Research Article
BibTex RIS Cite
Year 2022, , 114 - 120, 30.08.2022
https://doi.org/10.26650/IstanbulJPharm.2022.957738

Abstract

References

  • Adler, A., Shaw, E., Stokes, T., & Ruiz, F. (2009). Newer agents for blood glucose control in type 2 diabetes: summary of NICE guid- ance. BMJ, 338, b1668-b1668. https://doi.org/10.1136/bmj.b1668
  • Athyros, V. G., Doumas, M., Imprialos, K. P., Stavropoulos, K., Geor- gianou, E., Katsimardou, A., & Karagiannis, A. (2018). Diabetes and lipid metabolism. Hormones (Athens, Greece), 17(1), 61–67. https:// doi.org/10.1007/s42000-018-0014-8
  • Bangert, S. (2008). Hyperlipidaemia: Diagnosis and Management (3rd edn.). Annals of Clinical Biochemistry, 45(6), 619–619. https:// doi.org/10.1258/acb.2008.200814
  • Berkowitz, S. A., Krumme, A. A., Avorn, J., Brennan, T., Matlin, O. S., Spettell, C. M., Pezalla, E. J., Brill, G., Shrank, W. H., & Choudhry,
  • N. ,. (2014). Initial choice of oral glucose-lowering medication for diabetes mellitus: a patient-centered comparative effectiveness study. JAMA internal medicine, 174(12), 1955–1962. https://doi. org/10.1001/jamainternmed.2014.5294
  • Brunton, L., Lazo J, Buxton I, Blumenthal D, Akil H, Amrein P. (2005). Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill
  • Busti, A. J. (2015). The Mechanism for Metformin’s (Glucophage) Im- provement in the Lipid Profile Beyond its Glucose Lowering Effects in Diabetes Mellitus. Ebmconsult.com. Retrieved 8 March 2018, from https://www.ebmconsult.com/articles/metformin-glucophage- diabetes-lipid-cholesterol-lowering.
  • Chapman, M. J., Ginsberg, H. N., Amarenco, P., Andreotti, F., Borén, J., et al European Atherosclerosis Society Consensus Panel. (2011). Triglyceride-rich lipoproteins and high-density lipoprotein cho- lesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. European Heart Journal, 32(11), 1345–1361. https://doi.org/10.1093/eurheartj/ehr112
  • Chen, Y. H., Du, L., Geng, X. Y., Peng, Y. L., Shen, J. N., Zhang, Y. G., Liu, G. J., & Sun, X. (2015). Effects of sulfonylureas on lipids in type 2 diabetes mellitus: a meta-analysis of randomized controlled tri- als. Journal of Evidence-Based Medicine, 8(3), 134–148. https://doi. org/10.1111/jebm.12157
  • Davies, M., D’Alessio, D., Fradkin, J., Kernan, W., Mathieu, C., Min- grone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of hyperglycaemia in type 2 diabetes, 2018. A con- sensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Dia- betologia, 61(12), 2461-2498. https://doi.org/10.1007/s00125-018-4729-5
  • Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice, 93 Suppl 1, S52–S59. https://doi. org/10.1016/S0168-8227(11)70014-6
  • Florkowski C. (2013). HbA1c as a Diagnostic Test for Diabetes Mellitus - Reviewing the Evidence. The Clinical Biochemist. Re- views, 34(2), 75–83.
  • Hussain, A., Ali, I., Ijaz, M., & Rahim, A. (2017). Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: hemoglobin A1c prognosticates dyslipid- emia. Therapeutic Advances in Endocrinology and Metabolism, 8(4), 51–57. https://doi.org/10.1177/2042018817692296
  • Indonesian Endocrinologist Association (PERKENI). (2015). The consensus in management and prevention of type 2 diabetes mellitus for 2015 Jakarta: Perkeni. https://pbperkeni.or.id/undu- han
  • Jaiswal, M., Schinske, A., & Pop-Busui, R. (2014). Lipids and lipid management in diabetes. Best Practice & Research Clinical Endo- crinology & Metabolism, 28(3), 325-338. https://doi.org/10.1016/j. beem.2013.12.001
  • Kashi, Z., Mahrooz, A., Kianmehr, A., & Alizadeh, A. (2016). The Role of Metformin Response in Lipid Metabolism in Patients with Recent-Onset Type 2 Diabetes: HbA1c Level as a Criterion for Designating Patients as Responders or Nonresponders to Met- formin. PloS one, 11(3), e0151543. https://doi.org/10.1371/journal. pone.0151543
  • Laisupasin, P., Thompat, W., Sukarayodhin, S., Sornprom, A., & Sudjaroen, Y. (2013). Comparison of Serum Lipid Profiles be- tween Normal Controls and Breast Cancer Patients. Journal of Laboratory Physicians, 5(1), 38–41. https://doi.org/10.4103/0974-2727.115934
  • Li, Y., Hu, Y., Ley, S. H., Rajpathak, S., & Hu, F. B. (2014). Sulfonylurea use and incident cardiovascular disease among patients with type 2 diabetes: prospective cohort study among women. Dia- betes care, 37(11), 3106–3113. https://doi.org/10.2337/dc14-1306
  • Madsen, A., Bozickovic, O., Bjune, J.I., Mellgren. G., Sagen, J. V. (2015). Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppress- ing steroid receptor coactivator 2 (SRC-2). Sci Rep. doi: 10.1038/ srep16430. PMID: 26548416; PMCID: PMC4637908.
  • Middleton, T. L., Wong, J., Molyneaux, L., Brooks, B. A., Yue, D. K., Twigg, S. M., & Wu, T. (2017). Cardiac Effects of Sulfonylurea-Re- lated Hypoglycemia. Diabetes Care, 40(5), 663–670. https://doi. org/10.2337/dc16-1972
  • Ministry of Health. (2013). Basic Health Research 2013. Jakarta: Ministry of Health Republic of Indonesia. https://www.litbang. kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/
  • Natali, A., & Ferrannini, E. (2006). Effects of metformin and thia- zolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a system- atic review. Diabetologia, 49(3), 434–441. https://doi.org/10.1007/ s00125-006-0141-7
  • Nuttall, F. Q. (2015). Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutrition today, 50 (3), 117–128. https://doi. org/10.1097/NT.0000000000000092
  • Rao, A. D., Kuhadiya, N., Reynolds, K., & Fonseca, V. A. (2008). Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all-cause mortality?: a meta-analysis of observational studies. Diabetes Care, 31(8), 1672– 1678. https://doi.org/10.2337/dc08-0167
  • Sauriasari, R., Andriany, R., Sekar, A., & Azizahwati, A. (2017). Com- parison of Antioxidative Effect of Metformin and Combination of Metformin-Sulfonylurea in Type 2 Diabetes Mellitus Patients. Journal of Young Pharmacists, 9(1), 39-42. https://doi.org/10.5530/ jyp.2017.1s.10
  • Sauriasari, R., Aristia H., Azizahwati (2020). Urine albumin-to-cre- atinine ratio and estimated glomerular filtration rate in matched groups of type 2 diabetes mellitus patients receiving metformin and metformin-sulfonylurea. International Journal of Applied Phar- maceutics. 12(Special Issue I), 257-259. DOI: 10.22159/ijap.2020. v12s1.FF056
  • Schofield, J. D., Liu, Y., Rao-Balakrishna, P., Malik, R. A., & Soran, H. (2016). Diabetes Dyslipidemia. Diabetes therapy: research, treat-
  • ment and education of diabetes and related disorders, 7(2), 203– 219. https://doi.org/10.1007/s13300-016-0167-x
  • Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., De- pinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, N.Y.), 310(5754), 1642–1646. https:// doi.org/10.1126/science.1120781
  • Sola, D., Rossi, L., Schianca, G., Maffioli, P., Bigliocca, M., & Mella, R. et al. (2015). State of the art paper Sulfonylureas and their use in clinical practice. Archives Of Medical Science, 4, 840-848. https:// doi.org/10.5114/aoms.2015.53304
  • Tsimihodimos, V., Gonzalez-Villalpando, C., Meigs, J., & Ferrannini, E. (2018). Hypertension and Diabetes Mellitus. Hypertension, 71(3), 422-428. https://doi.org/10.1161/hypertensionaha.117.10546
  • WHO. Diabetes. Who.int. (2021). Retrieved 10 November 2021, from http://www.who.int/news-room/fact-sheets/detail/diabe- tes.
  • Zhang, F., Xiang, H., Fan, Y., Ganchuluun, T. A., Kong, W., Ouyang, Q., Sun, J., Cao, B., Jiang, H., & Nie, S. (2013). The effects of sulfo- nylureas plus metformin on lipids, blood pressure, and adverse events in type 2 diabetes: a meta-analysis of randomized con- trolled trials. Endocrine, 44(3), 648–658. https://doi.org/10.1007/ s12020-013-9970-6
  • Zhang, X., Song, Y., Feng, M., Zhou, X., Lu, Y., Gao, L., Yu, C., Jiang, X., & Zhao, J. (2015). Thyroid-stimulating hormone decreases HMG- CoA reductase phosphorylation via AMP-activated protein kinase in the liver. Journal of Lipid Research, 56(5), 963–971. https://doi. org/10.1194/jlr.M047654

Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study

Year 2022, , 114 - 120, 30.08.2022
https://doi.org/10.26650/IstanbulJPharm.2022.957738

Abstract

Background and Aims: In addition to lowering blood glucose levels, metformin also has a positive effect on the lipid profile by affecting gluconeogenesis and lipogenesis in the liver. Conversely, sulfonylurea is reported to possibly worsen the lipid profile and increase the risk of cardiovascular disease. Therefore, we would like to know whether there is a significant differ- ence in the lipid profile of type 2 diabetes mellitus patients taking metformin as monotherapy and metformin-sulfonylurea as a combination since these two medicines are very commonly used in Indonesia.
Methods: A cross-sectional study was performed on 88 patients with type 2 diabetes mellitus who were restricted on metfor- min or metformin-sulfonylurea for equal to or more than 1 year. Subjects on metformin (n=37) and metformin-sulfonylurea (n=51) were asked to fast for at least 8 hours before blood sampling. We measured the lipid parameters from subjects’ blood samples using a standardized enzymatic method.
Results: All basic characteristics of the study subjects in these two groups were matched. We found that total cholesterol, LDL-cholesterol, and triglyceride were lower and HDL-cholesterol was higher in the metformin group than the metformin- sulfonylurea group but not statistically significant (p>0.05). Multivariate analysis showed no significant differences for both therapies in any parameters before and after being adjusted by confounders. Only the increase in BMI contributed signifi- cantly to the increase in triglyceride.
Conclusion: This study presents no statistical differences in lipid profile after ≥1 year consumption of metformin and metfor- min-sulfonylurea combination.

References

  • Adler, A., Shaw, E., Stokes, T., & Ruiz, F. (2009). Newer agents for blood glucose control in type 2 diabetes: summary of NICE guid- ance. BMJ, 338, b1668-b1668. https://doi.org/10.1136/bmj.b1668
  • Athyros, V. G., Doumas, M., Imprialos, K. P., Stavropoulos, K., Geor- gianou, E., Katsimardou, A., & Karagiannis, A. (2018). Diabetes and lipid metabolism. Hormones (Athens, Greece), 17(1), 61–67. https:// doi.org/10.1007/s42000-018-0014-8
  • Bangert, S. (2008). Hyperlipidaemia: Diagnosis and Management (3rd edn.). Annals of Clinical Biochemistry, 45(6), 619–619. https:// doi.org/10.1258/acb.2008.200814
  • Berkowitz, S. A., Krumme, A. A., Avorn, J., Brennan, T., Matlin, O. S., Spettell, C. M., Pezalla, E. J., Brill, G., Shrank, W. H., & Choudhry,
  • N. ,. (2014). Initial choice of oral glucose-lowering medication for diabetes mellitus: a patient-centered comparative effectiveness study. JAMA internal medicine, 174(12), 1955–1962. https://doi. org/10.1001/jamainternmed.2014.5294
  • Brunton, L., Lazo J, Buxton I, Blumenthal D, Akil H, Amrein P. (2005). Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill
  • Busti, A. J. (2015). The Mechanism for Metformin’s (Glucophage) Im- provement in the Lipid Profile Beyond its Glucose Lowering Effects in Diabetes Mellitus. Ebmconsult.com. Retrieved 8 March 2018, from https://www.ebmconsult.com/articles/metformin-glucophage- diabetes-lipid-cholesterol-lowering.
  • Chapman, M. J., Ginsberg, H. N., Amarenco, P., Andreotti, F., Borén, J., et al European Atherosclerosis Society Consensus Panel. (2011). Triglyceride-rich lipoproteins and high-density lipoprotein cho- lesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. European Heart Journal, 32(11), 1345–1361. https://doi.org/10.1093/eurheartj/ehr112
  • Chen, Y. H., Du, L., Geng, X. Y., Peng, Y. L., Shen, J. N., Zhang, Y. G., Liu, G. J., & Sun, X. (2015). Effects of sulfonylureas on lipids in type 2 diabetes mellitus: a meta-analysis of randomized controlled tri- als. Journal of Evidence-Based Medicine, 8(3), 134–148. https://doi. org/10.1111/jebm.12157
  • Davies, M., D’Alessio, D., Fradkin, J., Kernan, W., Mathieu, C., Min- grone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of hyperglycaemia in type 2 diabetes, 2018. A con- sensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Dia- betologia, 61(12), 2461-2498. https://doi.org/10.1007/s00125-018-4729-5
  • Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice, 93 Suppl 1, S52–S59. https://doi. org/10.1016/S0168-8227(11)70014-6
  • Florkowski C. (2013). HbA1c as a Diagnostic Test for Diabetes Mellitus - Reviewing the Evidence. The Clinical Biochemist. Re- views, 34(2), 75–83.
  • Hussain, A., Ali, I., Ijaz, M., & Rahim, A. (2017). Correlation between hemoglobin A1c and serum lipid profile in Afghani patients with type 2 diabetes: hemoglobin A1c prognosticates dyslipid- emia. Therapeutic Advances in Endocrinology and Metabolism, 8(4), 51–57. https://doi.org/10.1177/2042018817692296
  • Indonesian Endocrinologist Association (PERKENI). (2015). The consensus in management and prevention of type 2 diabetes mellitus for 2015 Jakarta: Perkeni. https://pbperkeni.or.id/undu- han
  • Jaiswal, M., Schinske, A., & Pop-Busui, R. (2014). Lipids and lipid management in diabetes. Best Practice & Research Clinical Endo- crinology & Metabolism, 28(3), 325-338. https://doi.org/10.1016/j. beem.2013.12.001
  • Kashi, Z., Mahrooz, A., Kianmehr, A., & Alizadeh, A. (2016). The Role of Metformin Response in Lipid Metabolism in Patients with Recent-Onset Type 2 Diabetes: HbA1c Level as a Criterion for Designating Patients as Responders or Nonresponders to Met- formin. PloS one, 11(3), e0151543. https://doi.org/10.1371/journal. pone.0151543
  • Laisupasin, P., Thompat, W., Sukarayodhin, S., Sornprom, A., & Sudjaroen, Y. (2013). Comparison of Serum Lipid Profiles be- tween Normal Controls and Breast Cancer Patients. Journal of Laboratory Physicians, 5(1), 38–41. https://doi.org/10.4103/0974-2727.115934
  • Li, Y., Hu, Y., Ley, S. H., Rajpathak, S., & Hu, F. B. (2014). Sulfonylurea use and incident cardiovascular disease among patients with type 2 diabetes: prospective cohort study among women. Dia- betes care, 37(11), 3106–3113. https://doi.org/10.2337/dc14-1306
  • Madsen, A., Bozickovic, O., Bjune, J.I., Mellgren. G., Sagen, J. V. (2015). Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppress- ing steroid receptor coactivator 2 (SRC-2). Sci Rep. doi: 10.1038/ srep16430. PMID: 26548416; PMCID: PMC4637908.
  • Middleton, T. L., Wong, J., Molyneaux, L., Brooks, B. A., Yue, D. K., Twigg, S. M., & Wu, T. (2017). Cardiac Effects of Sulfonylurea-Re- lated Hypoglycemia. Diabetes Care, 40(5), 663–670. https://doi. org/10.2337/dc16-1972
  • Ministry of Health. (2013). Basic Health Research 2013. Jakarta: Ministry of Health Republic of Indonesia. https://www.litbang. kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/
  • Natali, A., & Ferrannini, E. (2006). Effects of metformin and thia- zolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a system- atic review. Diabetologia, 49(3), 434–441. https://doi.org/10.1007/ s00125-006-0141-7
  • Nuttall, F. Q. (2015). Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutrition today, 50 (3), 117–128. https://doi. org/10.1097/NT.0000000000000092
  • Rao, A. D., Kuhadiya, N., Reynolds, K., & Fonseca, V. A. (2008). Is the combination of sulfonylureas and metformin associated with an increased risk of cardiovascular disease or all-cause mortality?: a meta-analysis of observational studies. Diabetes Care, 31(8), 1672– 1678. https://doi.org/10.2337/dc08-0167
  • Sauriasari, R., Andriany, R., Sekar, A., & Azizahwati, A. (2017). Com- parison of Antioxidative Effect of Metformin and Combination of Metformin-Sulfonylurea in Type 2 Diabetes Mellitus Patients. Journal of Young Pharmacists, 9(1), 39-42. https://doi.org/10.5530/ jyp.2017.1s.10
  • Sauriasari, R., Aristia H., Azizahwati (2020). Urine albumin-to-cre- atinine ratio and estimated glomerular filtration rate in matched groups of type 2 diabetes mellitus patients receiving metformin and metformin-sulfonylurea. International Journal of Applied Phar- maceutics. 12(Special Issue I), 257-259. DOI: 10.22159/ijap.2020. v12s1.FF056
  • Schofield, J. D., Liu, Y., Rao-Balakrishna, P., Malik, R. A., & Soran, H. (2016). Diabetes Dyslipidemia. Diabetes therapy: research, treat-
  • ment and education of diabetes and related disorders, 7(2), 203– 219. https://doi.org/10.1007/s13300-016-0167-x
  • Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., De- pinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, N.Y.), 310(5754), 1642–1646. https:// doi.org/10.1126/science.1120781
  • Sola, D., Rossi, L., Schianca, G., Maffioli, P., Bigliocca, M., & Mella, R. et al. (2015). State of the art paper Sulfonylureas and their use in clinical practice. Archives Of Medical Science, 4, 840-848. https:// doi.org/10.5114/aoms.2015.53304
  • Tsimihodimos, V., Gonzalez-Villalpando, C., Meigs, J., & Ferrannini, E. (2018). Hypertension and Diabetes Mellitus. Hypertension, 71(3), 422-428. https://doi.org/10.1161/hypertensionaha.117.10546
  • WHO. Diabetes. Who.int. (2021). Retrieved 10 November 2021, from http://www.who.int/news-room/fact-sheets/detail/diabe- tes.
  • Zhang, F., Xiang, H., Fan, Y., Ganchuluun, T. A., Kong, W., Ouyang, Q., Sun, J., Cao, B., Jiang, H., & Nie, S. (2013). The effects of sulfo- nylureas plus metformin on lipids, blood pressure, and adverse events in type 2 diabetes: a meta-analysis of randomized con- trolled trials. Endocrine, 44(3), 648–658. https://doi.org/10.1007/ s12020-013-9970-6
  • Zhang, X., Song, Y., Feng, M., Zhou, X., Lu, Y., Gao, L., Yu, C., Jiang, X., & Zhao, J. (2015). Thyroid-stimulating hormone decreases HMG- CoA reductase phosphorylation via AMP-activated protein kinase in the liver. Journal of Lipid Research, 56(5), 963–971. https://doi. org/10.1194/jlr.M047654
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Original Article
Authors

Rani Sauriasari 0000-0001-7861-4369

Fitriani Syawalia This is me 0000-0001-7861-4369

Azizahwati Azizahwati This is me 0000-0001-7861-4369

Publication Date August 30, 2022
Submission Date August 19, 2021
Published in Issue Year 2022

Cite

APA Sauriasari, R., Syawalia, F., & Azizahwati, A. (2022). Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. İstanbul Journal of Pharmacy, 52(2), 114-120. https://doi.org/10.26650/IstanbulJPharm.2022.957738
AMA Sauriasari R, Syawalia F, Azizahwati A. Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. iujp. August 2022;52(2):114-120. doi:10.26650/IstanbulJPharm.2022.957738
Chicago Sauriasari, Rani, Fitriani Syawalia, and Azizahwati Azizahwati. “Effect of Metformin and Metformin-Sulfonylurea on Lipid Profile of Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study”. İstanbul Journal of Pharmacy 52, no. 2 (August 2022): 114-20. https://doi.org/10.26650/IstanbulJPharm.2022.957738.
EndNote Sauriasari R, Syawalia F, Azizahwati A (August 1, 2022) Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. İstanbul Journal of Pharmacy 52 2 114–120.
IEEE R. Sauriasari, F. Syawalia, and A. Azizahwati, “Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study”, iujp, vol. 52, no. 2, pp. 114–120, 2022, doi: 10.26650/IstanbulJPharm.2022.957738.
ISNAD Sauriasari, Rani et al. “Effect of Metformin and Metformin-Sulfonylurea on Lipid Profile of Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study”. İstanbul Journal of Pharmacy 52/2 (August 2022), 114-120. https://doi.org/10.26650/IstanbulJPharm.2022.957738.
JAMA Sauriasari R, Syawalia F, Azizahwati A. Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. iujp. 2022;52:114–120.
MLA Sauriasari, Rani et al. “Effect of Metformin and Metformin-Sulfonylurea on Lipid Profile of Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study”. İstanbul Journal of Pharmacy, vol. 52, no. 2, 2022, pp. 114-20, doi:10.26650/IstanbulJPharm.2022.957738.
Vancouver Sauriasari R, Syawalia F, Azizahwati A. Effect of metformin and metformin-sulfonylurea on lipid profile of type 2 diabetes mellitus patients: A cross-sectional study. iujp. 2022;52(2):114-20.