Research Article
BibTex RIS Cite

Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms

Year 2025, Volume: 55 Issue: 3, 404 - 410, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1623707
https://izlik.org/JA82NR24FZ

Abstract

Background and Aims: Vascular Na+/K+ ATPase (NKA) activity plays a crucial role in regulating vascular tone. β₃-adrenoceptors (β₃-ARs), which are upregulated during sympathetic overactivation, have been demonstrated to stimulate NKA activity in cardiac tissue. However, their role in vascular NKA regulation remains unclear. Our study aimed to investigate whether β₃-AR activation can restore NKA function in vascular tissue under high sympathetic stimulation.

Methods: Male Sprague Dawley rats were treated with noradrenaline (NA) to mimic chronic sympathetic activation, with or without BRL 37344, a β₃-AR agonist. Vascular NKA activity was assessed in the aortic rings using KCl-induced relaxation responses in K+-free buffer. The role of the endothelium was also examined.

Results: NA treatment impaired vascular NKA activity, as evidenced by reduced KCl-induced relaxation. Activation of β₃-AR restored this relaxation in an endothelium-dependent manner. In contrast, ouabain abolished the response, confirming its dependence on NKA activity.

Conclusion: These findings indicate that β₃-AR activation can restore vascular NKA activity under sympathetic stress via an endothelium-dependent mechanism. This highlights a novel vasoprotective role for β₃-ARs and support their potential as therapeutic targets in vascular pathologies associated with impaired NKA function.

References

  • Aragón, J. P., Condit, M. E., Bhushan, S., Predmore, B. L., Patel, S. S., Grinsfelder, D. B., Gundewar, S., Jha, S., Calvert, J. W., Barouch, L. A., Lavu, M., Wright, H. M., & Lefer, D. J. (2011). Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia-reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. Journal of the American College of Cardiologyl, 58(25), 2683-2691. https://doi.org/10.1016/j.jacc.2011.09.033
  • Belge, C., Hammond, J., Dubois-Deruy, E., Manoury, B., Hamelet, J., Beauloye, C., Markl, A., Pouleur, A. C., Bertrand, L., Esfahani, H., Jnaoui, K., Götz, K. R., Nikolaev, V. O., Vanderper, A., Herijgers, P., Lobysheva, I., Iaccarino, G., Hilfiker-Kleiner, D., Tavernier, G., Balligand, J. L. (2014). Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation, 129(4), 451-462. https://doi.org/10.1161/circulationaha.113.004940
  • Bers, D. M., & Despa, S. (2009). Na/K-ATPase–an integral player in the adrenergic fightor-flight response. Trends in Cardiovascular Medicine, 19(4), 111-118. https://doi.org/10.1016/j.tcm.2009.07.001
  • Bruno, R. M., Ghiadoni, L., Seravalle, G., Dell'oro, R., Taddei, S., & Grassi, G. (2012). Sympathetic regulation of vascular function in health and disease. Frontiers in Physiology 3, 284. https://doi.org/10.3389/fphys.2012.00284
  • Bundgaard, H., Liu, C. C., Garcia, A., Hamilton, E. J., Huang, Y., Chia, K. K., Hunyor, S. N., Figtree, G. A., & Rasmussen, H. H. (2010). β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation, 122(25), 2699-2708. https://doi.org/10.1161/circulationaha.110.964619
  • Cannavo, A., & Koch, W. J. (2017). Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade. Journal of Cardiovascular Pharmacology 69(2), 71-78. https://doi.org/10.1097/fjc.0000000000000444
  • Chanda, D., Krishna, A. V., Gupta, P. K., Singh, T. U., Prakash, V. R., Sharma, B., Joshi, P., & Mishra, S. K. (2008). Role of low ouabain-sensitive isoform of Na+-K+- ATPase in the regulation of basal tone and agonist-induced contractility in ovine pulmonary artery. J Cardiovasc Pharmacol, 52(2), 167-175. https://doi.org/10.1097/FJC.0b013e31818127dd
  • Dhot, J., Ferron, M., Prat, V., Persello, A., Roul, D., Stévant, D., Guijarro, D., Piriou, N., Aillerie, V., Erraud, A., Toumaniantz, G., Erfanian, M., Tesse, A., Grabherr, A., Tesson, L., Menoret, S., Anegon, I., Trochu, J. N., Steenman, M., Gauthier, C. (2020). Overexpression of endothelial β(3) -adrenergic receptor induces diastolic dysfunction in rats. ESC Heart Failure 7(6), 4159-4171. https://doi.org/10.1002/ehf2.13040
  • Evans, C. J. F., Glastras, S. J., Tang, O., & Figtree, G. A. (2023). Therapeutic Potential for Beta-3 Adrenoreceptor Agonists in Peripheral Arterial Disease and Diabetic Foot Ulcers. Biomedicines, 11(12). https://doi.org/10.3390/biomedicines11123187
  • Fiorim, J., Ribeiro, R. F., Jr., Azevedo, B. F., Simões, M. R., Padilha, A. S., Stefanon, I., Alonso, M. J., Salaices, M., & Vassallo, D. V. (2012). Activation of K+ channels and Na+/K+ ATPase prevents aortic endothelial dysfunction in 7-day lead-treated rats. Toxicology and Applied Pharmacology 262(1), 22-31. https://doi.org/10.1016/j.taap.2012.04.015
  • Fisher, J. P., Young, C. N., & Fadel, P. J. (2009). Central sympathetic overactivity: maladies and mechanisms. Autonomic Neuroscience, 148(1-2), 5-15. https://doi.org/10.1016/j.autneu.2009.02.003
  • Fry, N. A. S., Liu, C. C., Garcia, A., Hamilton, E. J., Karimi Galougahi, K., Kim, Y. J., Whalley, D. W., Bundgaard, H., & Rasmussen, H. H. (2020). Targeting Cardiac Myocyte Na(+)- K(+) Pump Function With β3 Adrenergic Agonist in Rabbit Model of Severe Congestive Heart Failure. Circulation: Heart Failure 13(9), e006753. https://doi.org/10.1161/circheartfailure.119.006753
  • Gambardella, J., Fiordelisi, A., Avvisato, R., Buonaiuto, A., Cerasuolo, F. A., Sorriento, D., & Iaccarino, G. (2023). Adrenergic receptors in endothelial and vascular smooth muscle cells. Current Opinion in Physiology, 36, 100721. https://doi.org/https://doi.org/10.1016/j.cophys.2023.100721
  • García-Álvarez, A., Pereda, D., García-Lunar, I., Sanz-Rosa, D., Fernández-Jiménez, R., García-Prieto, J., Nuño-Ayala, M., Sierra, F., Santiago, E., Sandoval, E., Campelos, P., Agüero, J., Pizarro, G., Peinado, V. I., Fernández-Friera, L., García-Ruiz, J. M., Barberá, J. A., Castellá, M., Sabaté, M., Ibañez, B. (2016). Beta-3 adrenergic agonists reduce pulmonary vascular resistance and improve right ventricular performance in a porcine model of chronic pulmonary hypertension. Basic Research in Cardiology, 111(4), 49. https://doi.org/10.1007/s00395-016-0567-0
  • Grassi, G. (1998). Role of the sympathetic nervous system in human hypertension. Journal of Hypertensions, 16(12 Pt 2), 1979-1987. https://doi.org/10.1097/00004872-199816121-00019
  • Hagimont, E., Lourenco-Rodrigues, M. D., Chousterman, B. G., Yen-Potin, F., Durand, M., & Kimmoun, A. (2024). β3-Adrenergic receptor antagonism improves cardiac and vascular functions but did not modulate survival in a murine resuscitated septic shock model. Intensive Care Medicine Experimental, 12(1), 118. https://doi.org/10.1186/s40635-024-00705-9
  • Hauck, C., & Frishman, W. H. (2012). Systemic hypertension: the roles of salt, vascular Na+/K+ ATPase and the endogenous glycosides, ouabain and marinobufagenin. Cardiology in Review 20(3), 130-138. https://doi.org/10.1097/CRD.0b013e31823c835c
  • Hayakawa, H., & Raij, L. (1997). The link among nitric oxide synthase activity, endothelial function, and aortic and ventricular hypertrophy in hypertension. Hypertension, 29(1 Pt 2), 235-241. https://doi.org/10.1161/01.hyp.29.1.235
  • Karimi Galougahi, K., Liu, C. C., Garcia, A., Fry, N. A., Hamilton, E. J., Figtree, G. A., & Rasmussen, H. H. (2015). β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade. American Journal of Physiology$Cell Physiology, 309(5), C286-295. https://doi.org/10.1152/ajpcell.00071.2015
  • Karimi Galougahi, K., Zhang, Y., Kienzle, V., Liu, C. C., Quek, L. E., Patel, S., Lau, E., Cordina, R. L., Figtree, G. A., & Celermajer, D. S. (2023). β3 adrenergic agonism: A novel pathway which improves right ventricular-pulmonary arterial hemodynamics in pulmonary arterial hypertension. Physiological Reports, 11(1), e15549. https://doi.org/10.14814/phy2.15549
  • Kayki Mutlu, G., Arioglu Inan, E., Karaomerlioglu, I., Altan, V. M., Yersal, N., Korkusuz, P., Rocchetti, M., & Zaza, A. (2018). Role of the β(3)-adrenergic receptor subtype in catecholamine-induced myocardial remodeling. Molecular and Cellular Biochemistry, 446(1-2), 149-160. https://doi.org/10.1007/s11010-018-3282-3
  • Kayki-Mutlu, G., Karaomerlioglu, I., Arioglu-Inan, E., & Altan, V. M. (2019). Beta-3 adrenoceptors: A potential therapeutic target for heart disease. The European Journal of Pharmacology, 858, 172468. https://doi.org/10.1016/j.ejphar.2019.172468
  • Leblanc, C., & Tabrizchi, R. (2018). Role of β(2-) and β(3)-adrenoceptors in arterial stiffness in a state of hypertension. The European Journal of Pharmacology, 819, 136-143. https://doi.org/10.1016/j.ejphar.2017.11.050
  • Lucchesi, M., Di Marsico, L., Guidotti, L., Lulli, M., Filippi, L., Marracci, S., & Dal Monte, M. (2025). Hypoxia-Dependent Upregulation of VEGF Relies on β3-Adrenoceptor Signaling in Human Retinal Endothelial and Müller Cells. International Journal of Molecular Sciences 26(9). https://doi.org/10.3390/ijms26094043
  • Michel, L. Y. M., Farah, C., & Balligand, J. L. (2020). The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells, 9(12). https://doi.org/10.3390/cells9122584
  • Motiejunaite, J., Amar, L., & Vidal-Petiot, E. (2021). Adrenergic receptors and cardiovascular effects of catecholamines. Annales d'endocrinologie (Paris), 82(3-4), 193-197. https://doi.org/10.1016/j.ando.2020.03.012
  • Natarajan, D., Ekambaram, S., Tarantini, S., Nagaraja, R. Y., Yabluchanskiy, A., Hedrick, A. F., Awasthi, V., Subramanian, M., Csiszar, A., & Balasubramanian, P. (2025). Chronic β3 adrenergic agonist treatment improves neurovascular coupling responses, attenuates blood-brain barrier leakage and neuroinflammation, and enhances cognition in aged mice. Aging (Albany NY), 17(2), 448-463. https://doi.org/10.18632/aging.206203
  • Niu, X., Watts, V. L., Cingolani, O. H., Sivakumaran, V., Leyton-Mange, J. S., Ellis, C. L., Miller, K. L., Vandegaer, K., Bedja, D., Gabrielson, K. L., Paolocci, N., Kass, D. A., & Barouch, L. A. (2012). Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. The Journal of the American College of Cardiology 59(22), 1979-1987. https://doi.org/10.1016/j.jacc.2011.12.046
  • Pasha, A., Tondo, A., Favre, C., & Calvani, M. (2024). Inside the Biology of the β3- Adrenoceptor. Biomolecules, 14(2). https://doi.org/10.3390/biom14020159
  • Rautureau, Y., Toumaniantz, G., Serpillon, S., Jourdon, P., Trochu, J. N., & Gauthier, C. (2002). Beta 3-adrenoceptor in rat aorta: molecular and biochemical characterization and signalling pathway. British Journal of Pharmacology 137(2), 153-161. https://doi.org/10.1038/sj.bjp.0704867
  • Samanta, S., Bagchi, D., & Bagchi, M. (2024). Physiological and metabolic functions of the β(3)-adrenergic receptor and an approach to therapeutic achievements. Journal of Physiology and Biochemistry, 80(4), 757-774. https://doi.org/10.1007/s13105-024-01040-z
  • Staehr, C., Aalkjaer, C., & Matchkov, V. V. (2023). The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clinical Science (Lond), 137(20), 1595-1618. https://doi.org/10.1042/cs20220796
  • Suhail, M. (2010). Na, K-ATPase: Ubiquitous Multifunctional Transmembrane Protein and its Relevance to Various Pathophysiological Conditions. Journal of Clinical Medicine Research, 2(1), 1-17. https://doi.org/10.4021/jocmr2010.02.263w
  • Watts, V. L., Sepulveda, F. M., Cingolani, O. H., Ho, A. S., Niu, X., Kim, R., Miller, K. L., Vandegaer, K., Bedja, D., Gabrielson, K. L., Rameau, G., O'Rourke, B., Kass, D. A., & Barouch, L. A. (2013). Anti-hypertrophic and anti-oxidant effect of beta3-adrenergic stimulation in myocytes requires differential neuronal NOS phosphorylation. The Journal of Molecular and Cellular Cardiology, 62, 8-17. https://doi.org/10.1016/j.yjmcc.2013.04.025
  • Zhang, Z. B., Cheng, Y. W., Xu, L., Li, J. Q., Pan, X., Zhu, M., Chen, X. H., Sun, A. J., Lin, J. R., & Gao, P. J. (2024). Activation of β3-adrenergic receptor by mirabegron prevents aortic dissection/aneurysm by promoting lymphangiogenesis in perivascular adipose tissue. Cardiovascular Research, 120(17), 2307-2319. https://doi.org/10.1093/cvr/cvae213
There are 35 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Research Article
Authors

Gizem Kaykı Mutlu 0000-0002-3177-9438

Ebru Arıoğlu İnan 0000-0002-0860-0815

Ayhanım Elif Müderrisoğlu 0000-0002-2027-0118

İrem Karaömerlioğlu 0000-0001-6851-8226

Betül Rabia Erdoğan Vadacca 0000-0001-7377-4777

Vecdi Melih Altan 0000-0001-7125-3900

Submission Date January 21, 2025
Acceptance Date August 13, 2025
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1623707
IZ https://izlik.org/JA82NR24FZ
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Kaykı Mutlu, G., Arıoğlu İnan, E., Müderrisoğlu, A. E., Karaömerlioğlu, İ., Erdoğan Vadacca, B. R., & Altan, V. M. (2026). Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms. İstanbul Journal of Pharmacy, 55(3), 404-410. https://doi.org/10.26650/IstanbulJPharm.2025.1623707
AMA 1.Kaykı Mutlu G, Arıoğlu İnan E, Müderrisoğlu AE, Karaömerlioğlu İ, Erdoğan Vadacca BR, Altan VM. Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms. iujp. 2026;55(3):404-410. doi:10.26650/IstanbulJPharm.2025.1623707
Chicago Kaykı Mutlu, Gizem, Ebru Arıoğlu İnan, Ayhanım Elif Müderrisoğlu, İrem Karaömerlioğlu, Betül Rabia Erdoğan Vadacca, and Vecdi Melih Altan. 2026. “Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms”. İstanbul Journal of Pharmacy 55 (3): 404-10. https://doi.org/10.26650/IstanbulJPharm.2025.1623707.
EndNote Kaykı Mutlu G, Arıoğlu İnan E, Müderrisoğlu AE, Karaömerlioğlu İ, Erdoğan Vadacca BR, Altan VM (January 1, 2026) Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms. İstanbul Journal of Pharmacy 55 3 404–410.
IEEE [1]G. Kaykı Mutlu, E. Arıoğlu İnan, A. E. Müderrisoğlu, İ. Karaömerlioğlu, B. R. Erdoğan Vadacca, and V. M. Altan, “Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms”, iujp, vol. 55, no. 3, pp. 404–410, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1623707.
ISNAD Kaykı Mutlu, Gizem - Arıoğlu İnan, Ebru - Müderrisoğlu, Ayhanım Elif - Karaömerlioğlu, İrem - Erdoğan Vadacca, Betül Rabia - Altan, Vecdi Melih. “Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 404-410. https://doi.org/10.26650/IstanbulJPharm.2025.1623707.
JAMA 1.Kaykı Mutlu G, Arıoğlu İnan E, Müderrisoğlu AE, Karaömerlioğlu İ, Erdoğan Vadacca BR, Altan VM. Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms. iujp. 2026;55:404–410.
MLA Kaykı Mutlu, Gizem, et al. “Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 404-10, doi:10.26650/IstanbulJPharm.2025.1623707.
Vancouver 1.Kaykı Mutlu G, Arıoğlu İnan E, Müderrisoğlu AE, Karaömerlioğlu İ, Erdoğan Vadacca BR, Altan VM. Regulation of Ion Balance by Vascular β3-Adrenergic Receptors through Endothelial Mechanisms. iujp [Internet]. 2026 Jan. 1;55(3):404-10. Available from: https://izlik.org/JA82NR24FZ