Research Article
BibTex RIS Cite

Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies

Year 2025, Volume: 55 Issue: 3, 366 - 377, 14.01.2026
https://doi.org/10.26650/IstanbulJPharm.2025.1691720
https://izlik.org/JA73HF49FU

Abstract

Background and Aims: Electrospun nanofibrous systems are promising platforms for wound healing due to their high surface area, porosity, and tunable drug release. This study aimed to develop a doublelayered electrospun nanofibrous mat incorporating lidocaine hydrochloride and silver sulfadiazine for potential burn and wound treatment, focusing on the physicochemical characteristics and in vitro drug release.

Methods: Polyvinyl alcohol and polyurethane served as polymer matrices for loading lidocaine hydrochloride and silver sulfadiazine, respectively. The electrospinning conditions were optimised varying polymer concentrations (5 – 16% w/v), voltage, flow rate, and tip-to-collector distance. The resulting mats were characterised for drug–polymer compatibility, morphology, fibre diameter, porosity, tensile strength, drug content uniformity, and in vitro drug release. The drug release data were fitted to zero-order, first-order, Higuchi, and Korsmeyer–Peppas models.

Results: Smooth, bead-free nanofibers forming the double-layer mat were successfully fabricated using optimised electrospinning solutions and process parameters. FT-IR and DSC analysis confirmed no significant drug–polymer interactions. SEM images and porosity analysis demonstrated that the doublelayer structure possessed high surface area and porosity, which are favourable for wound treatment. Furthermore, the mat exhibited adequate tensile strength and uniform drug distribution. in vitro drug release results indicated that PVA layer provided rapid release (100% within 90 min), supporting the desired anaesthetic effect. In contrast, PU layer ensured the sustained release of the antimicrobial drug, following the Korsmeyer–Peppas kinetics indicative of the diffusion-controlled mechanism.

Conclusion: These findings highlight the potential of double-layer nanofibrous mat as a promising approach for burn and wound care, combining an early anaesthetic effect with sustained antimicrobial action.

References

  • Abdulhussain, R., Adebisi, A., Conway, B. R., & Asare-Addo, K. (2023). Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. Journal of Drug Delivery Science and Technology, 90, 105156. https://doi.org/10.1016/j.jddst.2023.105156
  • Abu-Huwaij, R., Assaf, S., Salem, M., & Sallam, A. (2007). Mucoadhesive dosage form of lidocaine hydrochloride: I. Mucoadhesive and physicochemical characterization. Drug Development and Industrial Pharmacy, 33(8), 855–864. https://doi.org/10.1080/03639040701377516
  • Ahmadian, S., Ghorbani, M., & Mahmoodzadeh, F. (2020). Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. International Journal of Biological Macromolecules, 162, 1555–1565. https://doi.org/10.1016/j.ijbiomac.2020.08.059
  • Alshora, D., Ashri, L., Alfaraj, R., Alhusaini, A., Mohammad, R., Alanaze, N., Ibrahim, M., Badran, M. M., Bekhit, M., Alsaif, S., Alagili, M., Ali, R. A., & Jreebi, A. (2023). Formulation and in vivo evaluation of biofilm loaded with silver sulfadiazine for burn healing. Gels, 9(11), 855. https://doi.org/10.3390/gels9110855
  • Baek, S., Park, H., Park, Y., Kang, H., & Lee, D. (2020). Development of a lidocaine-loaded alginate/CMC/PEO electrospun nanofiber film and application as an anti-adhesion barrier. Polymers, 12(3), 618-631. https://doi.org/10.3390/polym12030618
  • Barbak, Z., Karakas, H., Esenturk, I., Erdal, M. S., & Sarac, A. S. (2020). Silver sulfadiazine loaded Poly (ϵ-Caprolactone)/Poly (Ethylene Oxide) composite nanofibers for topical drug delivery. Nano, 15(6), 1–17. https://doi.org/10.1142/S1793292020500733
  • Chou, Y. C., Cheng, Y. S., Hsu, Y. H., Yu, Y. H., & Liu, S. J. (2016). Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model. Colloids and Surfaces B: Biointerfaces, 140, 332–341. https://doi.org/10.1016/j.colsurfb.2016.01.011
  • Gea, S., Attaurrazaq, B., Situmorang, S. A., Piliang, A. F. R., Hendrana, S., & Goutianos, S. (2022). Carbon-nano fibers yield improvement with iodinated electrospun PVA/Silver nanoparticle as precursor via one-step synthesis at low temperature. Polymers, 14(3), 1–12. https://doi.org/10.3390/polym14030446
  • Gelb, M. B., Punia, A., Sellers, S., Kadakia, P., Ormes, J. D., Khawaja, N. N., Wylie, J., & Lamm, M. S. (2022). Effect of drug incorporation and polymer properties on the characteristics of electrospun nanofibers for drug delivery. Journal of Drug Delivery Science and Technology, 68, 103112. https://doi.org/10.1016/j.jddst.2022.103112
  • Gencturk, A., Kahraman, E., Güngör, S., Özhan, G., Özsoy, Y., & Sarac, A. S. (2017). Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and in vitro assays. Artificial Cells, Nanomedicine and Biotechnology, 45(3). https://doi.org/10.3109/21691401.2016.1173047
  • Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. Journal of Pharmaceutical Sciences, 50(10), 874-875.
  • ICH, 2005. Validation of a analytical procedures: text and methodology Q2(R1). Guidance 1994, 17.
  • Kahraman, E., Hayri-Senel, T., & Nasun-Saygili, G. (2024). kinetics and optimization studies of controlled 5-fluorouracil release from graphene oxide incorporated vegetable oil-based polyurethane composite film. ACS Omega, 9, 47395-47409. https://doi.org/10.1021/acsomega.4c02247
  • Kalayil, N., Budar, A. A., & Dave, R. K. (2024). Nanofibers for drug delivery: Design and fabrication strategies. BIO Integration, 5(1), 1–18. https://doi.org/10.15212/bioi-2024-0023
  • Kharazmi, A., Faraji, N., Hussin, R. M., Saion, E., Yunus, W. M. M., & Behzad, K. (2015). Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach. Beilstein Journal of Nanotechnology, 6(1), 529–536. https://doi.org/10.3762/bjnano.6.55
  • Li, X., Wang, C., Yang, S., Liu, P., & Zhang, B. (2018). Electrospun PCL/mupirocin and chitosan/ lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. International Journal of Nanomedicine, 13, 5287–5299. https://doi.org/10.2147/IJN.S177256
  • Lopianiak, I., Butruk-raszeja, B., Wojasi, M. (2025). Shore hardness of bulk polyurethane affects the properties of nanofibrous materials differently. Journal of the Mechanical Behavior of Biomedical Materials, 161, 106793. https://doi.org/10.1016/j.jmbbm.2024.106793
  • Lu, X., Zhou, L., & Song, W. (2024). Recent progress of electrospun nanofiber dressing in the promotion of wound healing. Polymers. 16, 2596-2613. https://doi.org/10.3390/polym16182596
  • Jiang, Z., Zheng, Z., Yu, S., Gao, Y., Ma, J., Huang, L., & Yang, L. (2023). nanofiber scaffolds as drug delivery systems promoting wound healing. Pharmaceutics, 15(7), 1829. https://doi.org/10.3390/pharmaceutics15071829
  • Mahmoud, N. N., Qabooq, H., Alsotari, S., Tarawneh, O. A., Aboalhaija, N. H., Shraim, S., Alkilany, A. M., Khalil, E. A., & Abu-Dahab, R. (2021). Quercetin-gold nanorods incorporated into nanofibers: development, optimization and cytotoxicity. RSC Advances, 11(33), 19956–19966. https://doi.org/10.1039/d1ra02004h
  • Mahrous, G.M., Shazly, G., Zidan, D.E., Zaher, A.A.A, & El-Mahdy, M. (2020). Formulation and evaluation of buccoadhesive films of lidocaine hydrochloride. Journal of Advanced Biomedical and Pharmaceutical Sciences, 3, 53-59. https://doi.org/10.21608/jabps.2020.21927.1066
  • Mobarakeh, A.I., Ramsheh, A. S., Khanshan, A., Aghaei, S., Mirbagheri, M.S., Esmaeili, J. (2024). Fabrication and evaluation of a bi-layered electrospun PCL/PVA patch for wound healing: Release of vitamins and silver nanoparticle. Heliyon. 10(12), e33178. https://doi.org/10.1016/j.heliyon.2024.e33178
  • Oaks, R.J. & Cindass, R. (2023). Silver sulfadiazine. Accesed on 30 April 2025. https://pubmed.ncbi.nlm.nih.gov/32310514/
  • Peng, F., Liu, J., Zhang, Y., Fan, J., Gong, D., He, L., Zhang, W., & Qiu, F. (2022). Designer self-assembling peptide nanofibers induce biomineralization of lidocaine for slow-release and prolonged analgesia. Acta Biomaterialia, 146, 66–79. https://doi.org/10.1016/j.actbio.2022.05.002
  • Rowe, R.C., Sheskey, P.J., & Quinn, M.E. (2009). Handbook of Pharmaceutical Excipients. London: Pharmaceutical Press.
  • Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 48(2–3), 139–157. https://doi.org/10.1016/S0169-409X(01)00112-0
  • Singh, R., Roopmani, P., Chauhan, M., Basu, S. M., Deeksha, W., Kazem, M. D., Hazra, S., Rajakumara, E., & Giri, J. (2022). Silver sulfadiazine loaded core-shell airbrushed nanofibers for burn wound healing application. International Journal of Pharmaceutics, 613, 121358. https://doi.org/10.1016/j.ijpharm.2021.121358
  • Su, C., Chen, J., Xie, X., Gao, Z., Guan, Z., Mo, X., Wang, C., & Hou, G. (2022). Functionalized electrospun double-layer nanofibrous scaffold for wound healing and scar inhibition. ACS Omega, 7, 30137-30148. https://doi.org/10.1021/acsomega.2c03222
  • Tomar, Y., Pandit, N., Priya, S., & Singhvi, G. (2023). Evolving trends in nanofibers for topical delivery of therapeutics in skin disorders. ACS Omega, 8(21), 18340–18357. https://doi.org/10.1021/acsomega.3c00924
  • Ullah, S., Hashmi, M., Kharaghani, D., Khan, M. Q., Saito, Y., Yamamoto, T., Lee, J., & Kim, I. S. (2019). Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats. International Journal of Nanomedicine, 14, 2693–2703. https://doi.org/10.2147/IJN.S197665
  • Venmathi Maran, B. A., Jeyachandran, S., & Kimura, M. (2024). A review on the electrospinning of polymer nanofibers and its biomedical applications. Journal of Composites Science, 8(1), 1–19. https://doi.org/10.3390/jcs8010032
  • Weng, L., & Xie, J. (2015). Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Current Pharmaceutical Design, 21(15): 1944–1959.
  • Wienen, D., Gries, T., Cooper, S. L., & Heath, D. E. (2023). An overview of polyurethane biomaterials and their use in drug delivery. Journal of Controlled Release, 363, 376–388. https://doi.org/10.1016/j.jconrel.2023.09.036
  • Yan, B., Zhang, Y., Li, Z., Zhou, P., & Mao, Y. (2022). Electrospun nanofibrous membrane for biomedical application. SN Applied Sciences, 4(6), 172. https://doi.org/10.1007/s42452-022-05056-2
  • Yang, S., Li, X., Liu, P., Zhang, M., Wang, C., & Zhang, B. (2020). multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomaterials Science and Engineering, 6(8), 4666–4676. https://doi.org/10.1021/acsbiomaterials.0c00674
  • Yu, Y. H., Lin, Y. T., Hsu, Y. H., Chou, Y. C., Ueng, S. W. N., & Liu, S. J. (2021). Biodegradable antimicrobial agent/analgesic/bone morphogenetic protein-loaded nanofibrous fixators for bone fracture repair. International Journal of Nanomedicine, 16, 5357–5370. https://doi.org/10.2147/IJN.S325885
  • Zhang, Z., Feng, Y., Wang, L., Liu, D., Qin, C., & Shi, Y. (2022). A review of preparation methods of porous skin tissue engineering scaffolds. Materials Today Communications, 32, 104109. https://doi.org/10.1016/j.mtcomm.2022.104109
  • Zhao, J. H., Xu, L., & Liu, Q. (2015). Effect of ethanol post-treatment on the bubble-electrospun poly(vinyl alcohol) nanofiber. Thermal Science, 19(4), 1353–1356. https://doi.org/10.2298/TSCI1504353Z
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Research Article
Authors

Sewar Talal Ali Abuassi 0009-0001-1622-256X

Emine Kahraman 0000-0001-5911-9151

Submission Date May 5, 2025
Acceptance Date July 22, 2025
Publication Date January 14, 2026
DOI https://doi.org/10.26650/IstanbulJPharm.2025.1691720
IZ https://izlik.org/JA73HF49FU
Published in Issue Year 2025 Volume: 55 Issue: 3

Cite

APA Abuassi, S. T. A., & Kahraman, E. (2026). Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies. İstanbul Journal of Pharmacy, 55(3), 366-377. https://doi.org/10.26650/IstanbulJPharm.2025.1691720
AMA 1.Abuassi STA, Kahraman E. Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies. iujp. 2026;55(3):366-377. doi:10.26650/IstanbulJPharm.2025.1691720
Chicago Abuassi, Sewar Talal Ali, and Emine Kahraman. 2026. “Double-Layer Nanofibrous Mats Loaded With Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in Vitro Release Studies”. İstanbul Journal of Pharmacy 55 (3): 366-77. https://doi.org/10.26650/IstanbulJPharm.2025.1691720.
EndNote Abuassi STA, Kahraman E (January 1, 2026) Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies. İstanbul Journal of Pharmacy 55 3 366–377.
IEEE [1]S. T. A. Abuassi and E. Kahraman, “Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies”, iujp, vol. 55, no. 3, pp. 366–377, Jan. 2026, doi: 10.26650/IstanbulJPharm.2025.1691720.
ISNAD Abuassi, Sewar Talal Ali - Kahraman, Emine. “Double-Layer Nanofibrous Mats Loaded With Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in Vitro Release Studies”. İstanbul Journal of Pharmacy 55/3 (January 1, 2026): 366-377. https://doi.org/10.26650/IstanbulJPharm.2025.1691720.
JAMA 1.Abuassi STA, Kahraman E. Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies. iujp. 2026;55:366–377.
MLA Abuassi, Sewar Talal Ali, and Emine Kahraman. “Double-Layer Nanofibrous Mats Loaded With Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in Vitro Release Studies”. İstanbul Journal of Pharmacy, vol. 55, no. 3, Jan. 2026, pp. 366-77, doi:10.26650/IstanbulJPharm.2025.1691720.
Vancouver 1.Abuassi STA, Kahraman E. Double-Layer Nanofibrous Mats Loaded with Lidocaine Hydrochloride and Silver Sulfadiazine: Physicochemical Characterization and in vitro Release Studies. iujp [Internet]. 2026 Jan. 1;55(3):366-77. Available from: https://izlik.org/JA73HF49FU