Research Article
BibTex RIS Cite

Year 2025, Volume: 55 Issue: 3, 318 - 331, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1635537
https://izlik.org/JA33PY59UK

Abstract

References

  • Abdullah@Shukry, N. A., Ahmad Sekak, K., Ahmad, M. R., & Bustami Effendi, T. J. (2014). Characteristics of Electrospun PVA-Aloe vera Nanofibres Produced via Electrospinning. In Proceedings of the International Colloquium in Textile En-gineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014) (pp. 7–11). Springer Singapore. https://doi.org/10.1007/978-981-287-011-7_2 google scholar
  • Acik, G. (2020). A comprehensive study on electrospinning of poly (Vinyl alcohol): Effects of the tcd, applied voltage, flow rate, and solution concentration. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(2), 609–616. https://doi.org/10.18596/jotcsa.741452 google scholar
  • Ajiboye, A. L., Nandi, U., Galli, M., & Trivedi, V. (2021). Olanzapine loaded nanos-tructured lipid carriers via high shear homogenization and ultrasonication. Scientia Pharmaceutica, 89(2). https://doi.org/10.3390/scipharm89020025 google scholar
  • Al-Hazeem, N. Z. A. (2018). Nanofibers and Electrospinning Method. In Novel Nanomaterials - Synthesis and Applications. InTech. https://doi.org/10.5772/ intechopen.72060 google scholar
  • Badgujar, P., Malik, A. K., Mehata, A. K., Setia, A., Verma, N., Randhave, N., Shukla, V. N., Kande, V., Singh, P., Tiwari, P., Mahto, S. K., & Muthu, M. S. (2024). Polyvinyl alcohol-chitosan loaded oleanolic acid nanofibers against bacterial infection: In vitro studies and in-vivo evaluation by optical and laser Doppler imag-ing modalities. International Journal of Biological Macromolecules, 135532. https://doi.org/10.1016/j.ijbiomac.2024.135532google scholar
  • Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H., & Bechelany, M. (2019). Nanofiber Technologies: History and Development. In Handbook of Nanofibers (pp. 3–43). Springer International Publishing. https://doi.org/10.1007/978-3-319-53655-2_ 54 google scholar
  • Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. In Biotechnology Advances (Vol. 28, Issue 3, pp. 325–347). https:// doi.org/10.1016/j.biotechadv.2010.01.004 google scholar
  • Buchko, C. J., Chen, L. C., Shen, Y., & Martin, D. C. (n.d.). Processing and microstructural characterization of porous biocompatible protein polymer thin films. google scholar
  • Cardenas Bates, I. I., Loranger, É., & Chabot, B. (2020). Chitosan-PEO nanofiber mats for copper removal in aqueous solution using a new versatile electrospinning collector. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03342-5 google scholar
  • Carrasco-Venegas, L. A., González-Fernández, J. V., Castañeda-Pérez, L. G., Palomino-Hernández, G., Dueñas-Dávila, F. A., & Trujillo-Pérez, S. A. (2023). Viscosity Factor (VF) Complementary to the Statistical Indicators Associated with the Rheological Behavior of Aqueous Solutions of Polyvinyl Alcohol. Polymers, 15(7). https://doi.org/10.3390/polym15071743google scholar
  • Chauhan, I., Yasir, M., Verma, M., & Singh, A. P. (2020). Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. In Advanced Phar-maceutical Bulletin (Vol. 10, Issue 2, pp. 150–165). Tabriz University of Medical Sciences. https://doi.org/10.34172/apb.2020.021 google scholar
  • Chen, H., Chen, S., Guan, Y., Yan, H., Jin, R., Zhang, H., Li, D., Zhong, J., & Li, L. (2017). An efficient polymer for producing electrospun transparent conducting films through simple procedures and a mild post-process. RSC Advances, 7(74), 46621–46628. https://doi.org/10.1039/c7ra08520f google scholar
  • Das, B., Baidya, A. T. K., Mathew, A. T., Yadav, A. K., & Kumar, R. (2022). Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. In Bioorganic and Medicinal Chemistry (Vol. 56). Elsevier Ltd. https://doi.org/10.1016/j.bmc.2022.116614 google scholar
  • Demir, M. M., Yilgor, I., Yilgor, E., & Erman, B. (n.d.). Electrospinning of polyurethane ®bers. www.elsevier.com/locate/polymer google scholar
  • Fatahian, R., Mirjalili, M., Khajavi, R., Rahimi, M. K., & Nasirizadeh, N. (2021). Effect of electrospinning parameters on production of polyvinyl alcohol/polylactic acid nanofiber using a mutual solvent. Polymers and Polymer Composites, 29(9_suppl), S844–S856. https://doi.org/10.1177/09673911211027126 google scholar
  • Fathollahipour, S., Abouei Mehrizi, A., Ghaee, A., & Koosha, M. (2015). Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. Journal of Biomedical Materials Research - Part A, 103(12), 3852–3862. https://doi.org/10.1002/jbm.a.35529 google scholar
  • Ferreira, M. D., Duarte, J., Veiga, F., Paiva-Santos, A. C., & Pires, P. C. (2023). Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promis-ing Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. In Pharmaceutics (Vol. 15, Issue 2). MDPI. https://doi.org/10.3390/pharmaceutics 15020678 google scholar
  • Garcia, J., Felix, M., Cordobés, F., & Guerrero, A. (2022). Effect of solvent and additives on the electrospinnability of BSA solutions. Colloids and Surfaces B: Biointer-faces, 217. https://doi.org/10.1016/j.colsurfb.2022.112683 google scholar
  • Ghasemian, E., Vatanara, A., Najafabadi, A. R., Rouini, M. R., Gilani, K., & Darabi, M. (2013). Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. http://www.darujps. com/content/21/1/68 google scholar
  • Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. In Research in Pharmaceutical Sciences (Vol. 13, Issue 4). google scholar
  • Gugulothu, D., Barhoum, A., Nerella, R., Ajmer, R., & Bechelany, M. (2019). Fabrication of Nanofibers: Electrospinning and Non-electrospinning Techniques. In Hand-book of Nanofibers (pp. 45–77). Springer International Publishing. https://doi. org/10.1007/978-3-319-53655-2_6 google scholar
  • Gupta, D., Jassal, M., & Agrawal, A. K. (2016). The electrospinning behavior of poly(vinyl alcohol) in DMSO-water binary solvent mixtures. RSC Advances, 6(105), 102947–102955. https://doi.org/10.1039/c6ra15017a google scholar
  • Haddad, P., Brain, C., & Scott, J. (2014). Nonadherence with antipsychotic medication in schizophrenia: challenges and management strategies. Patient Related Outcome Measures, 43. https://doi.org/10.2147/prom.s42735google scholar
  • Hapipi, N. M., Mazlan, S. A., Ubaidillah, U., Homma, K., Aziz, S. A. A., Nordin, N. A., Bahiuddin, I., & Nazmi, N. (2020). The rheological studies on poly(Vinyl) alcohol-based hydrogel magnetorheological plastomer. Polymers, 12(10), 1–15. https://doi.org/10.3390/polym12102332 google scholar
  • He, H., Kara, Y., & Molnar, K. (2019). Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolution and Discovery, 4(1), 7–11. https://doi. org/10.1556/2051.2018.00063 google scholar
  • Józó, M., Simon, N., Yi, L., Móczó, J., & Pukánszky, B. (2021). Improved Release of a Drug with Poor Water Solubility by Using Electrospun Water-Soluble Polymers as Carriers. Pharmaceutics, 2022, 34. https://doi.org/10.3390/pharmaceutics google scholar
  • Kajdič, S., Zupančič, Š., Roškar, R., & Kocbek, P. (2020). The potential of nanofibers to increase solubility and dissolution rate of the poorly soluble and chemically unstable drug lovastatin. International Journal of Pharmaceutics, 573. https:// doi.org/10.1016/j.ijpharm.2019.118809 google scholar
  • Karczewski, A., Feitosa, S. A., Hamer, E. I., Pankajakshan, D., Gregory, R. L., Spolnik, K. J., & Bottino, M. C. (2018). Clindamycin-modified Triple Antibiotic Nanofibers: A Stain-free Antimicrobial Intracanal Drug Delivery System. Journal of Endodon-tics, 44(1), 155–162. https://doi.org/10.1016/j.joen.2017.08.024 google scholar
  • Khallaf, R. A., Aboud, H. M., & Sayed, O. M. (2020). Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. Journal of Liposome Research, 30(2), 163–173. https://doi. org/10.1080/08982104.2019.1610435 google scholar
  • Khan, K. U., Minhas, M. U., Badshah, S. F., Sohail, M., & Sarfraz, R. M. (2022). β-cyclodextrin modification by cross-linking polymerization as highly porous nanomatrices for olanzapine solubility improvement; synthesis, characteriza-tion and bio-compatibility evaluation. Journal of Drug Delivery Science and Technology, 67. https://doi.org/10.1016/j.jddst.2021.102952 google scholar
  • Kimya, A., Dalı, A., Danışmanı, T., & Kadioğlu, Y. (2014). ATİPİK ANTİPSİKOTİK BİR İLAÇ OLAN OLANZAPİN’İN FARMASÖTİK PREPARATLARDA VE BİYOLOJİK ORTAMLARDA BİYOANALİTİK YÖNTEM VALİDASYONU Mevlüt ALBAYRAK. google scholar
  • Koosha, M., & Mirzadeh, H. (2015). Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research - Part A, 103(9), 3081–3093. https://doi.org/10.1002/jbm.a.35443 google scholar
  • Lee, J. S., Choi, K. H., Ghim, H. Do, Kim, S. S., Chun, D. H., Kim, H. Y., & Lyoo, W. S. (2004). Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 93(4), 1638–1646. https://doi.org/10.1002/app.20602 google scholar
  • Liu, M., Zhang, Y., Sun, S., Khan, A. R., Ji, J., Yang, M., & Zhai, G. (2019). Recent advances in electrospun for drug delivery purpose. In Journal of Drug Targeting (Vol. 27, Issue 3, pp. 270–282). Taylor and Francis Ltd. https://doi.org/10.1080/1061186X. 2018.1481413 google scholar
  • Löbmann, K., & Svagan, A. J. (2017). Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. International Journal of Pharmaceutics, 533(1), 285-297. https://doi.org/10.1016/j.ijpharm.2017.09.064 google scholar
  • Marano, S., Barker, S. A., Raimi-Abraham, B. T., Missaghi, S., Rajabi-Siahboomi, A., & Craig, D. Q. M. (2016). Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifu-gal spinning. European Journal of Pharmaceutics and Biopharmaceutics, 103, 84–94. https://doi.org/10.1016/j.ejpb.2016.03.021google scholar
  • Martínez-Pérez, C. A. (2020). Electrospinning: A promising technique for drug delivery systems. In Reviews on Advanced Materials Science (Vol. 59, Issue 1, pp. 441–454). Walter de Gruyter GmbH. https://doi.org/10.1515/rams-2020-0041 google scholar
  • Mata, G. C. da, Morais, M. S., Oliveira, W. P. de, & Aguiar, M. L. (2022). Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers, 14(22). https://doi.org/10.3390/polym14224856 google scholar
  • Meftah, A. M., Deckler, E., Citrome, L., & Kantrowitz, J. T. (2020). New discoveries for an old drug: a review of recent olanzapine research. In Postgraduate Medicine (Vol. 132, Issue 1, pp. 80–90). Taylor and Francis Inc. https://doi.org/10.1080/ 00325481.2019.1701823 google scholar
  • Morina, E., Dotter, M., Döpke, C., Kola, I., Spahiu, T., & Ehrmann, A. (2023). Homogeneity of Needleless Electrospun Nanofiber Mats. Nanomaterials, 13(18). https://doi. org/10.3390/nano13182507 google scholar
  • Mousazadeh, S., Shakouri, A., Hojjat, M., Etemad, S. G., & Heris, S. Z. (2016). Rheological behavior of starch–poly(vinyl alcohol)–TiO2 nanofluids and their main and interactive effects. Journal of Applied Polymer Science, 133(41). https://doi.org/ 10.1002/app.44062 google scholar
  • Mundhe, M. V., Vinayakmundhe, M., Burande, S., Kondapure, M. A., Vilas Arsul, M., & Zarekar, S. (2013). Formulationand Evaluation of Mouth Dissolving Tablet of Olanzapine by Coprocessing Superdisintegrants. In Asian Journal of Pharma-ceutical Technology & Innovations (Issue 01). www.asianpharmtech.com google scholar
  • Naseri, N., Mathew, A. P., Girandon, L., Fröhlich, M., & Oksman, K. (2015). Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose, 22(1), 521–534. https://doi.org/10.1007/s10570-014-0493-y google scholar
  • Natarajan, J., Baskaran, M., Humtsoe, L. C., Vadivelan, R., & Justin, A. (2017). Enhanced brain targeting efficacy of Olanzapine through solid lipid nanoparticles. Arti-ficial Cells, Nanomedicine and Biotechnology, 45(2), 364–371. https://doi.org/ 10.3109/21691401.2016.1160402 google scholar
  • Ojha, S. S. (2007). Fabrication and Characterization of Novel Single and Bicomponent Electrospun Nanofibrous Mats. Faculty of North Carolina State University. google scholar
  • Oliveira, J., Silveira Brichi, G., Marconcini, J. M., Mattoso, H. C., Glenn, G. M., Medeiros, S., & Oliveira, J. (n.d.). Effect of Solvent on The Physical and Morphological Prop-erties of Poly(Lactic Acid) Nanofibers Obtained by Solution Blow Spinning. In Journal of Engineered Fibers and Fabrics (Vol. 117). [suspicious link removed] google scholar
  • Paaver, U., Heinämäki, J., Kassamakov, I., Ylitalo, T., Hæggström, E., Laidmäe, I., & Kogermann, K. (2019). Quasi-dynamic dissolution of electrospun polymeric nanofibers loaded with piroxicam. Pharmaceutics, 11(10). https://doi.org/10. 3390/pharmaceutics11100491 google scholar
  • Paaver, U., Heinämäki, J., Laidmäe, I., Lust, A., Kozlova, J., Sillaste, E., Kirsimäe, K., Veski, P., & Kogermann, K. (2015). Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. International Journal of Pharmaceutics, 479(1), 252–260. https://doi.org/10.1016/j.ijpharm.2014.12.024 google scholar
  • Pattnaik, S., Swain, K., & Ramakrishna, S. (2023). Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions. In Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology (Vol. 15, Issue 2). John Wiley and Sons Inc. https://doi.org/ 10.1002/wnan.1859 google scholar
  • Pelipenko, J., Kocbek, P., & Kristl, J. (2015). Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. In International Journal of Pharmaceu-tics (Vol. 484, Issues 1–2, pp. 57–74). Elsevier. https://doi.org/10.1016/j.ijpharm.2015.02.043 google scholar
  • Potrč, T., Baumgartner, S., Roškar, R., Planinšek, O., Lavrič, Z., Kristl, J., & Kocbek, P. (2015). Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. European Journal of Pharma-ceutical Sciences, 75, 101–113. https://doi.org/10.1016/j.ejps.2015.04.004 google scholar
  • Quan, P., Wan, X., Tian, Q., Liu, C., & Fang, L. (2020). Dicarboxylic acid as a linker to improve the content of amorphous drug in drug-in-polymer film: Effects of molecular mobility, electrical conductivity and intermolecular interactions. Journal of Controlled Release, 317, 142–153. https://doi.org/10.1016/j.jconrel. 2019.11.033 google scholar
  • Ramakrishnan, R., Gimbun, J., Ramakrishnan, P., Ranganathan, B., Reddy, S. M., & Shanmugam, G. (2019). Effect of solution properties and operating parameters on needleless electrospinning of poly (ethylene oxide) nanofibers loaded with bovine serum albumin. Current Drug Delivery, 16(10), 913–922. google scholar
  • Rošic, R., Pelipenko, J., Kristl, J., Kocbek, P., Bešter-Rogaç, M., & Baumgartner, S. (2013). Physical characteristics of poly (vinyl alcohol) solutions in relation to electro-spun nanofiber formation. European Polymer Journal, 49(2), 290–298. https:// doi.org/10.1016/j.eurpolymj.2012.11.013 google scholar
  • Salem, H. F., Mahmoud Abdelhaleem Ali, A., Mohamed, E., Elbary, A. A., A Ali, A. M., & Maher, E. M. (2015). Formulation and in-vitro evaluation of fast dissolving tablets containing a poorly soluble antipsychotic drug. In International Jour-nal of Drug Delivery (Vol. 7). http://www.arjournals.org/index.php/ijdd/index google scholar
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics, 2012, 1–10. https://doi.org/10. 5402/2012/195727 google scholar
  • Shahizam, Z. A., Benoudjit, A. M., Mohamad, N., Abd-Wahab, F., Amani, W. W., & Salim, W. (2020). Morphology of electrospun PVA nanofibers enhanced with graphene oxide, poly (3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS) and multiwalled carbon nanotubes. In Theo. Exp. NANOTECHOLOGY (Vol. 4). google scholar
  • Sill, T. J., & von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. In Biomaterials (Vol. 29, Issue 13, pp. 1989–2006). https:// doi.org/10.1016/j.biomaterials.2008.01.011 google scholar
  • Singh, S. K., Hidau, M. K., Gautam, S., Gupta, K., Singh, K. P., Singh, S. K., & Singh, S. (2018). Glycol chitosan functionalized asenapine nanostructured lipid carriers for targeted brain delivery: Pharmacokinetic and teratogenic assessment. International Journal of Biological Macromolecules, 108, 1092–1100. https:// doi.org/10.1016/j.ijbiomac.2017.11.031 google scholar
  • Szymańska, E., Wojasiński, M., Dąbrowska, J., Krzyżowska, M., Nowicka, M., Ciach, T., & Winnicka, K. (2022). Chitosan-poly(ethylene oxide) nanofibrous mat as a vaginal platform for tenofovir disoproxyl fumarate – The effect of vaginal pH on drug carrier performance. International Journal of Biological Macromole-cules, 222, 856–867. https://doi.org/10.1016/j.ijbiomac.2022.09.207 google scholar
  • Tunç, E., Uğur Kaplan, A., Kilinboz, Y., & Çetin, M. (2023). Nanoemulsion formulation containing carbamazepine and levetiracetam: Development and in vitro char-acterization. İstanbul Journal of Pharmacy, 53(2), 133-139. https://doi.org/10. 26650/İstanbuljpharm.2023.1201106 google scholar
  • Vashisth, P., Pruthi, P. A., Singh, R. P., & Pruthi, V. (2014). Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydrate Polymers, 109, 16–21. https://doi.org/10.1016/j.carbpol.2014.03.003 google scholar
  • Verreck, G., Chun, I., Peeters, J., Rosenblatt, J., & Brewster, M. E. (2003). Preparation and Characterization of Nanofibers Containing Amorphous Drug Dispersions Generated by Electrostatic Spinning. google scholar
  • Vuddanda, P. R., Mathew, A. P., & Velaga, S. (2016). Electrospun nanofiber mats for ultrafast release of ondansetron. Reactive and Functional Polymers, 99, 65–72. https://doi.org/10.1016/j.reactfunctpolym.2015.12.009google scholar
  • Wang, Y., Lv, H., Wang, C., He, D., Zhao, H., Xu, E., Jin, Z., Wu, Z., Liu, P., & Cui, B. (2024). Preparation of starch-based green nanofiber mats for probiotic encapsulation by electrospinning. Journal of Food Science. https://doi.org/10.1111/1750-3841. 17250 google scholar
  • Yosef Kinani, A. A. B., Hussein, A. A., & Alsaraf, K. M. (2022). Formulation and Charac-terization of Electrospun Nanofibers Loaded Fusidic Acid for Wound Dressing Technique. Journal of Pharmaceutical Negative Results, 13(4), 221–233. https:// doi.org/10.47750/pnr.2022.13.04.027 google scholar
  • Zahmatkeshan, M., Adel, M., Bahrami, S., Esmaeili, F., Rezayat, S. M., Saeedi, Y., Mehravi, B., Jameie, S. B., & Ashtari, K. (2019). Polymer-Based Nanofibers: Preparation, Fabrication, and Applications. In Handbook of Nanofibers (pp. 215–261). Springer International Publishing. https://doi.org/10.1007/978-3-319-53655-2_29 google scholar
  • Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3), 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027 google scholar
  • Zhang, Q., Lin, Z., Zhang, W., Huang, T., Jiang, J., Ren, Y., Zhang, R., Li, W., Zhang, X., & Tu, Q. (2020). Fabrication of green poly(vinyl alcohol) nanofibers using natural deep eutectic solvent for fast-dissolving drug delivery. RSC Advances, 11(2), 1012–1021. https://doi.org/10.1039/d0ra08755fgoogle scholar
  • Zorkina, Y., Abramova, O., Ushakova, V., Morozova, A., Zubkov, E., Valikhov, M., Melnikov, P., Majouga, A., & Chekhonin, V. (2020). Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. In Molecules (Vol. 25, Issue 22). MDPI. https://doi.org/10.3390/MOLECULES 25225294 google scholar

Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs

Year 2025, Volume: 55 Issue: 3, 318 - 331, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1635537
https://izlik.org/JA33PY59UK

Abstract

Background and Aims: As the drug discoveries of the modern century have led to a rapid increase in the number of new drug candidates with low water solubility, nanofiber drug delivery systems have become a promising technology to increase the water solubility of drugs with a high surface-to-volume ratio. In this study, we aimed to prepare a nanofiber of a molecule with low water solubility and investigate its changing solubility properties.

Methods: Three nanofiber dosage forms containing olanzapine (OLZ) active substance were developed by the electrospinning method using polyvinyl alcohol (PVA) polymer. Drug loading efficiency, zeta potential determination, electrical conductivity, rheology, field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses were performed to evaluate the in vitro characterisation of the formulations. The solubility profile of the optimised formulations in pH 7.4 phosphate buffer was evaluated. The stability of optimised formulations was evaluated in terms of physical properties (colour, shape, weight, diameter, and thickness) and drug amount for 35 days.

Results: It was determined that the electrospinning property of the nanofiber preparation solution increased with the addition of ethanol to the polymer solvent medium. The active substance distribution in the nanofiber layer was more homogeneous in the N78 and N79 coded formulations with high zeta potential values compared to N69. Contrary to the homogeneous distribution problem, the loading efficiency of the N69-coded formulation containing chloroform (~29%) was higher than that of N79 (~9.8%). A 24-h solubility study in pH 7.4 phosphate buffer of the N78-coded formulation, which has an active ingredient loading efficiency of ~80.4%, confirmed the increased solubility of OLZ in water in the nanofiber drug delivery system.

Conclusion: Further studies are needed to convert these model formulations into final drug products.

References

  • Abdullah@Shukry, N. A., Ahmad Sekak, K., Ahmad, M. R., & Bustami Effendi, T. J. (2014). Characteristics of Electrospun PVA-Aloe vera Nanofibres Produced via Electrospinning. In Proceedings of the International Colloquium in Textile En-gineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014) (pp. 7–11). Springer Singapore. https://doi.org/10.1007/978-981-287-011-7_2 google scholar
  • Acik, G. (2020). A comprehensive study on electrospinning of poly (Vinyl alcohol): Effects of the tcd, applied voltage, flow rate, and solution concentration. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(2), 609–616. https://doi.org/10.18596/jotcsa.741452 google scholar
  • Ajiboye, A. L., Nandi, U., Galli, M., & Trivedi, V. (2021). Olanzapine loaded nanos-tructured lipid carriers via high shear homogenization and ultrasonication. Scientia Pharmaceutica, 89(2). https://doi.org/10.3390/scipharm89020025 google scholar
  • Al-Hazeem, N. Z. A. (2018). Nanofibers and Electrospinning Method. In Novel Nanomaterials - Synthesis and Applications. InTech. https://doi.org/10.5772/ intechopen.72060 google scholar
  • Badgujar, P., Malik, A. K., Mehata, A. K., Setia, A., Verma, N., Randhave, N., Shukla, V. N., Kande, V., Singh, P., Tiwari, P., Mahto, S. K., & Muthu, M. S. (2024). Polyvinyl alcohol-chitosan loaded oleanolic acid nanofibers against bacterial infection: In vitro studies and in-vivo evaluation by optical and laser Doppler imag-ing modalities. International Journal of Biological Macromolecules, 135532. https://doi.org/10.1016/j.ijbiomac.2024.135532google scholar
  • Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H., & Bechelany, M. (2019). Nanofiber Technologies: History and Development. In Handbook of Nanofibers (pp. 3–43). Springer International Publishing. https://doi.org/10.1007/978-3-319-53655-2_ 54 google scholar
  • Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. In Biotechnology Advances (Vol. 28, Issue 3, pp. 325–347). https:// doi.org/10.1016/j.biotechadv.2010.01.004 google scholar
  • Buchko, C. J., Chen, L. C., Shen, Y., & Martin, D. C. (n.d.). Processing and microstructural characterization of porous biocompatible protein polymer thin films. google scholar
  • Cardenas Bates, I. I., Loranger, É., & Chabot, B. (2020). Chitosan-PEO nanofiber mats for copper removal in aqueous solution using a new versatile electrospinning collector. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03342-5 google scholar
  • Carrasco-Venegas, L. A., González-Fernández, J. V., Castañeda-Pérez, L. G., Palomino-Hernández, G., Dueñas-Dávila, F. A., & Trujillo-Pérez, S. A. (2023). Viscosity Factor (VF) Complementary to the Statistical Indicators Associated with the Rheological Behavior of Aqueous Solutions of Polyvinyl Alcohol. Polymers, 15(7). https://doi.org/10.3390/polym15071743google scholar
  • Chauhan, I., Yasir, M., Verma, M., & Singh, A. P. (2020). Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. In Advanced Phar-maceutical Bulletin (Vol. 10, Issue 2, pp. 150–165). Tabriz University of Medical Sciences. https://doi.org/10.34172/apb.2020.021 google scholar
  • Chen, H., Chen, S., Guan, Y., Yan, H., Jin, R., Zhang, H., Li, D., Zhong, J., & Li, L. (2017). An efficient polymer for producing electrospun transparent conducting films through simple procedures and a mild post-process. RSC Advances, 7(74), 46621–46628. https://doi.org/10.1039/c7ra08520f google scholar
  • Das, B., Baidya, A. T. K., Mathew, A. T., Yadav, A. K., & Kumar, R. (2022). Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. In Bioorganic and Medicinal Chemistry (Vol. 56). Elsevier Ltd. https://doi.org/10.1016/j.bmc.2022.116614 google scholar
  • Demir, M. M., Yilgor, I., Yilgor, E., & Erman, B. (n.d.). Electrospinning of polyurethane ®bers. www.elsevier.com/locate/polymer google scholar
  • Fatahian, R., Mirjalili, M., Khajavi, R., Rahimi, M. K., & Nasirizadeh, N. (2021). Effect of electrospinning parameters on production of polyvinyl alcohol/polylactic acid nanofiber using a mutual solvent. Polymers and Polymer Composites, 29(9_suppl), S844–S856. https://doi.org/10.1177/09673911211027126 google scholar
  • Fathollahipour, S., Abouei Mehrizi, A., Ghaee, A., & Koosha, M. (2015). Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. Journal of Biomedical Materials Research - Part A, 103(12), 3852–3862. https://doi.org/10.1002/jbm.a.35529 google scholar
  • Ferreira, M. D., Duarte, J., Veiga, F., Paiva-Santos, A. C., & Pires, P. C. (2023). Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promis-ing Nanocarriers for Increased Bioavailability and Therapeutic Efficacy. In Pharmaceutics (Vol. 15, Issue 2). MDPI. https://doi.org/10.3390/pharmaceutics 15020678 google scholar
  • Garcia, J., Felix, M., Cordobés, F., & Guerrero, A. (2022). Effect of solvent and additives on the electrospinnability of BSA solutions. Colloids and Surfaces B: Biointer-faces, 217. https://doi.org/10.1016/j.colsurfb.2022.112683 google scholar
  • Ghasemian, E., Vatanara, A., Najafabadi, A. R., Rouini, M. R., Gilani, K., & Darabi, M. (2013). Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. http://www.darujps. com/content/21/1/68 google scholar
  • Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. In Research in Pharmaceutical Sciences (Vol. 13, Issue 4). google scholar
  • Gugulothu, D., Barhoum, A., Nerella, R., Ajmer, R., & Bechelany, M. (2019). Fabrication of Nanofibers: Electrospinning and Non-electrospinning Techniques. In Hand-book of Nanofibers (pp. 45–77). Springer International Publishing. https://doi. org/10.1007/978-3-319-53655-2_6 google scholar
  • Gupta, D., Jassal, M., & Agrawal, A. K. (2016). The electrospinning behavior of poly(vinyl alcohol) in DMSO-water binary solvent mixtures. RSC Advances, 6(105), 102947–102955. https://doi.org/10.1039/c6ra15017a google scholar
  • Haddad, P., Brain, C., & Scott, J. (2014). Nonadherence with antipsychotic medication in schizophrenia: challenges and management strategies. Patient Related Outcome Measures, 43. https://doi.org/10.2147/prom.s42735google scholar
  • Hapipi, N. M., Mazlan, S. A., Ubaidillah, U., Homma, K., Aziz, S. A. A., Nordin, N. A., Bahiuddin, I., & Nazmi, N. (2020). The rheological studies on poly(Vinyl) alcohol-based hydrogel magnetorheological plastomer. Polymers, 12(10), 1–15. https://doi.org/10.3390/polym12102332 google scholar
  • He, H., Kara, Y., & Molnar, K. (2019). Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolution and Discovery, 4(1), 7–11. https://doi. org/10.1556/2051.2018.00063 google scholar
  • Józó, M., Simon, N., Yi, L., Móczó, J., & Pukánszky, B. (2021). Improved Release of a Drug with Poor Water Solubility by Using Electrospun Water-Soluble Polymers as Carriers. Pharmaceutics, 2022, 34. https://doi.org/10.3390/pharmaceutics google scholar
  • Kajdič, S., Zupančič, Š., Roškar, R., & Kocbek, P. (2020). The potential of nanofibers to increase solubility and dissolution rate of the poorly soluble and chemically unstable drug lovastatin. International Journal of Pharmaceutics, 573. https:// doi.org/10.1016/j.ijpharm.2019.118809 google scholar
  • Karczewski, A., Feitosa, S. A., Hamer, E. I., Pankajakshan, D., Gregory, R. L., Spolnik, K. J., & Bottino, M. C. (2018). Clindamycin-modified Triple Antibiotic Nanofibers: A Stain-free Antimicrobial Intracanal Drug Delivery System. Journal of Endodon-tics, 44(1), 155–162. https://doi.org/10.1016/j.joen.2017.08.024 google scholar
  • Khallaf, R. A., Aboud, H. M., & Sayed, O. M. (2020). Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. Journal of Liposome Research, 30(2), 163–173. https://doi. org/10.1080/08982104.2019.1610435 google scholar
  • Khan, K. U., Minhas, M. U., Badshah, S. F., Sohail, M., & Sarfraz, R. M. (2022). β-cyclodextrin modification by cross-linking polymerization as highly porous nanomatrices for olanzapine solubility improvement; synthesis, characteriza-tion and bio-compatibility evaluation. Journal of Drug Delivery Science and Technology, 67. https://doi.org/10.1016/j.jddst.2021.102952 google scholar
  • Kimya, A., Dalı, A., Danışmanı, T., & Kadioğlu, Y. (2014). ATİPİK ANTİPSİKOTİK BİR İLAÇ OLAN OLANZAPİN’İN FARMASÖTİK PREPARATLARDA VE BİYOLOJİK ORTAMLARDA BİYOANALİTİK YÖNTEM VALİDASYONU Mevlüt ALBAYRAK. google scholar
  • Koosha, M., & Mirzadeh, H. (2015). Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research - Part A, 103(9), 3081–3093. https://doi.org/10.1002/jbm.a.35443 google scholar
  • Lee, J. S., Choi, K. H., Ghim, H. Do, Kim, S. S., Chun, D. H., Kim, H. Y., & Lyoo, W. S. (2004). Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 93(4), 1638–1646. https://doi.org/10.1002/app.20602 google scholar
  • Liu, M., Zhang, Y., Sun, S., Khan, A. R., Ji, J., Yang, M., & Zhai, G. (2019). Recent advances in electrospun for drug delivery purpose. In Journal of Drug Targeting (Vol. 27, Issue 3, pp. 270–282). Taylor and Francis Ltd. https://doi.org/10.1080/1061186X. 2018.1481413 google scholar
  • Löbmann, K., & Svagan, A. J. (2017). Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. International Journal of Pharmaceutics, 533(1), 285-297. https://doi.org/10.1016/j.ijpharm.2017.09.064 google scholar
  • Marano, S., Barker, S. A., Raimi-Abraham, B. T., Missaghi, S., Rajabi-Siahboomi, A., & Craig, D. Q. M. (2016). Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifu-gal spinning. European Journal of Pharmaceutics and Biopharmaceutics, 103, 84–94. https://doi.org/10.1016/j.ejpb.2016.03.021google scholar
  • Martínez-Pérez, C. A. (2020). Electrospinning: A promising technique for drug delivery systems. In Reviews on Advanced Materials Science (Vol. 59, Issue 1, pp. 441–454). Walter de Gruyter GmbH. https://doi.org/10.1515/rams-2020-0041 google scholar
  • Mata, G. C. da, Morais, M. S., Oliveira, W. P. de, & Aguiar, M. L. (2022). Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers, 14(22). https://doi.org/10.3390/polym14224856 google scholar
  • Meftah, A. M., Deckler, E., Citrome, L., & Kantrowitz, J. T. (2020). New discoveries for an old drug: a review of recent olanzapine research. In Postgraduate Medicine (Vol. 132, Issue 1, pp. 80–90). Taylor and Francis Inc. https://doi.org/10.1080/ 00325481.2019.1701823 google scholar
  • Morina, E., Dotter, M., Döpke, C., Kola, I., Spahiu, T., & Ehrmann, A. (2023). Homogeneity of Needleless Electrospun Nanofiber Mats. Nanomaterials, 13(18). https://doi. org/10.3390/nano13182507 google scholar
  • Mousazadeh, S., Shakouri, A., Hojjat, M., Etemad, S. G., & Heris, S. Z. (2016). Rheological behavior of starch–poly(vinyl alcohol)–TiO2 nanofluids and their main and interactive effects. Journal of Applied Polymer Science, 133(41). https://doi.org/ 10.1002/app.44062 google scholar
  • Mundhe, M. V., Vinayakmundhe, M., Burande, S., Kondapure, M. A., Vilas Arsul, M., & Zarekar, S. (2013). Formulationand Evaluation of Mouth Dissolving Tablet of Olanzapine by Coprocessing Superdisintegrants. In Asian Journal of Pharma-ceutical Technology & Innovations (Issue 01). www.asianpharmtech.com google scholar
  • Naseri, N., Mathew, A. P., Girandon, L., Fröhlich, M., & Oksman, K. (2015). Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose, 22(1), 521–534. https://doi.org/10.1007/s10570-014-0493-y google scholar
  • Natarajan, J., Baskaran, M., Humtsoe, L. C., Vadivelan, R., & Justin, A. (2017). Enhanced brain targeting efficacy of Olanzapine through solid lipid nanoparticles. Arti-ficial Cells, Nanomedicine and Biotechnology, 45(2), 364–371. https://doi.org/ 10.3109/21691401.2016.1160402 google scholar
  • Ojha, S. S. (2007). Fabrication and Characterization of Novel Single and Bicomponent Electrospun Nanofibrous Mats. Faculty of North Carolina State University. google scholar
  • Oliveira, J., Silveira Brichi, G., Marconcini, J. M., Mattoso, H. C., Glenn, G. M., Medeiros, S., & Oliveira, J. (n.d.). Effect of Solvent on The Physical and Morphological Prop-erties of Poly(Lactic Acid) Nanofibers Obtained by Solution Blow Spinning. In Journal of Engineered Fibers and Fabrics (Vol. 117). [suspicious link removed] google scholar
  • Paaver, U., Heinämäki, J., Kassamakov, I., Ylitalo, T., Hæggström, E., Laidmäe, I., & Kogermann, K. (2019). Quasi-dynamic dissolution of electrospun polymeric nanofibers loaded with piroxicam. Pharmaceutics, 11(10). https://doi.org/10. 3390/pharmaceutics11100491 google scholar
  • Paaver, U., Heinämäki, J., Laidmäe, I., Lust, A., Kozlova, J., Sillaste, E., Kirsimäe, K., Veski, P., & Kogermann, K. (2015). Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. International Journal of Pharmaceutics, 479(1), 252–260. https://doi.org/10.1016/j.ijpharm.2014.12.024 google scholar
  • Pattnaik, S., Swain, K., & Ramakrishna, S. (2023). Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions. In Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology (Vol. 15, Issue 2). John Wiley and Sons Inc. https://doi.org/ 10.1002/wnan.1859 google scholar
  • Pelipenko, J., Kocbek, P., & Kristl, J. (2015). Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. In International Journal of Pharmaceu-tics (Vol. 484, Issues 1–2, pp. 57–74). Elsevier. https://doi.org/10.1016/j.ijpharm.2015.02.043 google scholar
  • Potrč, T., Baumgartner, S., Roškar, R., Planinšek, O., Lavrič, Z., Kristl, J., & Kocbek, P. (2015). Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. European Journal of Pharma-ceutical Sciences, 75, 101–113. https://doi.org/10.1016/j.ejps.2015.04.004 google scholar
  • Quan, P., Wan, X., Tian, Q., Liu, C., & Fang, L. (2020). Dicarboxylic acid as a linker to improve the content of amorphous drug in drug-in-polymer film: Effects of molecular mobility, electrical conductivity and intermolecular interactions. Journal of Controlled Release, 317, 142–153. https://doi.org/10.1016/j.jconrel. 2019.11.033 google scholar
  • Ramakrishnan, R., Gimbun, J., Ramakrishnan, P., Ranganathan, B., Reddy, S. M., & Shanmugam, G. (2019). Effect of solution properties and operating parameters on needleless electrospinning of poly (ethylene oxide) nanofibers loaded with bovine serum albumin. Current Drug Delivery, 16(10), 913–922. google scholar
  • Rošic, R., Pelipenko, J., Kristl, J., Kocbek, P., Bešter-Rogaç, M., & Baumgartner, S. (2013). Physical characteristics of poly (vinyl alcohol) solutions in relation to electro-spun nanofiber formation. European Polymer Journal, 49(2), 290–298. https:// doi.org/10.1016/j.eurpolymj.2012.11.013 google scholar
  • Salem, H. F., Mahmoud Abdelhaleem Ali, A., Mohamed, E., Elbary, A. A., A Ali, A. M., & Maher, E. M. (2015). Formulation and in-vitro evaluation of fast dissolving tablets containing a poorly soluble antipsychotic drug. In International Jour-nal of Drug Delivery (Vol. 7). http://www.arjournals.org/index.php/ijdd/index google scholar
  • Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics, 2012, 1–10. https://doi.org/10. 5402/2012/195727 google scholar
  • Shahizam, Z. A., Benoudjit, A. M., Mohamad, N., Abd-Wahab, F., Amani, W. W., & Salim, W. (2020). Morphology of electrospun PVA nanofibers enhanced with graphene oxide, poly (3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS) and multiwalled carbon nanotubes. In Theo. Exp. NANOTECHOLOGY (Vol. 4). google scholar
  • Sill, T. J., & von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. In Biomaterials (Vol. 29, Issue 13, pp. 1989–2006). https:// doi.org/10.1016/j.biomaterials.2008.01.011 google scholar
  • Singh, S. K., Hidau, M. K., Gautam, S., Gupta, K., Singh, K. P., Singh, S. K., & Singh, S. (2018). Glycol chitosan functionalized asenapine nanostructured lipid carriers for targeted brain delivery: Pharmacokinetic and teratogenic assessment. International Journal of Biological Macromolecules, 108, 1092–1100. https:// doi.org/10.1016/j.ijbiomac.2017.11.031 google scholar
  • Szymańska, E., Wojasiński, M., Dąbrowska, J., Krzyżowska, M., Nowicka, M., Ciach, T., & Winnicka, K. (2022). Chitosan-poly(ethylene oxide) nanofibrous mat as a vaginal platform for tenofovir disoproxyl fumarate – The effect of vaginal pH on drug carrier performance. International Journal of Biological Macromole-cules, 222, 856–867. https://doi.org/10.1016/j.ijbiomac.2022.09.207 google scholar
  • Tunç, E., Uğur Kaplan, A., Kilinboz, Y., & Çetin, M. (2023). Nanoemulsion formulation containing carbamazepine and levetiracetam: Development and in vitro char-acterization. İstanbul Journal of Pharmacy, 53(2), 133-139. https://doi.org/10. 26650/İstanbuljpharm.2023.1201106 google scholar
  • Vashisth, P., Pruthi, P. A., Singh, R. P., & Pruthi, V. (2014). Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydrate Polymers, 109, 16–21. https://doi.org/10.1016/j.carbpol.2014.03.003 google scholar
  • Verreck, G., Chun, I., Peeters, J., Rosenblatt, J., & Brewster, M. E. (2003). Preparation and Characterization of Nanofibers Containing Amorphous Drug Dispersions Generated by Electrostatic Spinning. google scholar
  • Vuddanda, P. R., Mathew, A. P., & Velaga, S. (2016). Electrospun nanofiber mats for ultrafast release of ondansetron. Reactive and Functional Polymers, 99, 65–72. https://doi.org/10.1016/j.reactfunctpolym.2015.12.009google scholar
  • Wang, Y., Lv, H., Wang, C., He, D., Zhao, H., Xu, E., Jin, Z., Wu, Z., Liu, P., & Cui, B. (2024). Preparation of starch-based green nanofiber mats for probiotic encapsulation by electrospinning. Journal of Food Science. https://doi.org/10.1111/1750-3841. 17250 google scholar
  • Yosef Kinani, A. A. B., Hussein, A. A., & Alsaraf, K. M. (2022). Formulation and Charac-terization of Electrospun Nanofibers Loaded Fusidic Acid for Wound Dressing Technique. Journal of Pharmaceutical Negative Results, 13(4), 221–233. https:// doi.org/10.47750/pnr.2022.13.04.027 google scholar
  • Zahmatkeshan, M., Adel, M., Bahrami, S., Esmaeili, F., Rezayat, S. M., Saeedi, Y., Mehravi, B., Jameie, S. B., & Ashtari, K. (2019). Polymer-Based Nanofibers: Preparation, Fabrication, and Applications. In Handbook of Nanofibers (pp. 215–261). Springer International Publishing. https://doi.org/10.1007/978-3-319-53655-2_29 google scholar
  • Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3), 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027 google scholar
  • Zhang, Q., Lin, Z., Zhang, W., Huang, T., Jiang, J., Ren, Y., Zhang, R., Li, W., Zhang, X., & Tu, Q. (2020). Fabrication of green poly(vinyl alcohol) nanofibers using natural deep eutectic solvent for fast-dissolving drug delivery. RSC Advances, 11(2), 1012–1021. https://doi.org/10.1039/d0ra08755fgoogle scholar
  • Zorkina, Y., Abramova, O., Ushakova, V., Morozova, A., Zubkov, E., Valikhov, M., Melnikov, P., Majouga, A., & Chekhonin, V. (2020). Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. In Molecules (Vol. 25, Issue 22). MDPI. https://doi.org/10.3390/MOLECULES 25225294 google scholar
There are 70 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Research Article
Authors

Elif Karamürsel 0009-0000-3782-4036

Egemen Uzel 0000-0002-8658-3723

Neriman Aydilek 0000-0002-8449-548X

Meltem Ezgi Durgun 0000-0001-5724-9809

Yıldız Özsoy 0000-0002-9110-3704

Submission Date February 7, 2025
Acceptance Date August 29, 2025
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1635537
IZ https://izlik.org/JA33PY59UK
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Karamürsel, E., Uzel, E., Aydilek, N., Durgun, M. E., & Özsoy, Y. (2026). Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs. İstanbul Journal of Pharmacy, 55(3), 318-331. https://doi.org/10.26650/IstanbulJPharm.2025.1635537
AMA 1.Karamürsel E, Uzel E, Aydilek N, Durgun ME, Özsoy Y. Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs. iujp. 2026;55(3):318-331. doi:10.26650/IstanbulJPharm.2025.1635537
Chicago Karamürsel, Elif, Egemen Uzel, Neriman Aydilek, Meltem Ezgi Durgun, and Yıldız Özsoy. 2026. “Preparation and in Vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs”. İstanbul Journal of Pharmacy 55 (3): 318-31. https://doi.org/10.26650/IstanbulJPharm.2025.1635537.
EndNote Karamürsel E, Uzel E, Aydilek N, Durgun ME, Özsoy Y (January 1, 2026) Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs. İstanbul Journal of Pharmacy 55 3 318–331.
IEEE [1]E. Karamürsel, E. Uzel, N. Aydilek, M. E. Durgun, and Y. Özsoy, “Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs”, iujp, vol. 55, no. 3, pp. 318–331, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1635537.
ISNAD Karamürsel, Elif - Uzel, Egemen - Aydilek, Neriman - Durgun, Meltem Ezgi - Özsoy, Yıldız. “Preparation and in Vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 318-331. https://doi.org/10.26650/IstanbulJPharm.2025.1635537.
JAMA 1.Karamürsel E, Uzel E, Aydilek N, Durgun ME, Özsoy Y. Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs. iujp. 2026;55:318–331.
MLA Karamürsel, Elif, et al. “Preparation and in Vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 318-31, doi:10.26650/IstanbulJPharm.2025.1635537.
Vancouver 1.Karamürsel E, Uzel E, Aydilek N, Durgun ME, Özsoy Y. Preparation and in vitro Characterisation of Nanofibers for Enhancing the Water Solubility of Poorly Soluble Drugs. iujp [Internet]. 2026 Jan. 1;55(3):318-31. Available from: https://izlik.org/JA33PY59UK