-Cuamatzi, P., & Herrera-Ruiz, D. (2020). Dissolution advantage of nitazoxanide cocrystals in the presence of cellulosic polymers. Pharmaceutics, 12, 1-18. http://dx.doi/10.3390/pharmaceutics12010023 google scholar 
  • Shi, K., & Li, M. (2023). Optimisation of pharmaceutical cocrystal dissolution performance through a synergistic precipitation inhibition. Pharmaceutical Research, 40, 2051–2069. http://dx.doi/10/1007.s11095-023-03532x google scholar 
  • Siepmann, J., Streubel, A., & Peppas, N. A. (2002). Understanding and predicting drug delivery from hydrophilic matrix tablets using the sequential layer model. Pharmaceutical Research, 19, 306-314. http://dx.doi/10.1023/a:1014447102710 google scholar 
  • Surov, A. O., Ramazanova, A. G., Voronin, A. P., Drozd, K. V., Churakov, A. V., Perlovich, G. L. (2023). Virtual screening, structural analysis, and formation thermodynamics of carbamazepine cocrystals. Pharmaceutics, 15, 836. http://dx.doi/10.3390/pharmaceutics15030836 google scholar 
  • Todaro, V., & Healy, A. M. (2021). Development and characterization of ibuprofen co-crystals granules prepared via fluidized bed granulation in a one-step process - a design of experiment approach. Drug Development and Industrial Pharmacy, 47, 292-301. http://dx.doi/10.1080/03639045.2021.1879836 google scholar 
  • Trivedi, H., Borkar, D., & Puranik, P. (2020). Experimental design approach for devel-opment of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. Journal of Research in Pharmacy, 24, 720-737. http://dx.doi/10.35333/jrp.2020.226 google scholar 
  • Umar, S., Bandaro, N. P., Anggraini, D., Zaini, E. (2021). Multicomponent crystal of fenofibric acid- saccharin: characterization and antihyperlipidemic effective-ness. Advances in Health Sciences Research, 40, 104 −109. http://dx.doi/10. 22159/ijap.2023.v15s1.47514google scholar 
  • United States Food and Drug Administration, USFDA. (1997). Center for Drug Evaluation and Research, Guidance for industry: Dissolution testing of imme-diate release solid oral dosage forms https://www.gmp-compliance.org/files/guidemgr/1713bp1.pdf Accessed February 9, 2023google scholar 
  • United States Pharmacopoeia, U. S. P. (2015). National Formulary, USP 38/NF 33, United States Pharmacopoeia Convention. Rockville, MD, USA.google scholar 
  • Yang, X., Yang, C., & Qiao, N. (2022). Effects of polyvinylpyrrolidone and poly (ethylene glycol) on preparation of ibuprofen pharmaceutical cocrystal. Brazilian Jour-nal of Pharmaceutical Sciences, 58, 1-14. http://dx.doi/10.1590/s2175-97902022 e18768 google scholar 
  • Zaky, M. F., Essa, E. A., Bosela, A. A., & El Maghraby, G. M. (2018). Co-crystallization for enhanced dissolution rate of flutamide. European Journal of Biomedical and Pharmaceutical Sciences, 5, 12-20. google scholar 
  • Zalte, A. G., Bhaskar, D. A., Bhaskar, G. S., & Bhanudas, S. R. (2014). Preparation and characterization of ibuprofen cocrystals by using solvent drop grinding method. World Journal of Pharmacy Research, 3, 1392-1402. google scholar

Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique

Year 2025, Volume: 55 Issue: 3, 378 - 389, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1564271
https://izlik.org/JA48UC79MY

Abstract

Background and Aims: Co-crystallization technique greatly impacts the solubility and dissolution of drugs such as ibuprofen. In this study, we aimed to evaluate the effect of different coformers in improving the solubility and dissolution of ibuprofen.

Methods: Preparation was by the solvent evaporation method using benzoic acid, saccharin, and aerosil as coformers in a stoichiometric ratio of 1:1 (drug:coformer). The resulting products prepared with benzoic acid as conformer (IBA), those prepared with saccharin as coformer (ISA) and the ones prepared with aerosil as coformer (IAR) were evaluated for flow properties and saturated solubility. Fourier Transform InfraRed (FT-IR) and differential scanning calorimetry (DSC) studies were also carried out. The co-crystals were compacted into tablets (CT1, CT2, and CT3) and evaluated for uniformity of weight, tablet hardness, friability, disintegration time, and in vitro dissolution.

Results: IBA exhibited superior solubility over all other batches, and it also gave the highest drug content (56.73 %). FT-IR showed no interaction and DSC thermograms revealed a decrease in the peak melting temperature of all co-crystals. All the co-crystal preparations had poor flow and poor compressibility. The tablet hardness was between 4.5 and 5.0 kgF, and the friability range was 0.51-1.22 % with CT3 being the most friable. CT1 disintegrated fastest, while CT2 had the longest disintegration time. All co-crystal tablets had higher dissolution rates than the pure ibuprofen tablet formulation in the order CT1>CT3>CT2. The mechanism of release was by non-fickian diffusion, and statistical evaluation showed the dissolution profiles of the co-crystal tablet formulations to be significantly different from that of the pure ibuprofen formulation.

References

  • Alhalaweh, A., George, S., Basavoju, S., Childs, S. L., Syed, A. A. R., & Velega, S. P. (2012). Pharmaceutical cocrystals of nitrofurantoin: screening characterization and crystal structure analysis. Crystal Engineering Communications, 14, 5078-5088. http://dx.doi/10.1039/C2CE06602E google scholar 
  • Ali, S. F., Fathima, A. F., & Panda, N. (2022). Formulation and evaluation of apremilast co-crystals loaded in gel. International Journal of Pharmaceutical Sciences Review and Research, 72, 59-65. http://dx.doi/10.47583/ijpsrr.2022.v72i02.009 google scholar 
  • Ammanage, A., Rodriques, P., Kempwade, A., & Hiremath, R. (2020). Formulation and evaluation of buccal films of piroxicam co-crystals. Future Journal of Pharma-ceutical Sciences, 6, 1-11. http://dx.doi/10.1186/s43094-020-00033-1 google scholar 
  • Barends, D., Dressman, J., Hubbard, J., Junginger, H., Patnaik, R., Polli, J., & Stavchan-sky, S. (2005). Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability draft revision. WHO, Technical Report Series, 937, 17-19. google scholar 
  • Begum, R., Sultan, M. Z., Chowdhury, J. A., & Amran. M. S. (2019). In vitro pharmaceutical equivalence study of three brands of atenolol tablets available in Bangladesh. Dhaka University Journal of Pharmaceutical Sciences. Dhaka University Jour-nal of Pharmaceutical Sciences, 18, 43-48. http://dx.doi/10.3329/dujps.v18i1. 41426 google scholar 
  • British Pharmacopoeia, B. P. (2012). Volume I and II: Her Majesty’s Stationery Office (pp. 2593-2594). London, UK. Cambridge University Press. google scholar 
  • Budiman, A., Husni, P., Shafira, & Tazyinul, Q. A. (2019). The development of gliben-clamide-saccharin cocrystal tablet formulations to increase the dissolution rate of the drug. International Journal of Applied Pharmaceutics, 11, 359-364. http://dx.doi/10.22159/ijap.2019v11i4.33802 google scholar 
  • Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica- Drug Research, 67, 217-223. google scholar 
  • Fatimah, S. F., Novarida, R., Nurani, L. H., & Edityaningrum, C. A. (2021). Optimization formulation of spirulina platensis chewable tablet advances in social science. Advances in Social Science, Education and Humanities Research, 547, 104-110. google scholar 
  • Guo, M., Sun, X., Chen, J., & Cai, T. (2021). Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharmaceu-tica Sinica B, 11, 2537-2564. http://dx.doi/10.1016/j.apsb.2021.03.030 google scholar 
  • Huang, Y., Zhou, L., Yang, W., Li, Y., Yang, Y., Zhang, Z., … Yin, Q. (2019). Preparation of theophylline-benzoic acid cocrystal and on-line monitoring of co-crystal-lization process in solution by Raman spectroscopy. Crystals, 9, 2-13. http://dx. doi/10.3390/Cryst9070329google scholar 
  • Jain, H., Khomane, K. S., & Bansal, A. K. (2014). Implication of microstructure on the mechanical behaviour of an aspirin–paracetamol eutectic mixture. Crystal Engineering Communications, 16, 8471-8478. http://dx.doi/10.1039/C4CE00878B google scholar 
  • Khanfar, M. A. L., Taani, B., & Mohammad, E. (2019). Enhancement of dissolution and stability of candesartan cilexetil–loaded silica polymers. International Journal of Applied Pharmaceutics, 11, 64-70. http://dx.doi/10.22159/ijap.2019v11i2.30411 google scholar 
  • Kharb, M., Jalwal, P., Rathi, S., & Kumar, S. (2022). Formulation, characterization and evaluation of docetaxel cocrystals fast release tablets for treatment of cancer. Journal of Pharmaceutical Negative Results, 13, 795 −809. google scholar 
  • Koranne, S., Krzyzaniak, J. F., Luthra, S., Arora, K. K., & Suryanarayanan, R. (2019). Role of coformer and excipient properties on the solid-state stability of theophylline cocrystals. Crystal Growth & Design, 19, 868-875. http://dx.doi/10.1021/acs.cgd. 8b01430 google scholar 
  • Kulkarni, A., Bachhav, R., Hol, V., & Shete, S. (2020). Co-crystals of active pharmaceuti-cal ingredient-ibuprofen lysine. International Journal of Applied Pharmaceu-tics, 12, 22-32. http://dx.doi/10.22159/ijap.2020v12i3.36463 google scholar 
  • Kumar, B. R., Rout, S. R., Kenguva, G., Gorain, B., Alhakamy, N. A., Kesharwani, P., & Dandela, R. (2021). Recent advances in pharmaceutical cocrystals: From bench to market. Frontiers in Pharmacology, 12, 780582. http://dx.doi/10.3389/fphar. 2021.780582google scholar 
  • Lefnaoui, S., & Moulai-Mostefa, N. (2015). Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pre-gelatinized starch as a pharmaceutical excipient. Saudi Pharmaceutical Journal, 23, 698-711. http:// dx.doi/10.1016/j.jsps.2015.01.021 google scholar 
  • LeMaire, P. C. K., & LeMaire P. K. (2022). Thermal studies of commercial low-calorie sweeteners. American Journal of Analytical Chemistry, 13, 346-364. http://dx. doi/10.4236/ajac.2022.139024 google scholar 
  • Manin, A. N., Voronin, A. P., Drozd, K. V., Manin, N. G., Bauer-Brandl, A., Perlovich, G. L. (2014). Cocrystal screening of hydroxybenzamides with benzoic acid deriva-tives: A comparative study of thermal and solution-based methods. European Journal of Pharmaceutical Sciences, 65, 56–64. http://dx.doi/10.1016/j.ejps. 2014.09.003 google scholar 
  • Mannava, M. K. C., Dandela, R., Tothadi, S., Solomon, K. A., & Nangia, A. K. (2020). Naftopidil molecular salts with improved dissolution and permeation. Crystal Growth & Design, 20, 3064-3076. http://dx.doi/10.1021/ACS.CGD.9B01689 google scholar 
  • Markl, D., & Zeitler, J. A. (2017). A review of disintegration mechanisms and measure-ment techniques. Pharmaceutical Research, 34, 890-917. http://dx.doi/10.1007/ s11095-017-2129-z google scholar 
  • Mora, P. C., Cirri, M., & Mura, P. (2006). Differential scanning calorimetry as a screening technique in compatibility studies of DHEA extended-release formulations. Journal of Pharmaceutical and Biomedical Analysis, 42, 3-10. http://dx.doi/10. 1016/j.jpba.2006.02.038 google scholar 
  • Ngilirabanga, J. B., & Samsodien, H. (2021). Pharmaceutical co-crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. Nano Select (Wiley), 2, 512-526. http://dx.doi/10.1002/nano.202000201 google scholar 
  • Odeku, O. A., & Itiola, O. A. (2003). Effects of interacting variables on the tensile strength and the release properties of paracetamol tablets. Tropical Journal of Pharmaceutical Research, 2, 147-153. http://dx.doi/10.431/tjpr.v2i1.14579 google scholar 
  • Panzade, P., Shendarkar, G., Shaikh, S., & Rathi, P. B. (2017). Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Advanced Pharmaceutical Bulletin, 7, 399-408. http://dx.doi/10.15171/apb.2017.048 google scholar 
  • Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., & Trappitt, G. (2011). Pharmaceu-tical cocrystals: an overview. International Journal of Pharmaceutics, 419, 1-11. http://dx.doi/10.1016/j.ijpharm.2011.07.037 google scholar 
  • Quodbach, J., Moussavi, A., Tammer, R., Frahm, J., & Kleinebudde, P. (2014). Tablet dis-integration studied by high-resolution real-time magnetic resonance imaging. Journal of Pharmaceutical Sciences, 103, 249-255. http://dx.doi/10.1002/jps. 23789 google scholar 
  • Sahoo, R. N., Satapathy, B. S., Mallick. (2021). Improved dissolution of ibuprofen after crystallization from polymeric solution: Correlation with crystal parameter. Journal of the Serbian Chemical Society, 86, 571–584. http://dx.doi/10.2298/JSC 201209021Ngoogle scholar 
  • Salas-Zúñiga, R., Rodríguez-Ruiz, C., Morales-Rojas, H., Höpfl, H., Sánchez-Guadar-rama, O., Rodríguez-Cuamatzi, P., & Herrera-Ruiz, D. (2020). Dissolution advantage of nitazoxanide cocrystals in the presence of cellulosic polymers. Pharmaceutics, 12, 1-18. http://dx.doi/10.3390/pharmaceutics12010023 google scholar 
  • Shi, K., & Li, M. (2023). Optimisation of pharmaceutical cocrystal dissolution performance through a synergistic precipitation inhibition. Pharmaceutical Research, 40, 2051–2069. http://dx.doi/10/1007.s11095-023-03532x google scholar 
  • Siepmann, J., Streubel, A., & Peppas, N. A. (2002). Understanding and predicting drug delivery from hydrophilic matrix tablets using the sequential layer model. Pharmaceutical Research, 19, 306-314. http://dx.doi/10.1023/a:1014447102710 google scholar 
  • Surov, A. O., Ramazanova, A. G., Voronin, A. P., Drozd, K. V., Churakov, A. V., Perlovich, G. L. (2023). Virtual screening, structural analysis, and formation thermodynamics of carbamazepine cocrystals. Pharmaceutics, 15, 836. http://dx.doi/10.3390/pharmaceutics15030836 google scholar 
  • Todaro, V., & Healy, A. M. (2021). Development and characterization of ibuprofen co-crystals granules prepared via fluidized bed granulation in a one-step process - a design of experiment approach. Drug Development and Industrial Pharmacy, 47, 292-301. http://dx.doi/10.1080/03639045.2021.1879836 google scholar 
  • Trivedi, H., Borkar, D., & Puranik, P. (2020). Experimental design approach for devel-opment of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. Journal of Research in Pharmacy, 24, 720-737. http://dx.doi/10.35333/jrp.2020.226 google scholar 
  • Umar, S., Bandaro, N. P., Anggraini, D., Zaini, E. (2021). Multicomponent crystal of fenofibric acid- saccharin: characterization and antihyperlipidemic effective-ness. Advances in Health Sciences Research, 40, 104 −109. http://dx.doi/10. 22159/ijap.2023.v15s1.47514google scholar 
  • United States Food and Drug Administration, USFDA. (1997). Center for Drug Evaluation and Research, Guidance for industry: Dissolution testing of imme-diate release solid oral dosage forms https://www.gmp-compliance.org/files/guidemgr/1713bp1.pdf Accessed February 9, 2023google scholar 
  • United States Pharmacopoeia, U. S. P. (2015). National Formulary, USP 38/NF 33, United States Pharmacopoeia Convention. Rockville, MD, USA.google scholar 
  • Yang, X., Yang, C., & Qiao, N. (2022). Effects of polyvinylpyrrolidone and poly (ethylene glycol) on preparation of ibuprofen pharmaceutical cocrystal. Brazilian Jour-nal of Pharmaceutical Sciences, 58, 1-14. http://dx.doi/10.1590/s2175-97902022 e18768 google scholar 
  • Zaky, M. F., Essa, E. A., Bosela, A. A., & El Maghraby, G. M. (2018). Co-crystallization for enhanced dissolution rate of flutamide. European Journal of Biomedical and Pharmaceutical Sciences, 5, 12-20. google scholar 
  • Zalte, A. G., Bhaskar, D. A., Bhaskar, G. S., & Bhanudas, S. R. (2014). Preparation and characterization of ibuprofen cocrystals by using solvent drop grinding method. World Journal of Pharmacy Research, 3, 1392-1402. google scholar
There are 41 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Research Article
Authors

Olubunmi Olayemi 0000-0001-5759-7176

Lydia Bello 0009-0000-1945-6401

Mary Ameh 0009-0007-3590-9336

Olubukola Odeniran 0000-0003-4565-3681

Chukwunwike Okeke 0009-0007-6251-919X

John Alfa 0000-0002-5308-0062

Submission Date October 10, 2024
Acceptance Date November 7, 2025
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1564271
IZ https://izlik.org/JA48UC79MY
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Olayemi, O., Bello, L., Ameh, M., Odeniran, O., Okeke, C., & Alfa, J. (2026). Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique. İstanbul Journal of Pharmacy, 55(3), 378-389. https://doi.org/10.26650/IstanbulJPharm.2025.1564271
AMA 1.Olayemi O, Bello L, Ameh M, Odeniran O, Okeke C, Alfa J. Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique. iujp. 2026;55(3):378-389. doi:10.26650/IstanbulJPharm.2025.1564271
Chicago Olayemi, Olubunmi, Lydia Bello, Mary Ameh, Olubukola Odeniran, Chukwunwike Okeke, and John Alfa. 2026. “Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique”. İstanbul Journal of Pharmacy 55 (3): 378-89. https://doi.org/10.26650/IstanbulJPharm.2025.1564271.
EndNote Olayemi O, Bello L, Ameh M, Odeniran O, Okeke C, Alfa J (January 1, 2026) Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique. İstanbul Journal of Pharmacy 55 3 378–389.
IEEE [1]O. Olayemi, L. Bello, M. Ameh, O. Odeniran, C. Okeke, and J. Alfa, “Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique”, iujp, vol. 55, no. 3, pp. 378–389, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1564271.
ISNAD Olayemi, Olubunmi - Bello, Lydia - Ameh, Mary - Odeniran, Olubukola - Okeke, Chukwunwike - Alfa, John. “Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 378-389. https://doi.org/10.26650/IstanbulJPharm.2025.1564271.
JAMA 1.Olayemi O, Bello L, Ameh M, Odeniran O, Okeke C, Alfa J. Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique. iujp. 2026;55:378–389.
MLA Olayemi, Olubunmi, et al. “Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 378-89, doi:10.26650/IstanbulJPharm.2025.1564271.
Vancouver 1.Olayemi O, Bello L, Ameh M, Odeniran O, Okeke C, Alfa J. Improved Solubility and Dissolution of Ibuprofen Tablet Formulations by the Co-Crystal Technique. iujp [Internet]. 2026 Jan. 1;55(3):378-89. Available from: https://izlik.org/JA48UC79MY