Review
BibTex RIS Cite

The Role of Artificial Intelligence in Combating Antimicrobial Resistance

Year 2025, Volume: 55 Issue: 3, 540 - 546, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1619551
https://izlik.org/JA79JH22FZ

Abstract

The widespread use of antimicrobials has undeniably played a pivotal role in saving millions of lives; however, their misuse and inappropriate prophylactic application have significantly contributed to the emergence of antimicrobial resistance (AMR), a critical issue that increasingly threatens global health. The World Health Organisation (WHO) estimates that by 2050, AMR could result in as many as 10 million deaths annually. In response to this urgent crisis, many countries have initiated measures to combat AMR.

A significant challenge in addressing AMR lies in the difficulties associated with discovering new antimicrobial agents, coupled with the rapid development of resistance to existing treatments. Despite the heightened awareness surrounding the AMR crisis, there remains a pressing need for innovative solutions, including the development of new antimicrobial drugs, novel antibiotic combinations, and improved strategies such as enhanced monitoring systems to effectively manage this growing threat.

Artificial Intelligence (AI) has emerged as a promising approach in the fight against AMR. In the field of infectious diseases, AI has the potential to revolutionise the identification and management of resistance patterns. While AI technologies have begun to serve as valuable tools for predicting antimicrobial resistance (AMR) trends, there is substantial potential for further advancements. This review explores how AI technology can be leveraged to combat AMR and enhance the efficacy of the healthcare industry in addressing this global challenge.

References

  • Achanta, A. S., Kowalski, J. G., & Rhodes, C. T. (1995). Artificial neural networks: implications for pharmaceutical sciences. Drug Development and Industrial Pharmacy, 21(1), 119-155. https://doi.org/10.3109/03639049509048099 google scholar
  • Ang, T. L., Choolani, M., & Poh, K. K. (2023). The rise of artificial intelligence: addressing the impact of large language models such as ChatGPT on scientific publications. Singapore medical journal, 64(4), 219-221. 10.4103/singaporemedj. SMJ-2023-055 google scholar
  • Badura, A., Krysiński, J., Nowaczyk, A., & Buciński, A. (2021). Application of artificial neural networks to prediction of new substances with antimicrobial activity against Escherichia coli. Journal of Applied Microbiology, 130(1), 40-49. https://doi.org/10.1111/jam.14763 google scholar
  • Baum, E. B. (1988). On the capabilities of multilayer perceptrons. Journal of complexity, 4(3), 193-215. https://doi.org/10.1016/0885-064X(88)90020-9 google scholar
  • Begley, R. J., Riege, M., Rosenblum, J., & Tseng, D. (2000). Adding intelligence to medical devices. Medical Device and Diagnostic Industry, 22(3), 150-175. https://www.researchgate. net/publication/292008212_Adding_intelligence_to_medical_devices google scholar
  • Bilge, U. (2007). Tıpta yapay zeka ve uzman sistemler [Artificial intelligence and expert systems in medicine]. 4th Turkish Informatics Association Congress, 113- 118. google scholar
  • Bozkurt-Guzel, C., Alkan, B., & Oyardi, O. (2019). Antimikrobiyal Tedaviye Alternatif Stratejiler [ Alternative Strategies for Antimicrobial Therapy]. Turkish Pharmacopoeia Journal, 4(2), 129-139. https://www.scribd.com/document/495130171/TurkFarmakopeDergisi-4-2-c4a5942c-ffc9-423c-b844-f3782ac30925 google scholar
  • Burckhardt, I., & Zimmermann, S. (2018). Susceptibility testing of bacteria using MALDI-TOF mass spectrometry. Frontiers in Microbiology, 9, 1744. https://doi.org/10.3389/fmicb. 2018.01744 google scholar
  • Burns, B. L., Rhoads, D. D., & Misra, A. (2023). The use of machine learning for google scholar
  • Canvar, T. (2002). İlaç endüstrisinde uzman sistemler ve uygulamaları [Expert systems and applications in the pharmaceutical industry]. Sakarya University Journal of Science, 6(1), 147-154. https://doi.org/10.16984/saufbed.51087 google scholar
  • Coskun, F., & Gulleroglu, H. D. (2021). Yapay zekânın tarih içindeki gelişimi ve eğitimde kullanılması. [The evaluation of artificial intelligence in history and its use in education] Ankara University Journal of Faculty of Educational Sciences, 54(3), 947-966.https:// doi.org/10.30964/auebfd.916220 google scholar
  • Croxatto, A., Prod'hom, G., & Greub, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews, 36(2), 380-407. https:// doi.org/10.1111/j.1574-6976.2011.00298.x google scholar
  • Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. Infection and Drug Resistance, 3903-3910. https://doi.org/10.2147/IDR.S234610 google scholar
  • Demirhan, A., Kılıc, Y. A., & Guler, I. (2010). Tıpta yapay zeka uygulamaları [Artificial intelligence applications in medicine]. Turkish Journal of Intensive Care, 9(1), 31-41. google scholar
  • Dierig, A., Frei, R., & Egli, A. (2015). The fast route to microbe identification: matrix assisted laser desorption/ionization—time of flight mass spectrometry (MALDI-TOF MS). The Pediatric Infectious Disease Journal, 34(1), 97-99. https://doi.org/10.1097/INF. 0000000000000601 google scholar
  • Du Bois, P., Brans, J. P., Cantraine, F., & Mareschal, B. (1989). MEDICIS: An expert system for computer-aided diagnosis using the PROMETHEE multicriteria method. European Journal of Operational Research, 39(3), 284-292. https://doi.org/10.1016/0377-2217(89 90166-5 google scholar
  • Fanelli, U., Pappalardo, M., Chinè, V., Gismondi, P., Neglia, C., Argentiero, A., …& Esposito, S. (2020). Role of artificial intelligence in fighting antimicrobial resistance in pediatrics. Antibiotics, 9(11), 767. https://doi.org/10.3390/antibiotics9110767 google scholar
  • Feretzakis, G., Loupelis, E., Sakagianni, A., Kalles, D., Martsoukou, M., Lada, M., …& Alexiou, K. (2020). Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics, 9(2),50. https://doi.org/10.3390/antibiotics9020050 google scholar
  • Fjell, C. D., Hiss, J. A., Hancock, R. E. W., & Schneider G. (2012). Designing antimicrobial peptides: Form follows function. Nature Reviews Drug Discovery, 11, 37–51. https://doi.org/10. 1038/nrd3591 google scholar
  • for Clostridioides difficile infection from asymptomatic carriage in intensive care unit patients. Clinical Infectious Diseases, 73(7), e1727 -e1736. https://doi.org/10.1093/cid/ ciaa894 google scholar
  • Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Kluwer Academic Publishers, 3,95- 99. https://link.springer.com/article/10.1023/A:1022602019183 google scholar
  • Gordon, N. C., Price, J. R., & Golubchik, T. (2014). Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. Journal of clinical microbiology, 52(4),1182-1191. https://doi.org/10.1128/jcm.03117-13 google scholar
  • Graf, E., Soliman, A., & Pancholi, P. (2025). Potential roles for artificial intelligence in clinical microbiology from improved diagnostic accuracy to solving the staffing crisis. American Journal of Clinical Pathology, 163(2), 162-168. https://doi.org/10.1093/ajcp/aqae107 google scholar
  • Hanlon, G., Denyer, P. S., Hodges, A. N., Gorman, S. P., & Gilmore, B. F. (2011). Hugo and Russell’s Pharmaceutical Microbiology. In: Alternative Strategies for Antimicrobial Therapy (8th Eds). UK: Wiley Blackwell 489-495. google scholar
  • Humphries, R. M., Bragin, E., & Rhodes, P. A. (2023). Machine-learning model for prediction of cefepime susceptibility in Escherichia coli from whole- genome sequencing data. Journal of Clinical Microbiology, 61(3), e01431-22. https://doi.org/10.1128/jcm.01431-22 google scholar
  • Hussain, A. S., Xuanqjang, Y., & Johnson, R. D. (1991). Application of neural computing in pharmaceutical product development. Pharmaceutical Research, 8, 1248–1252. https:// doi.org/10.1023/a:1015843527138 google scholar
  • image analysis artificial intelligence in clinical microbiology. Journal of clinical microbiology, 61(9), e02336-21. https://doi.org/10.1128/jcm.02336-21 google scholar
  • Iwasaki, T., Saido- Sakanaka, H., Asaoka, A., Taylor, D., Ishibashi, J., & Yamakawa, M. (2007). In vitro activity of diastereomeric antimicrobial peptides alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus and and Pseudomonas aeruginosa. Journal of Insect Biotechnology and Sericology, 76, 25–29. https://doi.org/ 10.11416/jibs.76.1_25 google scholar
  • Jenkins, F., Le, T., & van Hal, S. J. (2023). Validation of an HIV whole genome sequencing method for HIV drug resistance testing in an Australian clinical microbiology laboratory. Journal of Medical Virology, 95(12), e29273. https://doi.org/10.1002/jmv.29273 google scholar
  • Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24, 1716–1720. https://doi.org/10.1038/s41591-018-0213-5 google scholar
  • Kustrin- Agotonic, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22, 717–727. https://doi.org/10.1016/S0731-7085(99)00272-1 google scholar
  • Lv, J., Deng, S., & Zhang, L. (2021). A review of artificial intelligence applications for antimicrobial resistance. Biosafety and Health, 3, 22-31. https://doi.org/10.1016/j.bsheal.2020.08.003 google scholar
  • McCauley, N., & Ala, M. (1992). The use of expert systems in the healthcare industry. Information and Management, 22, 227–235. https://doi.org/10.1016/0378-7206(92)90025-B google scholar
  • Nugent, R. P., Krohn, M. A., & Hillier, S. L. (1991). Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. Journal of clinical microbiology, 29(2), 297-301. https://doi.org/10.1128/jcm.29.2.297-301.1991 google scholar
  • Otake, T. (2016, August 11). IBM Big Data used for rapid diagnosis of rare leukemia case in Japan. http://www.japantimes.co.jp/news/2016/08/11/national/%09%09 science-health/ibm-big-data-used-for-rapid-diagnosis-of-rare-leukemia-case-%09% 09in-%20japan google scholar
  • Oyardı, O., Savage, P. B., Akcalı, A., Erturan, Z., & Bozkurt- Guzel, C. (2018). Ceragenins exhibiting promising antimicrobial activity against various multidrug resistant Gram negative bacteria. Istanbul Journal of Pharmacy, 48(3), 68-72. https://doi.org/10.26650/ IstanbulJPharm.2018.400730 google scholar
  • Pirim, H. (2006). Yapay zeka [Artificial Intelligence]. Journal of Yasar University, (1)1, 81-93. https://doi.org/10.19168/jyu.72783 google scholar
  • Qian, N., & Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202(4), 865–884. https://doi.org/ 10.1016/0022-2836(88)90564-5 google scholar
  • Randolph, A. M., Harry, E. P., & Jack, D. M. (1982). Internist-1, an Experimental computerbased diagnostic consultant for general internal medicine. The New England Journal of Medicine, 307, 468-476. https://doi.org/10.1056/NEJM198208193070803 google scholar
  • Shortlie, E. H., Axline, S. G., Buchanan, B. G., Merigan, T. C., & Cohen, S. N. (1973). An artificial intelligence program to advise physicians regarding antimicrobial therapy. Computers and Biomedical Research, 6(6), 544-560.https://doi.org/10.1016/0010-4809(73)90029-3 google scholar
  • Shu, L. Q., Sun, Y. K., Tan, L. H., Shu, Q., & Chang, A. C. (2019). Application of artificial intelligence in pediatrics: Past, present and future. World Journal of Pediatrics, 15, 105–108. https:// doi.org/10.1007/s12519-019-00255-1 google scholar
  • Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos- Ruiz, A., Donghia, N. M., … &Collins, J. J. (2020). A deep learning approach to antibiotic discovery. Cell, 180(4), 688–702. https:// doi.org/10.1016/j.cell.2020.01.021 google scholar
  • Szolovits, P., & Pauker, G. S. (1978). Categorical and probabilistic reasoning in medical diagnosis. Artificial Intelligence, 11,115- 144. https://doi.org/10.1016/0004-3702(78)90014-0 google scholar
  • Wang, Z., Zhang, L., Zhao, M., Wang, Y., Bai, H., Wang, Y., & Xu, W. (2021). Deep neural networks offer morphologic classification and diagnosis of bacterial vaginosis. Journal of Clinical Microbiology, 59(2), 10-1128. https://doi.org/10.1128/jcm.02236-20 google scholar
  • Worley, J., Delaney, M. L., & Bry, L. (2021). Genomic determination of relative risks google scholar
  • Wraith, S. M., Aikins, J. S., Buchanan, B. G., Clancey, W. J., Davis, R., Fagan, L. M., … & Cohen, S. N. (1976). Computerized consultation system for selection of antimicrobial therapy. American Journal of Hospital Pharmacy, 33(12), 1304–1308. https://pubmed.ncbi.nlm. nih.gov/998649/ google scholar
  • Yoshida, M., Hinkley, T., Tsuda, S., Abul- Haija, Y. M., McBurney, R. T., Kulikov, V., … & Cronin, L. (2018). Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem, 4(3),533–543. https://doi.org/ 10.1016/j.chempr.2018.01.005 google scholar
  • Završnik, J., Kokol, P., Žlahtič, B., & Vošner, B. H. (2024) Artificial Intelligence and Pediatrics: Synthetic Knowledge Synthesis. Electronics, 13(3), 512. https://doi.org/10.3390/electronics 13030512 google scholar
There are 48 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Review
Authors

Büşra Alkan 0009-0007-5636-4259

Çağla Bozkurt Güzel 0000-0003-1202-1266

Submission Date January 14, 2025
Acceptance Date June 11, 2025
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1619551
IZ https://izlik.org/JA79JH22FZ
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Alkan, B., & Bozkurt Güzel, Ç. (2026). The Role of Artificial Intelligence in Combating Antimicrobial Resistance. İstanbul Journal of Pharmacy, 55(3), 540-546. https://doi.org/10.26650/IstanbulJPharm.2025.1619551
AMA 1.Alkan B, Bozkurt Güzel Ç. The Role of Artificial Intelligence in Combating Antimicrobial Resistance. iujp. 2026;55(3):540-546. doi:10.26650/IstanbulJPharm.2025.1619551
Chicago Alkan, Büşra, and Çağla Bozkurt Güzel. 2026. “The Role of Artificial Intelligence in Combating Antimicrobial Resistance”. İstanbul Journal of Pharmacy 55 (3): 540-46. https://doi.org/10.26650/IstanbulJPharm.2025.1619551.
EndNote Alkan B, Bozkurt Güzel Ç (January 1, 2026) The Role of Artificial Intelligence in Combating Antimicrobial Resistance. İstanbul Journal of Pharmacy 55 3 540–546.
IEEE [1]B. Alkan and Ç. Bozkurt Güzel, “The Role of Artificial Intelligence in Combating Antimicrobial Resistance”, iujp, vol. 55, no. 3, pp. 540–546, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1619551.
ISNAD Alkan, Büşra - Bozkurt Güzel, Çağla. “The Role of Artificial Intelligence in Combating Antimicrobial Resistance”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 540-546. https://doi.org/10.26650/IstanbulJPharm.2025.1619551.
JAMA 1.Alkan B, Bozkurt Güzel Ç. The Role of Artificial Intelligence in Combating Antimicrobial Resistance. iujp. 2026;55:540–546.
MLA Alkan, Büşra, and Çağla Bozkurt Güzel. “The Role of Artificial Intelligence in Combating Antimicrobial Resistance”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 540-6, doi:10.26650/IstanbulJPharm.2025.1619551.
Vancouver 1.Alkan B, Bozkurt Güzel Ç. The Role of Artificial Intelligence in Combating Antimicrobial Resistance. iujp [Internet]. 2026 Jan. 1;55(3):540-6. Available from: https://izlik.org/JA79JH22FZ